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This research focuses on studying the effect of the constitutive law adopted for a matrix material on the 
compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a 
periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the 
matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the 
fiber misalignment angle were presented. The model was verified against an analytical solution and experimental 
data. Results of this study indicate that a micromechanical model with correctly identified material parameters 
provides a useful alternative to theoretical models and experimentation. 
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1. Introduction 
 
 Computational micromechanics is used as a tool to predict the macroscopic properties of composite 
materials based on the known properties of their constituents. To avoid considering all the fibers included in 
a composite, micromechanics uses the concept of a unit cell. A unit cell is the smallest portion of the 
heterogenous material that contains all geometrical features of the microstructure. Micromechanics is 
applicable only if microscopic boundary conditions imposed on the unit cell are controlled by the 
macroscopic quantities, such as macroscopic strain. In the present paper, this condition is fulfilled by 
applying periodic boundary conditions. The effective properties of the heterogeneous material are calculated 
by the direct average method. This method is based on volume average of the fields quantities like strain and 
stress on the microscopic level. 
 One of the design limiting features of a unidirectional composite lamina at the macroscopic level is 
the compressive failure in the fiber direction. The compressive strength of modern composites ranges 
between 50-60% of their tensile strength. Experimental results indicate that it is triggered by microbuckling 
of fibers inside the inelastic matrix. Thus, the key parameters of compressive models are the matrix ductility 
and the initial waviness of fibers. Following the usual assumption that the induced shear strain  and the fiber 
misalignment angle  are small, simple equilibrium considerations (Budiansky and Fleck, 1993) relate the 
applied compressive stress  to the shear response of the composite () by 
 
            .  (1.1) 

 
 This relationship demonstrates that the shear mode failure will always occur during the buckling 
process.  
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 Application of a representative unit cell approach in modeling the microbuckling has been reported 
by Guynn et al. (1992), Morais (1996), Hsu et al. (1999), Pansart et al. (2009) and Gutkin et al. (2010). In all 
of these papers, the nonlinear constitutive matrix behavior was described by using the von Mises yield 
criterion. Unfortunately, such an approach does not take into account the pressure sensitivity plastic response 
of polymer matrices. 
 The present work attempts to meet this demand. A micromechanical finite element model that 
incorporates the pressure sensitivity yielding is used to determine the compressive strength of a fiber 
reinforced polymer composite and to investigate the effect of the above mentioned parameters.  
 
2. Periodic unit cell model 
 
2.1. Initial fiber waviness 
 
 An initial fiber imperfection is uniformly distributed across the width of the model (Fig.1a). For 
the presentation of the problem, the material coordinate system is introduced so that the x1 axis is aligned 
with the fiber direction and the x2 axis is perpendicular to the fiber direction. In this paper, the 
imperfection is expressed as a sinusoidal waviness of fibers along the x1 direction with amplitude a and 
wavelength 2
 
   cos0 1a x    .  (2.1) 

 
 If the sinusoidal imperfection has long wavelength and relatively small amplitude, the fiber 
misalignment angle can be approximated by 
 
  a    .  (2.2) 
 
 In the literature (see for example Yurgatis, 1987; Fleck, 1997), the values of the initial fiber 
misalignment are usually 2o–3o. Unit cell models with the uniformly distributed imperfection characterized 
by  = 1.71o, 2.40o and 3.42o were analyzed. 
 
               a) 
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                        b) 

 
 

Fig.1. Periodic unit cell model. (a) geometry; (b) finite element mesh. 
 
2.2. Finite element formulation 
 
 Finite element models are constructed by using ANSYS finite element code. Two-dimensional finite 
element meshes made of plane strain, biquadratic elements with eight nodes (Plane183) are generated for the 
appropriate geometries of micromechanical models (Fig.1b). The fiber and matrix layers each have 1575 and 
2100 elements, respectively. The width of the matrix region was chosen so as to accommodate the fiber 
diameter df = 7 μm, and respect the fiber volume content Vf = 60 %. The length of models corresponds to the 
half wavelength,  = 75df. 
 The longitudinal compression is imposed by means of a vertical pressure prescribed at the top side of 
the unit cell in such a way that the top side remains plane. The bottom side of the unit cell is fixed in the 
vertical direction. One node was also fixed in the direction perpendicular to the compressive load to prevent 
rigid body motion. 
 The periodicity conditions on the right and left sides of the unit cell models are defined to represent a 
periodic microstructure consisting of an infinitely large array of repeated unit cells. The displacements of 
nodes on the right side of the unit cell are related to the displacements of their counterparts on the left side as 
follows (Pansart et al., 2009) 
 

  ref 2 ref 1n2 n1
i i i iu u u u             for         i = 1, 2 (2.3) 

 
where ui is the displacement in the i-axis direction, n1 and n2 is a pair of nodes facing each other on edge 1 
and edge 2, respectively, ref1 and ref2 is a pair of reference nodes on edge 1 and edge 2.  
 In order to handle the potential snap-through associated with the post-buckling response effectively, 
the arc-length method (Riks, 1979) is adopted. A minimum arc-length radius was defined by using the 
following parameters. The minimum multiplier of reference arc-length radius was rmin = 10-8. The number of 
substeps was n = 2500. A residual forces tolerance of tolF = 0.001 was selected to control the convergence of 
the iterative procedure. 
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2.3. Constitutive models of fibers and matrix 
 
 Simulations were carried out for an example case of the AS4/PEEK composite system with the fiber 
volume content of 60 %. The properties of this material and its constituents are listed in Tab.1. For the 
present problem, the fibers are assumed to be isotropic and linearly elastic solids which are perfectly bonded 
to the matrix. The matrix is modeled within the framework of the finite deformations as an elasto-plastic 
solid which hardens isotropically. 
 
Table 1. Mechanical properties of the AS4/PEEK composite and its constituents (Kyriakides et al., 1995). 
 

AS4 fiber  PEEK matrix  AS4/PEEK 
composite 

Ef  
(GPa) 

f  Em 
(GPa) 

m k  
(MPa) 

 E11 
(GPa)

c
–

(GPa) 
Vf 

(%) 

214 0.263  6.14 0.356 40  128 1.21 60 
 
 The deformation of polymeric materials is highly sensitive to the hydrostatic pressure and plastic 
flow of these materials can exhibit plastic dilatancy. To address this requirement, the Drucker-Prager 
plasticity model (Drucker and Prager, 1952), which incorporates the linear dependence on the hydrostatic 
stress, is used. In terms of the first invariant of stress I1 and the second invariant of the deviatoric part of 
stress J2, the yield function is given as 
 
   1 2f I 3 sqrt J k     (2.4) 

 
where α is the pressure sensitivity factor, k is the flow stress of the material under pure shear. The Drucker-
Prager plasticity model with α = 0, 0.1, 0.2, 0.3 and k = 40 MPa was used to study the compressive failure of 
AS4/PEEK composite. Note that if α = 0, Eq.(2.3) reduces to the von Mises yield function. The plastic strain 
increment dp is specified through the flow rule 
 

   pd d g       (2.5) 

 
where d is a positive scalar of proportionality which determines the amount of plastic strain and g is a 
plastic potential which in turn determines the direction of plastic strain. If g = f, then the plastic flow is 
associative and, in turn, the pressure sensitivity and plastic dilatancy are described by the same parameter α. 
If g ≠ f, then the plastic flow is non–associative and the plastic volume change is controlled by choosing an 
appropriate parameter β in the plastic potential function, i.e.,  1 2g I 3 sqrt J   . 

 
2.4. Calibration of the Drucker-Prager plasticity model 
 
 In this paper, the in-situ axial stress-strain curve of the matrix is back-calculated from the shear 
stress-strain curve of the AS4/PEEK composite by using numerical homogenization. To simulate in-plane 
shear loading, the same two-dimensional unit cell model as the one described in section 2.2 was used. 
Comparisons of the in-situ axial response of the matrix and the predicted shear response of the composite 
with corresponding test data (Kyriakides et al., 1995) are shown in Figs 2a and 2b. It can be seen from 
Fig.2b that the axial stress-strain curves of the matrix shown in Fig.2a produce an accurate solution for the 
AS4/PEEK composite under in-plane shear loading. 
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        a) 

 
       b) 

 
 
Fig.2. Identification of the plasticity model. (a) comparison of the in-situ axial responses of PEEK matrix 

with test data (Kyriakides et al., 1995); (b) adjusting experimental shear response of the AS4/PEEK 
composite (Kyriakides et al., 1995) with model responses. 
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2.5. Numerical homogenization 
 
 The compressive responses of the periodic unit cell models are discussed in terms of macroscopic 
stress and strain. According to the homogenization theory, the macroscopic compressive stress 11 is equal to 
the average normal traction at the bottom edge of the model (obtained as the sum of reactions divided by the 
actual cross-section). The corresponding average strain 11 was computed from a logarithmic formula, 
namely  ln 1     , where  is the displacement of nodes at the top edge of the model. 
 

3. Results and discussion 
 

 The combination of nonlinear matrix behavior and initial fiber waviness into one micromechanical 
model enables the determination of the overall response of composites subjected to compressive loading. The 
macroscopic stress-strain curves calculated for three values of the initial fiber misalignment  = 1.71o, 2.40o 
and 3.42o are shown in Figs 3a–3c. The nonlinear responses of the AS4/PEEK composite under longitudinal 
compression for each angle  are predicted for four values of the pressure sensitivity factor α = 0, 0.1, 0.2 
and 0.3. Generally, the main features of the predicted response are similar to those seen experimentally 
(Kyriakides et al., 1995; Moran et al., 1995). It can be seen that the initial deformation of the composite is 
linear elastic. The limit load is reached shortly after non-linearity is first noted. After the maximum of the 
compressive stress has been attained, geometric softening associated with the fiber bending outweighs the 
strain hardening of the matrix, and the load begins to drop. As expected, the critical stress predicted by the 
periodic unit cell model is sensitive to the fiber misalignment angle . An increase of the value of  reduces 
the compressive strength of the composite as well as the snap-through instability beyond the limit load. On 
the other hand, an increase of the value of α improves the resistance of the composite to compressive failure. 
This finding clearly indicates that the application of a matrix with high internal friction during composite 
processing should provide better failure characteristics. It is interesting to observe that the use of the von 
Mises plasticity model (α = 0) leads to lower compressive strengths compared to the Drucker-Prager 
plasticity model (α > 0). 
 
       a) 
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        b) 

 
        c) 

 
 
Fig.3.  Prediction of the compressive stress–strain curves for various values of the pressure sensitivity factor 

α. Responses for (a)   1.71o; (b)  = 2.40o; (c)  = 3.42o. 
 



380  M.Romanowicz 

 In order to assess the effect of the flow rule on the compressive response of the AS4/PEEK 
composite, the macroscopic stress-strain curves calculated for one value of the pressure sensitivity factor 
α = 0.1 through the model in which the matrix followed the associative flow rule were compared to the 
corresponding curves obtained from the non–associative flow rule. The results of this comparison are 
summarized in Fig.4 for three values of the initial fiber misalignment . The non–associative curves relate to 
the limiting case, β = 0 in which no volume change during plastic deformation takes place. It can be seen that 
the flow rule has a negligible influence on the onset of buckling. A noticeable difference was only observed 
beyond the limit load in the post-buckling stage. 
 

 
 
Fig.4.  Comparison between the associative (α = β = 0.1) and non–associative (α = 0.1, β = 0) flow rule for 

various values of the fiber misalignment angle  
 
 In order to determine material parameters for the microbuckling analysis of the AS4/PEEK 
composite, the limit stresses obtained through the periodic unit cell models were compared to experimental 
data reported by Kyriakides et al. (1995) as well as to predictions made with theories proposed by Budiansky 
and Fleck (1993) and Barbero (1998). The first analytical formulation is based on the physics of kink–band 
formation and the other on the stability analysis. Both theories take into account the matrix physical non-
linearity and the presence of initial fiber misalignment. The Budiansky and Fleck theory suggests that the 
longitudinal compressive strength σc can be derived as 
 

       tan
n 1 n2 1 n2

c ty yG 1 1 n 3 7 n 1
                   

 (3.1) 

 

where   tan
1 22 2

y ty y1          
. In this formula, the ratio of the transverse yield stress to the shear 

yield stress,   ,ty y y2     is the shear yield strain, G is the elastic shear modulus of the composite, n 
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denotes the strain hardening coefficient,  is the initial misalignment angle and β is the kink-band angle. In 
the Barbero formulation, the longitudinal compressive strength σc is predicted to be 
 

      sqrtc 2 2 2G 16C 3 4 2C 8C 3 G 3           (3.2) 

 
where C2 = G2/4τc and τc is the in-plane shear strength. The compressive strengths of the AS4/PEEK 
composite predicted from the analytical formulations were plotted in Fig.5. The predictions are made for the 
following material constants taken from the shear stress-strain response shown in Fig.2b: 
G = 5.79 GPay = 1.03 %, n = 4.7, β = 15o, τc = 80.25 MPa. 
 

 
 
Fig.5.  Comparison of the calculated critical stress with experimental data (Kyriakides et al., 1995) and 

theoretical prediction (Budiansky and Fleck, 1993; Barbero, 1998). 
 
 It is interesting to note that the analytical predictions lie between the numerical values of the limit 
stresses obtained for α = 0.1 and 0.2. This finding supports the general idea that the von Mises plasticity 
model (α = 0) is unable to appropriately reproduce the deformation of polymeric matrices. Thus, the 
Drucker-Prager plasticity models with the pressure sensitivity factor α within the range of 0.1 – 0.2 are more 
reliable. By comparing the numerical values of the limit stresses obtained for α = 0.1 and 0.2 with the mean 
value of experimental data, it can be concluded that the models with the imperfection parameter within the 
range of 2.50o – 3.25o guarantee agreement with experiments. 
 
4. Summary 
 
 A micromechanical finite element analysis has been conducted to investigate the effect of the matrix 
constitutive behavior and initial fiber waviness on the compressive strength of the unidirectional AS4/PEEK 
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composite. It was found that an increase of the value of the misalignment angle reduces the compressive 
strength of the composite as well as the snap-through instability beyond the limit load. It was also shown that 
the kind of plasticity model significantly affects the limit load whereas the kind of flow rule is negligible. 
Furthermore, it was shown that a micromechanical model with correctly identified material parameters 
provides a useful alternative to theoretical models and experimentation. It was found that micromechanical 
models with the pressure sensitivity factor α within the range of 0.1 – 0.2 and the misalignment angle within 
the range of 2.50o – 3.25o produce the most reliable values of the compressive strength of the unidirectional 
AS4/PEEK composite. 
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Nomenclature 
 
 a  – amplitude of the fiber imperfection 
 df  – fiber diameter 
 G – elastic shear modulus of the composite 
 I1 – the first invariant of stress 
 J2 – the second invariant of the deviatoric part of stress 
 n – strain hardening coefficient 
 Vf – fiber volume content 

   – pressure sensitivity factor 
 β – kink-band angle 
 y – shear yield strain of the composite 
 m, σm, – tensile strain and stress of the matrix 
 11, σ11 – compressive strain and stress of the composite 

   – fiber misalignment angle 
    half length of the fiber imperfection 

 σc – compressive strength of the composite 
 τc – in-plane shear strength of the composite 
 12, 12 – shear strain and stress of the composite 
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