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Ordered and chaotic states of a parametrically driven planar pendulum with viscous damping are numerically 
investigated. The damping makes the number of chaotic windows fewer but with larger width. Stroboscopic maps 
of the chaotic motion of the pendulum, driven either subharmonically or harmonically, show strange attractors 
with inversion symmetry in the phase plane. 
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1. Introduction 

 
 The problem of parametrically driven physical system is known since the pioneering experiment of 
Faraday (1831), who observed subharmonically forced waves on the fluid surface under gravity modulation. 
The simplest possible parametrically forced system is a planar pendulum whose point of suspension is 
vibrated sinusoidally with amplitude a and frequency ω in a vertical plane (Landau and Lifschitz, 1976). The 
small amplitude oscillation of the pendulum is then governed by the Mathieu equation. Floquet analysis of 
the Mathieu equation gives tongue shaped instability zones in a- ω plane (Bender and Orszag, 1978; Jordan 
and Smith, 1977). The pendulum can be excited only for values of parameters (a and ω) within these zones. 
If the pendulum oscillates with a period twice the driving period  T 2   the pendulum is said to be 

excited subharmonically. On the other hand, harmonic (synchronous) excitation means the period of the 
oscillating pendulum is same as that of the driving. The tongues corresponding to subharmonic and harmonic 
responses with respect to the forcing frequency appear alternately in the a- ω plane, and they never intersect 
each other. In the absence of damping, the pendulum can be excited with infinitesimal forcing amplitude, if 
the driving frequency is chosen properly. The pendulum, however, requires finite forcing above a threshold 
value in the presence of damping. Once the pendulum is driven, the dynamics is governed by nonlinear 
dynamical equations. The sequence of period-doubling bifurcation and chaos in the parametrically driven 
pendulum is investigated both theoretically (McLaughlin, 1981; Bartuccelli et al., 2001; Ling and Yang, 
2006) as well as experimentally (Leven et al., 1985; Van de Water et al., 1991). Controlling the chaotic 
motion of a driven pendulum has also been studied (Starrett and Tagg, 1995). However, a systematic 
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investigation of the chaotic motion of a parametrically forced pendulum is missing. The strange attractors of 
a parametrically driven pendulum are not investigated either.  
 In this paper, we have investigated numerically ordered and chaotic states of parametrically driven 
pendulum in the presence of viscous damping. For a given damping and forcing frequency, the pendulum 
shows ordered and chaotic states in several windows in the forcing amplitude a. We have computed 
Lyapunov exponents for these states to and the chaotic windows in the forcing amplitude a. The phase 
portrait of the ordered (nonlinear) state shows inversion symmetry in the phase plane for a subharmonically 
excited pendulum. However, the phase portrait of a harmonically excited pendulum does not show such 
inversion symmetry. The pendulum shows chaos always through a sequence of period doubling bifurcations. 
The sum of all three Lyapunov exponents is always equal to    which is equal to negative of the half of the 
damping coefficient. One of the Lyapunov exponents of a periodically driven pendulum is always zero, and 
the remaining two exponents show mirror symmetry about the a-axis. We have also investigated the 
stroboscopic maps for all values of the phase angle t   . The stroboscopic maps for all values of the phase 

 , show strange attractors with inversion symmetry in the phase plane for both a harmonically and 

subharmonically driven pendulum. The shape of these strange attractors repeats after the phase 2   . 

 
2. Stability of the pendulum 

 
 The stability of a parametrically driven planar pendulum (Landau and Lifschitz, 1976) is governed 
by the linearized pendulum equation given by 
 
   cos0X 2 X 1 a t X 0          (2.1) 

 
where 0  is the natural frequency of the pendulum in the absence of any damping. We set without any loss 

of generality 0 =1 in the rest of the paper. The term 2 X   is the phenomenological viscous damping force. 
We present briefly the stability of the parametrically driven pendulum with damping before we investigate its 
nonlinear behavior. The solution of linear damped harmonic oscillator is  investigated using different 
techniques (Bender and Orszag, 1978). However, the Floquet analysis (see e.g., (Kumar, 1996)) is used to 
determine the stability of the periodically driven damped pendulum. The dimensionless angular position X is 
expanded as 
 

    ( )s i t in t
nn

X t e X e  


    (2.2) 

 
where s is the real part of the Floquet multiplier, and i  the imaginary part. Inserting the expression for 

 X t  in the Eq.(2.1), we obtain a recursion relation given by 

 
   n n n 1 n 1A X a X X     (2.3) 

 
where 

 

       Λ .
2

nA 2 s i n 2 s i n 1             
  (2.4) 

 
 The stability boundaries of the forced pendulum are obtained by setting s=0. The subharmonically 
excited state corresponds to 1 2   and the harmonically excited state corresponds to 0  . We have 
investigated only these two cases. The recursion relation (Eq.(2.3)) is converted to a generalized eigenvalue 
problem (Kumar, 1996) in the form given below. 
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  a       (2.5) 
 
where   is the square diagonal matrix with complex elements  , , , , , ,nA n 2 1 0 1 2    . The matrix   is 

a banded square matrix defined as  , , , , , ,i 1 i i i 1 1 i 1 2 3 4      . This means the first sub-diagonal and 

first super-diagonal elements are identical and equal to unity. All other elements are zero. The matrix   is a 

column matrix, whose transpose is given by  , , , , , ,T
2 1 0 1 2X X X X X     . Real eigenvalues of the 

matrix 1   are possible values of a, while those of 1   are possible values of 1a  for a fixed value of 
damping   and forcing frequency  . Eigenvalues with any preassigned accuracy may be obtained by 
suitably truncating the matrices. This corresponds to truncating the expansion of X(t) at a given value of n. 
The marginal stability zones are obtained by plotting few least values of a as a function of the forcing 
frequency  . 
 

 
 
Fig.1.  Marginal stability boundaries of a parametrically driven pendulum. Labels ‘Hn’ and ‘Sn’ correspond 

to nth harmonic and subharmonic instability zones, respectively. Four figures (clockwise from the left 
top) are for the damping coefficient Λ  . , . , .0 1 0 4 0 7 , and 0:9 respectively. 

 
 Figure 1 shows the stability boundaries of a parametrically forced damped pendulum, and the effect 
of the viscous damping on the stability boundaries. The tongue-like zones in a   plane describe various 
regions of instabilities. If the values of a and   are chosen within any of the tongues, the fixed point 
corresponding to the normal equilibrium of the pendulum becomes unstable. The pendulum starts swinging. 
The response frequency is half the driving frequency   for all a, on or inside all tongues labeled ‘Sn’ 

 , ,...n 1 2 . On the other hand, the response frequency is same as the forcing frequency for all a, on or 

inside the tongues labeled ‘Hn’  , ,...n 1 2 . These ‘Sn’s and ‘Hn’s correspond to subharmonic and 

harmonic responses respectively. The angular position of the pendulum starts growing and ultimately the 
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nonlinearity dictates the dynamics. The angular position  X t  of the pendulum shows 2n-1 number of 

maxima/minima corresponding to nth  , , ,...n 1 2 3  subharmonic tongue ‘Sn’ in a period double the driving 

period  /T 2   . Similarly, the variable  X t  corresponding to nth harmonic tongue, labeled ‘Hn’ shows n 

number of maxima/minima in period T. For the values of a and   outside the regions covered by any 
tongue, the pendulum stays at its normal equilibrium. The fixed point corresponding to the normal 
equilibrium is stable. In the absence of damping, all the tongues touch the  - axis (Bender and Orszag, 
1978). The pendulum can be driven with infinitesimal driving amplitude for suitably chosen driving 
frequencies. In the presence of damping, a finite threshold is required to drive the pendulum. The minimum 
values of the external drive are different for different tongues. However, the least threshold corresponds to 
the lowest point of the first subharmonic (S1) tongue. The curvature at the lowest points of all the tongues 
decreases with an increase of damping. 
 

 
 

Fig.2.  The minima of forcing amplitudes and the corresponding frequencies with damping for the first 
subharmonic (S1) and first harmonic (H1) response. The frequencies corresponding to the minima of 
the first subharmonic (S1) and the first harmonic (H1) tongues show a shallow minima (top row) 
with the damping coefficient  . The bottom row shows the threshold for instability of the 
subharmonically (left) and harmonically (right) driven pendulum as a function of  . The symbols 
‘FP’, ‘P’ and ‘P & C’ stand for fixed point, periodic, and mixed (periodic and chaotic) solutions, 
respectively. 

 
 Figure 2 shows the variation of the response frequency (top) and amplitude (bottom) as a function of 
the damping coefficient  . The frequencies corresponding to the minima of the subharmonic tongue S1 and 
harmonic tongue H1 show a shallow minima with damping. That means the tongues move first leftward and 
then rightward in the a   plane. However, the least value of the driving amplitude (bottom) shows 
monotonic increase as a function of the damping coefficient  . The least forcing is required always for 
exciting the pendulum subharmonically at a frequency corresponding to the minima of the subharmonic 
tongue S1. 
 
3. Nonlinear dynamics 
 
 The nonlinear dynamics of a parametrically driven pendulum is governed by 
 
   Λ cos sinX 2 X 1 a t X 0      . (3.1) 
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 The above second order differential equation may be converted to a three-dimensional dynamical 
system given by 
 
  X Y , (3.2) 
 
   Λ cos sin ,Y 2 Y 1 a X       (3.3) 

 
     . (3.4) 
 
 The system is integrated by standard fourth order Runge-Kutta (RK4) method with randomly chosen 
initial conditions for the angular position X and angular velocity Y X  . We take the initial value of the 
phase t 0    . It is observed that the results of the linear Eq.(2.1), solved by RK4 and Floquet theory,  are 
identical. The integration of the nonlinear pendulum equation shows ordered and chaotic dynamics. Periodic 
solutions are observed in the region labeled as ‘P’ (Fig.2, bottom). The upper curves in both the figures 
(bottom) are the boundaries for the period doubling bifurcation. A further increase in the driving amplitude a 
leads to windows of periodic and chaotic solutions. They are labeled as ‘P & C’ in Fig.2. 
 

 
 

Fig.3. The phase portraits (in X-Y plane) for the subharmonically driven pendulum for different values of 
'a s  and 's . The driving frequency m  corresponds to the lowest point of the first subharmonic 

tongue (S1). The values of m  are 1.88 for .0 3   and 1.79 for .0 9  . 
 
 Figure 3 shows the phase portraits of the subharmonically driven pendulum for different values of 
the damping coefficient and the forcing amplitude. The frequency is chosen corresponding to the lowest 
point of the first subharmonic tongue S1. If the forcing amplitude is raised keeping the damping fixed (both 
columns), the area of the limit cycles increases. This happens till the first period-doubling bifurcation occurs. 
On the other hand, the shape of the limit cycles at the onset of swing is distorted considerably, if the damping 
is increased (both rows). This leads to generation of many harmonics just above the onset of periodic swing 
of the pendulum. The interesting point is that the limit cycles in phase plane X-Y maintain inversion 
symmetry.  
 Figure 4 shows a similar set of figures for harmonic driving. Several features are similar as for the 
case of subharmonic driving. The qualitative difference is the loss of inversion symmetry of the limit cycles 
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in this case. The limit cycles for the harmonically forced damped pendulum never show the inversion 
symmetry. However, one may get another limit cycle for suitably chosen initial conditions, which may be 
related to the previous one by inversion symmetry. In addition, the first period-doubling bifurcation occurs 
for a relatively small increase in the forcing amplitude for the harmonically driven pendulum in comparison 
to the subharmonically driven situation (Fig.2, bottom). The inversion symmetry in the phase portraits of the 
subharmonically driven pendulum is connected with the temporal symmetries of the response. The 
subharmonic response displays      ( )X t t T X t    symmetry for /T 2   , which is not true in the 

harmonically swing pendulum.  
 

 
 

Fig.4.  The phase portraits (in the X-Y plane) for the harmonically driven pendulum for different values of 
'a s  and 's . The driving frequency m  corresponds to the lowest point of the first harmonic 

tongue (H1). The values of m  are: 0.84 for .0 3   and 0.90 for .0 9  . 
 

 
 

Fig.5.  Time evolution of the angular position X of the pendulum (left) and the trajectories in phase  X Y  

plane (right) for frequencies corresponding to the minima of the second subharmonic (S2) tongue 
(top row) and the second harmonic (H2) tongue (bottom row), respectively. The forcing frequencies 
 m  are: 0.55 (top row) and 0.42 (bottom row). The damping coefficient   and the driving 

amplitude a are 0.3 and 1.9, respectively. 
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 The time dependence of the angular position  X t  of the pendulum and the corresponding limit 

cycle are shown in Fig.5. The temporal evolution of the angular position of the subharmonically driven 
pendulum with a frequency corresponding to the lowest point of the second subharmonic (S2) tongue (upper 
row) shows three maxima/minima peaks (top left) in a period double the driving period. The corresponding 
limit cycle (top right) appears like period-3 solution. The correct stroboscopic map would give only one 
point instead of three, if the stroboscopic frequency is set half the driving frequency. The limit cycle also 
shows period-doubling bifurcation (not shown here), if the forcing amplitude is raised above the threshold 
for period doubling. The figures in the lower row are for frequency corresponding to the lowest point of the 
second harmonic tongue (H2). The angular position of the pendulum shows two maxima/minima 
peaks(bottom left) in a period equal to the driving period, and the corresponding limit cycle gives an illusion 
of period-doubling. An appropriate stroboscopic map would show again one point for this orbit. 
 

 
 

Fig.6.  Lyapunov exponents as a function of the driving amplitude  a  for the harmonically driven (left 

column) and subharmonically driven (right column) pendulum. The driving frequencies are chosen 
corresponding to the lowest points of the tongues labeled S1 and H1. The driving frequencies for the 
harmonic(left column) case are: 0.84(top) and 1.84(bottom). For the case of subharmonic forcing 
(right column) they are: 1.88(top) and 1.79(bottom). 

 
 We observed windows of mixed solutions, where period-doubling, chaotic, and again periodic 
solutions appear (regions ‘P & C’ in Fig.2) above a threshold (upper curves of the bottom figures). To 
determine the windows of chaotic solutions, the computation of Lyapunov exponents is essential. We set the 
driving frequency   at a value corresponding to the least point of the first subharmonic or the first harmonic 
tongue and compute all the Lyapunov exponents using the method proposed by Wolf et al. 1985). For very 
small values of Λ(  . )0 01 , the largest Lyapunov exponent becomes smaller and computation becomes 

difficult. For the values of Λ(  . )0 1 , the method used gives very accurate results. We have shown Lyapunov 

exponents for Λ .  0 3  and 0.5. Very long signals (more than three million time steps) are used for the 
computation of Lyapunov exponents. One of the exponent is always zero owing to the presence of periodic 
driving. Figure 6 displays two non-zero Lyapunov exponents for the harmonically (left column) and 
subharmonically (right column) driven pendulum for different values of the damping coefficient. As one out 
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of three Lyapunov exponents is always zero, the remaining two show mirror symmetry about the a-axis. The 
sum of all Lyapunov exponents is equal to Λ  for the damped pendulum. The values of a for which, the 
largest Lyapunov exponent becomes positive would make the dynamics of the parametrically driven 
pendulum chaotic. For smaller damping coefficients, the number of windows is large and their widths are 
small. With an increase in the damping coefficient, the number of windows becomes smaller with larger 
widths. The driven pendulum shows periodic behavior at large amplitude forcing for larger damping 
coefficients. 
 

 
 

Fig.7.  Stroboscopic maps for chaotic state of the subharmonically driven pendulum for different values of 
the phase t   . The driving frequency m , the driving amplitude a and the damping coefficient 
  are 1.88, 2.3 and 0.3, respectively. All the maps show inversion symmetry in the X-Y plane, and 
they repeat after a phase of 2 . 

 
 We now investigate numerically the stroboscopic maps (Baker and Gollub, 1990) for chaotic state of 
the parametrically driven pendulum. We consider various values of the phase t    to construct the 

stroboscopic maps. The strobe frequency is set at the driving frequency  . The maps at a given value of   

are the collections of all phase points in X-Y plane at an interval of time /T 2   . Figure 7 displays 
stroboscopic maps of the subharmonically driven pendulum for different phases at equal interval of 4  

starting from 0  . Each of the strange attractors shows inversion symmetry in the X-Y plane. This may be 

connected with the    ( )X t T X t   symmetry of subharmonic response. Each of the stroboscopic maps 

displaying a part of the strange attractor appears connected with its neighbors by stretching in two directions. 
The shape of the strange attractors repeats after a phases change of 2 . 
 Figure 8 displays stroboscopic maps for different values of the phase   for the harmonically driven 
pendulum. These maps display inversion symmetry in the X-Y plane, though the limit cycles (shown in Fig.4) 
do not. This is qualitatively different from strange attractors of a non-parametrically driven pendulum (Baker 
and Gollum, 1990) which does not show inversion symmetry in the stroboscopic map. In addition, the 
stroboscopic maps for different   do not show symmetry about the phase     for the parametrically forced 
pendulum as it is observed in non-parametric forcing. The strange attractors corresponding to different 
phases of a harmonically driven pendulum appear to be connected by stretching and rotation. 
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Fig.8.  Stroboscopic maps for chaotic state of the harmonically driven pendulum for different values of the 
phase t   . The driving frequency m , the deriving amplitude a and the damping coefficient   
are 0.84, 2.3 and 0.3, respectively. All the maps show inversion symmetry in the X-Y plane, and they 
repeat after a phase of 2 . 

 
4. Conclusions 
 
 We have presented here a systematic study of ordered and chaotic states of a parametrically driven 
pendulum with viscous damping. Lyapunov exponents against the forcing amplitude (a) show that chaotic 
windows become fewer and wider with increasing damping. The ordered states of the subharmonically 
driven pendulum show inversion symmetry in the phase plane, while those for the harmonically driven 
pendulum do not. However, the pendulum becomes chaotic only via period-doubling bifurcations. The 
strange attractors of a pendulum driven either harmonically or subharmonically always show inversion 
symmetry in the phase plane, which is in contrast with the strange attractors observed in a nonparametrically 
driven pendulum. 
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Nomenclature 
 
   – diagonal matrix 
 a – forcing amplitude 
   – tridiagonal matrix 
 FP – fixed point solution 
 Hn – nth harmonic response 
 P – periodic solution 
 P and C – periodic and chaotic solution 
 Sn – nth subharmonic response 
 T – time period of a signal 
 X(t) – angular position of the pendulum at time t 
   – damping term 
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   – phase angle 
   – forcing frequency 
 0  – natural frequency of the pendulum 
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