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We consider the time dependent Hartmann flow of a conducting fluid in a channel formed by two horizontal 
parallel plates of infinite extent, there being a layer of a non-conducting fluid between the conducting fluid and 
the upper channel wall. The flow formation of conducting and non-conducting fluids is coupled by equating the 
velocity and shear stress at the interface. The unsteady flow formation inside the channel is caused by a sudden 
change in the pressure gradient. The relevant partial differential equations capturing the present physical situation 
are transformed into ordinary differential equations using the Laplace transform technique. The ordinary 
differential equations are then solved analytically and the Riemann-sum approximation method is used to invert 
the Laplace domain into time domain. The solution obtained is validated by comparisons with the closed form 
solutions obtained for steady states which have been derived separately and also by the implicit finite difference 
method. The variation of velocity, mass flow rate and skin-friction on both plates for various physical parameters 
involved in the problem are reported and discussed with the help of line graphs. It was found that the effect of 
changes of the electric load parameter is to aid or oppose the flow as compared to the short-circuited case. 
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1. Introduction 
 
 The occurrences of stratified two-phase flows in petroleum industry and in many engineering 
processes have prompted much interest in both theoretical and experimental studies on a stratified laminar 
flow of two immiscible fluids in different geometry. There have been quite a few experimental and analytical 
studies on hydrodynamic aspects of the two-phase flow reported in the recent literature. The interest in these 
types of problems stems from the possibility of reducing the power required to pump oil in a pipeline by a 
suitable addition of water. 
 Shail [1] studied the Hartmann flow of a conducting fluid in a channel between two horizontal 
insulating plates of infinite extent with a layer of a non-conducting fluid between the upper wall and the 
conducting fluid. He observed that an increase of order 30% could be achieved in the flow rate for suitable 
ratios of heights and viscosities of the two fluids. The Hartmann flow past a permeable bed in the presence of 
a transverse magnetic field with an interface at the surface of the permeable bed was presented by Rudraiah 
et al. [2]. A steady MHD channel flow has been presented in the pioneering work of Hartmann [3, 4]. 
Realizing the physical importance of such physical situations, Malashetty and Leela [5] and Lohrasbi and 
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Sahai [6] studied the two-phase MHD flow and heat transfer in a parallel plate channel, where both phases 
are incompressible and the flow is assumed to be steady, one-dimensional and fully developed. These studies 
constituted an attempt to provide a clear understanding of the effect of slag layers on the heat transfer 
characteristics of a coal fired MHD generator. Murty and Raju [7] studied a two-phase magnetohydrodynamic 
steady flow and heat transfer through a horizontal channel consisting of two parallel porous walls subject to the 
action of a uniform magnetic field, applied in the direction normal to the plane of flow. 
 All the above studies dealt with the flow formation under steady state operating conditions. 
However, there are many problems of practical interest that deal with a two-phase flow under time dependent 
operating conditions. In view of this, Umavathi et al. [8, 9] presented analytical solutions of an 
unsteady/oscillatory Hartmann two-fluid flow and heat transfer in a horizontal channel. An unsteady MHD 
flow of two-phase flow with time-dependent oscillatory wall transpiration velocity through a horizontal 
channel was investigated by Umavathi et al. [10]. Raju and Nagavalli [11] analysed the unsteady 
magnetohydrodynamic (MHD) two-layered fluids flow and heat transfer in a horizontal channel between two 
parallel plates in the presence of an applied magnetic and electric field, when the whole system is rotating 
about an axis perpendicular to the flow in the presence of an applied magnetic field. The objective of the 
present work is to present a semi-analytical solution of an unsteady Hartmann two-phase flow between two 
parallel plates in the presence of an electric and magnetic field. Both phases are incompressible and the flow 
is assumed to be fully-developed and one-dimensional time dependent due to a sudden application of a 
common pressure gradient in both phases. One of the fluids is assumed to be electrically conducting while 
the other fluid and the plates are assumed to be electrically non-conducting. 
 
2. Mathematical formulation 

 
 The physical model shown in Fig.1 consists of two infinite parallel plates extending in the x  - and z  
-direction.  

 
Fig.1. Physical configuration. 

 

The region ' '0 y d    is occupied by a fluid of viscosity  1  and electrical conductivity  , and the region 
' 'd y h   is occupied by a layer of a non-conducting fluid of viscosity  2 . A constant magnetic field of 

strength  0B  is applied in the 'y  -direction and a constant electric field  0E  is applied in z -direction. The 
flow is assumed to be time-dependent due to a sudden application of a common constant pressure gradient in 
both phases. Under the above stated assumptions, the dimensional equations of motion and the 
corresponding initial boundary and interface conditions for the two phases are 
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 It is now convenient to non-dimensionalise the above equations by using the following 
dimensionless quantities 
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where the subscripts 1 and 2 refer to the lower and upper phases, respectively. d  is the dimensionless 
interface distance,  ,   are the ratios of densities and kinematics viscosities of the two fluids, T  is the 
dimensionless time and M  is the Hartman number, which is a measure of the strength of the applied 
magnetic field and E  is the electric load parameter. Therefore, Eqs (2.1) - (2.3), respectively, become 
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 Taking the Laplace transform of Eqs (2.5) and (2.6) together with Eqs (2.7), we obtain the following 
ordinary differential equations, initial boundary and interface conditions 
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 The solution of Eqs (2.8) and (2.9) considering (2.10) are obtained respectively for 1U  and 2U  as 
follows 
 

  
sinh( ) sinh( ( )) sinh( )

sinh( ) sinh( ) sinh( )

2
I 1 1 1

1 2
1 1 11

U Y d Y YM E P
U 1

s d d ds

    
        

, (2.11) 

 

  
sinh( ( )) cosh ) cosh( )

{ } [ ]
sinh( ( )) cosh( ) cosh( )

2 I 2 2
2 2 2

2 2 2

Y 1 U d YP P
U 1 1

d 1 s s s

     
         

   (2.12) 

 

where IU  is the interface velocity, 2
1 M s   , 2

s
 


, 3 s


   

 

        
cosh( ( ))sinh( ) cosh( ) cosh( )

cosh( ) sinh( ( )) cosh( ) sinh( ) sinh( )

2
32 2

I 3 2
2 3 2 11

d 1d dP P M E 1 d
U 1

s d d 1 d ds

        
                   

   

 
Equations (2.11) and (2.12) are inverted in terms of the Riemann - sum approximation [12] as 
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where Re refers to the 'real part of', i 1   is an imaginary number, N  is the number of terms used in the 
Riemann-sum approximation and  is the real part of the Bromwich contour that is used in inverting Laplace 
transforms. The Riemann-sum approximation for the Laplace inversion involves a single summation for the 
numerical process. Its accuracy depends on the value of  and the truncation error dictated by N . 
According to Tzou [12], the value of  must be selected so that the Bromwich contour encloses all the 
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branch point. For a faster convergence the quantity .T 4 7   gives the most satisfactory results since other 
tested values of T  seem to need a longer computational time. 
 
2.1. Skin-friction and mass flux 
 
 The skin friction 0  at the lower channel wall ( )Y 0  and 1  at the upper channel wall ( )Y 1  in 

terms of the Laplace parameter s  is computed by differentiating Eqs (2.11) and (2.12) respectively. 
Similarly, the mass flux in terms of the Laplace parameter s , ( , )Q Y s  is obtained by adding the integrals of 
Eqs (2.11) and (2.12). The expressions are given by 
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2.2. Validation of the method 
 
 In order to validate the accuracy of the Riemann-sum approximation method, we set out to find the 
solution of the steady state mathematical model, which should coincide with the transient solution at large 

time. The equations for the steady state velocities ( , )s1 s2U U  for the two phases are obtained by setting 
()

T




 

in Eqs (2.5) and (2.6) to zero. Then the following equations result 
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 The boundary and interface conditions are 
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 The solution of Eqs (2.19) and (2.20) considering (2.21) which give the steady state velocities for the 
two phases s1U  and s2U  are given as 
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 The steady state skin-friction at the lower channel wall ( )0  and upper channel wall ( )1  are 
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 The steady state mass flux is given as 
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2.3. Numerical solution 
 
 In this section, we have used the implicit finite difference method to ascertain the correctness of the 
Riemann-sum approximation method. The procedure we have adopted involves dividing the solutions into 
grid points and approximating the differential equations by the finite difference equations and then solving 
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the difference equations subject to the prescribed initial, boundary and interface conditions. Thus Eqs (2.5) 
and (2.6) become 
 

  
           , , , , ,

[ , ]1 1 1 1 1 2
12

U i j U i j 1 U i 1 j 2U i j U i 1 j
P M U i j E

T Y

     
   

 
,  (2.24)  

 

  
         , , [ , , , ]2 2 2 2 2

2

U i j U i j 1 U i 1 j 2U i j U i 1 j
P

T Y

     
   

 
.  (2.25) 

 
 The index i  refers to Y  and j  refers to T . The time derivative is replaced by the backward 
difference formula, while the spatial derivatives are replaced by the central difference formula. The above 
equations are solved by Thomas algorithm by manipulating into a system of linear algebraic equations in the 
tridiagonal form. At each time step, the process of numerical integration for every dependent variable starts 
from the first neighbouring grid point of the lower plate at Y 0  and proceeds towards the upper plate at
 Y 1 . The process of computation is advanced until a steady state is approached by satisfying the following 
convergence criterion 
 

               
,

*

i j 1 j 6

max

A A
10

M M

 





, (2.26) 

 

with respect to the fluids velocity. Here ( , )i jA  stands for the velocity field in each phase. *M  is the number 

of interior grid points and 
max

M  is the maximum absolute value of ( , )i jA . In the numerical computation 

special attention is needed to specify T  to get a steady state solution as rapid as possible, yet small enough 
to avoid instabilities. It is set, which is suitable for the present computation, as 
 

          ( )2T stabr Y   . (2.27) 
 
 The parameter stabr  is determined by numerical experimentation in order to achieve convergence 
and stability of the solution procedure. Numerical experiments show that the value 2 is suitable for the 
present numerical computation. The numerical values obtained through the numerical solution, Riemann-
sum approximation and exact steady state solution are in excellent agreement at large value of time ( . )T 0 8  
as shown in Tab.1. 
 
3. Results and discussion 
 
 In order to have a physical insight into the problem, semi-analytical solutions for momentum equations 
in both phases are obtained using a combination of the Laplace transform technique and the Riemann-sum 
approximation approach. The results are shown graphically in Figs 2 - 10 to elucidate the effects of 
dimensionless time (t), Hartmann number (M), ratios of viscosities ( ), ratios of densities ( ) and dimensional 
interface distance d  for P = +5 or -5. The considered values of the electric load parameter ( )E  are -1, 0 and 1, 
where  E 0 , represents the short-circuited case. Of particular importance in the analysis is the case when E  is 
different from zero indicating that the value of E  defines the system as generator, flow meter or pump.  
 Figures 2 and 3 show the effect of dimensionless time ( )t  on the velocity profiles. From Figs 2, the 

velocity increases as t  increases and finally attains its steady state value for the considered values of 
controlling parameters. 



898  B.K.Jha, S.Isa and Ch.T.Babila 

 

 
 

Fig.2. Velocity profiles for different values of time t [d=0.5, . , . , . and .0 5 1 0 M 2 0 P 5 0      ]. 
 

 
 

Fig.3. Velocity profiles for different values of time t [d=0.5, . , . , . and .0 5 1 0 M 2 0 P 5 0       ]. 
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 From Fig.3 it is clear that a reverse flow occurs due to a sudden application of adverse applied 
pressure gradient (P = -5.0). Furthermore, from Fig.3 we conclude that the reverse flow could be 
controlled by considering suitable values of the electric load parameter ( )E . Figures 4 and 5 depict the 

effect of the Hartmann number (M)  for positive as well as negative value of P , respectively. It is 
observed that when  E 0 , the magnitude of velocity decreases as M increases. Moreover, when 
 . and E 1 0 E 1    , the magnitude of velocity increases as M  increases. Figure 5 illustrates that in the 
absence of the electric load parameter the reverse flow could be controlled by increasing the Hartman 
number. The effect of the kinematic viscosity ratio on the velocity is shown in Figs 6 and 7. It is observed 
that as the viscosity ratio increases, the magnitude of velocity decreases for all considered values of the 
electric load parameter. Hence we conclude that velocity is higher when the kinematic viscosity of the 
non-conducting fluid is higher than the kinematic viscosity of the conducting fluid. The effects of the 
density ratio ( ) on the flow behavior are presented in Figs 8 and 9. It is observed that as the density ratio 
increases magnitude of velocity increases. The effects of the dimensionless interface distance d  on 
velocity are depicted in Figs 10 and 11. It is observed that as the interface distance increases, the 
magnitude of velocity increases.  
 

 
 

Fig.4. Velocity profiles for different values of M [d=0.5, . , . , . and .0 5 1 0 t 0 2 P 5 0      ]. 
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Fig.5. Velocity profiles for different values of M [d=0.5, . , . , . and .0 5 1 0 t 0 2 P 5 0       ]. 

 

 
 

Fig.6. Velocity profiles for different values of   [d=0.5, . , . , . and .0 5 M 2 0 t 0 2 P 5 0     ]. 
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Fig.7. Velocity profiles for different values of   [d=0.5, . , . , . and .0 5 M 2 0 t 0 2 P 5 0      ]. 

 

 
 

Fig.8. Velocity profiles for different values of   [d=0.5, . , . , . and .1 0 M 2 0 t 0 2 P 5 0     ]. 
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Fig.9. Velocity profiles for different values of   [d=0.5, . , . , . and .1 0 M 2 0 t 0 2 P 5 0      ]. 

 

 
 

Fig.10. Velocity profiles for different values of d [ . , . , . , . and .0 5 1 0 M 2 0 t 0 2 P 5 0       ]. 
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Fig.11. Velocity profiles for different values of d [ . , . , . , . and .0 5 1 0 M 2 0 t 0 2 P 5 0        ]. 

 
4. Conclusions 
 
 The time dependent Hartmann two-phase flow is studied semi-analytically. One of the fluids is 
assumed to be electrically conducting, while the other is electrically non-conducting. Separate closed form 
solutions for velocity of each phase are obtained taking into consideration suitable interface conditions. The 
results show that: 

1. Higher velocity could be achieved by considering a higher value of the kinematic viscosity of the 
non-conducting fluid in comparison to the kinematic viscosity of the conducting fluid. 

2. Reverse flow could be controlled by considering suitable values of the electric load parameter. 
3. Velocity could be suppressed by considering a heavier non-conducting fluid in comparison to the 

conducting fluid. 
 
Nomenclature 

 
 d  channel width  
 E  electric load parameter 
 M Hartmann number 
 P  dimensionless pressure gradient 
    ratio of densities of the two fluids 
     ratio of kinematic viscosities of the two fluids 
    kinematic viscosity 

    density 

    electrical conductivity 
 
Subscripts 
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