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This paper presents a numerical analysis of the relationship between in-plane constraints and the crack tip 
opening displacement (CTOD) for single-edge notched bend (SEN(B)) specimens under predominantly plane 
strain conditions. It provides details of the numerical model and discusses the influence of external load and in-
plane constraints on the CTOD. The work also reviews methods for determining the CTOD. The new formula 
proposed in this paper can be used to estimate the value of the coefficient dn as a function of the relative crack 
length, the strain hardening exponent and the yield strength - dn(n, 0/E, a/W), with these parameters affecting the 
level of in-plane constraints. Some of the numerical results were approximated using simple mathematical 
formulae. 
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1. Introduction 
 
 The Hutchinson, Rice and Rosengren (HRR) solution published in 1968 [1, 2] was intended to 
describe stress fields near the crack tip in elastic-plastic materials. That approach, proposed nearly 50 years 
ago, has been extended by many researchers because of the imperfect description of stress fields [3]. The 
description of stress fields does not refer to the crack length, the width and thickness of a structural element 
(specimen) and the type of external load (including the load mode) [3]. These parameters affect the 
geometric constraints, i.e., the resistance offered by the material to plastic deformations [4]. In fracture 
mechanics, geometric constraints are divided into out-of-plane and in-plane constraints [4]. The former are 
related to the thickness of a structural element, which is responsible for the stress triaxiality around the crack 
tip [3, 4]. Examples include parameters Tz and Q* and the ratio of effective stresses to the yield strength [3]. 
In-plane constraints, on the other hand, are dependent on the specimen width, the crack length as well as the 
method of loading (bending or tension) [3]. Q-stresses defined by O’Dowd and Shih [7, 8] are a common 
measure of in-plane constraints; they are used not only to correct the distributions of stresses but also to 
create the fracture criteria [5, 6]. Q-stresses are frequently calculated as the difference between the stresses 
responsible for crack tip opening displacements determined numerically and the stresses obtained from the 
HRR formula [3, 7, 8] 
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where ()FEM is the numerical value of stresses, while ()HRR is the value of stresses resulting from the 
HRR solution 
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where i, j - components of the stress tensor, J – J-integral, 0 – yield strength, 0 - strain corresponding to the 
yield strength, calculated as 0=0/E, E - Young’s modulus, n - exponent in the Ramberg-Osgood (RO) law, 
 - material constant in the RO law, In – quantity dependent on the material through the exponent n, the 
method of loading and the specimen thickness, which defines whether plane stress or plane strain conditions 
are predominant [1-3, 9],  ,ij n   - functions dependent on the material through the exponent n, the angle  

and on the specimen thickness, according to the dominance of the plane stress or plane strain state [1-3, 9]. 
 The investigations that followed showed that Q-stresses were a parameter that was sensitive to the 
geometry of a specimen (structural element), the crack length and the material characteristics (the exponent 
in the RO law and the yield strength). As mentioned above, the parameter was used to verify the fracture 
criteria as well as to relate the J-integral (i.e., the parameter controlling the stress field around the crack tip, 
considered to be the pulling force of the crack [4]) with another parameter of elastic-plastic fracture 
mechanics – the crack tip opening displacement T. O’Dowd and Shih showed that there existed a 
relationship between Q-stresses and the crack tip opening displacement [7, 8].  
 The crack tip opening displacement is a measure of plastic strains in the area near the crack tip. This 
is related to large plastic strains occurring in a material due to large external loads being a result of intensive 
growth and coalescence of voids inside the material in the area near the crack tip [4]. Wells [10] claimed that 
the crack length occurred when the crack tip opening displacement reached a critical value, which was a 
fundamental finding to determine an appropriate fracture criterion [3, 4]. In 1981, Shih [11] proposed a 
numerical procedure to determine the crack tip opening displacement (Fig.1a); he also related the J-integral 
with the crack tip opening displacement using the following formula 
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where dn is dependent on the parameters of the Ramberg–Osgood curve, the yield strength, Young’s modulus 
and the distribution of stresses near the crack tip defined according to the HRR solution. The values of the 
parameter dn can be determined using the computer program described in [9]. Figure 1b is a graphical 
representation of the relationship between the function dn dependent on the yield strength 0 and the strain 
hardening exponent n in the RO law.  
 It is evident that the value of the coefficient dn is strongly dependent on the degree of material strain 
hardening (expressed by the strain hardening exponent n) and weakly dependent on the ratio of the yield 
strength to Young’s modulus (Fig.1b). First, Shih [11] proposed that the values of the coefficient dn be 
determined only on the basis of functions with tilde, characteristic of the HRR solution [9]. Then, however, 
after a series of numerical analyses, he indicated that the coefficient dn should be strongly dependent on the 
exponent n and strains corresponding to the yield strength 0. For the plane stress conditions, he suggested 
that the coefficient dn be calculated as 
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a) 

 

b)

 
 
Fig.1. a) Determination of the crack tip opening displacement using the Shih method [11];  

 b) Values of the coefficient dn (formula (1.3)) for different values of the strain hardening exponent 
and the yield strength [3, 9]. 

 
 That attempt to determine the coefficient dn was undertaken because of the mutual relationship 
between the J-integral and the crack tip opening displacement T. Later attempts to find a better solution have 
been numerous yet not always successful. The relationship between the crack tip opening displacement and 
the J-integral was described extensively in a paper published in 1997 [12]. Prior to that, i.e., in 1995, Gordon 
et al. [13] had conducted a numerical analysis to study the relationship between the crack tip opening 
displacement and the J-integral for hypothetical materials with a different degree of material strain hardening 
(expressed by the strain hardening exponent n in the RO law), with 0={400, 500, 600} MPa. The research 
had been carried out for SEN(B) specimens with a relative crack length a/W={0.1, 0.2, 0.3, 0.5}. They had 
used the results of the numerical calculations to verify the relationship between the J-integral and the crack 
tip opening displacement in the form 
 
  0 TJ m    (1.5) 
 
where the value of the coefficient m from a series of experiments is 1 for the plane stress state and 2 for the 
plane strain state. Using the results of their numerical analysis, the authors [13] proposed that the relationship 
between the J-integral and the crack tip opening displacement should have the following form 
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 The draft version of the SINTAP procedures [14] include a modified version of formula (1.5) [15], in 
which the coefficient m is a function of the relative crack length a/W and the ratio of the yield strength 0 to 
the tensile strength m 
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 However, if a hypothetical material is considered or the value of tensile strength is not known, the 
following relationship should be used [4, 14] 
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 Each of the approaches is to some extent true; each can be used to analyse a structure containing a 
crack or to predict fracture toughness after selecting the right fracture criterion [4]. From numerical 
calculations it is clear that the formulae give completely different results (Fig.2). Figure 2 compares the 
numerically determined values of the crack tip opening displacement with the values calculated according to 
formulae (1.3)-(1.10). The comparison was carried out for typical SEN(B) specimens under predominantly 
plane strain conditions differing in the crack length and the material characteristics.  
 

a)

 

b) c) 

 
Fig.2.  Values of the crack tip opening displacement calculated according to formulae (1.3)-(1.10) compared 

with the numerical results for various configurations of the material models and relative crack length 
for SEN(B) specimen: a) n=3.36, 0=315MPa, a/W=0.05; b) n=10, 0=1500MPa, a/W=0.20;  
c) n=20, 0=1000MPa, a/W=0.70. 

 
 The greatest differences between the numerical results and those obtained from formulae (1.3)-(1.10) 
are observed for specimens with very short cracks (a/W=0.05). The differences decrease when the crack 
length increases. Figure 3 shows examples of percentage differences between solutions (1.3)-(1.10) and the 
results estimated using the FEM. In the case of short and very short cracks, the worst goodness of fit is 
observed when the numerical results are obtained with formula (1.5), or a set of formulae (1.5)-(1.9)-(1.10). 
As can be seen, the difference between the results obtained through the finite element analysis and those 
from the other formulae decreases with an increase in the external load P, normalised by the limit load P0 

(see Fig.3), which, for SEN(B) specimens under predominantly plane strain conditions can be calculated as 
[16] 
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where B is the specimen thickness (in Ref. [16] it was assumed to be 1 m), b is the length of the uncracked 
ligament (b=W-a), W is the specimen width and a is the crack length. 
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 The different approaches described above, which can be used to calculate the crack tip opening 
displacement in relation to the J-integral, were reviewed by O’Dowd et al. [7-8, 20]. They suggested that the 
formula take the following form 
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 As a result, the value of the coefficient dn was dependent on the Q-stresses. However, they did not 
provide any simple formula to calculate the value of the coefficient dn (, n, 0, Q).  
 

a)

 

b) c) 

 
Fig.3.  Percentage differences in the crack tip opening displacement between the FE results and the 

analytical data (formulae (1.3), (1.6)-(1.8) and (1.3)-(1.9)-(1.10), for various configurations of the 
material models and relative crack length for SEN(B) specimen: a) n=3.36, 0=315MPa, a/W=0.05; 
b) n=3.36, 0=1000MPa, a/W=0.05; c) n=10, 0=1500MPa, a/W=0.20. 

 
 As in the previous studies, there is no agreement between the numerical and analytical data. If the 
numerical result is accurate (provided that the FE model satisfies the conditions presented in [3, 17-19]), it is 
essential to extend the investigations in order to determine the relationships between the crack tip opening 
displacement and the J-integral (as the pulling force of the crack) and calculate the effect of in-plane 
constraints (expressed by Q-stresses) on the crack tip opening displacement. The numerical analysis was 
performed for single edge notched bent (SEN(B)) specimens (Fig.4), which are normally used to study the 
fracture toughness of a material under predominantly plane strain conditions, as suggested in the relevant 
standards [21-23]. The value of the J-integral was determined by following the recommendations given in [21-
23] for SEN(B) specimens under predominantly plane strain conditions and satisfying a series of conditions. 
The J-integral can be treated as a material constant JIC, which, after conversion into a critical value of the stress 
intensity factor KIC, can be used at the design stage, in accordance with the recommendations provided in the 
relevant procedures [19, 20] and Eurocodes [24]. The value KIC can also be obtained by calculating the value of 
the crack tip opening displacement, determined using appropriate standards [25].  
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Fig.4. Single-edge notched bend (SEN(B)) specimen [3-4, 16].

 
2. Details of the numerical calculations 
 
 The numerical calculations were conducted using ADINA SYSTEM 8.8 [26, 27]. The FE analysis 
employed a homogeneous, isotropic model of an elastic-plastic material with the Huber–Misses–Hencky 
plasticity condition, described by 
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 The calculations were carried out assuming that the constant was =1, Young’s modulus was 
E=206GPa, Poisson’s ratio was =0.3, the four values of the yield strength were 0={315, 500, 1000, 
1500}MPa and the four values of the exponent in the RO law were n={3.36, 5, 10, 20}. That resulted in a 
combination of 16 hypothetical stress-strain curves, which can be categorized according to the mechanical 
properties, obtained for ferritic steels, general-purpose structural steels and materials exhibiting strong and 
weak strain hardening [28-29]. 
 The numerical model was developed according to the recommendations given in [3, 17-19, 26-27]. 
Only half of the specimen was modelled and the existing axis of symmetry was used for this purpose. It was 
necessary to solve a contact problem so that the real behaviour of the specimen could be represented. The 
load applied to the SEN(B) specimens included a roller – a loading pin. Because of its symmetry the 
specimen was modelled as a quarter of an arc with a diameter of 16 mm divided into 90 equal size two-node 
contact finite elements (FEs). The load was applied to the roller as a displacement linearly increasing with 
time. The SEN(B) specimen was supported by two pins (support rollers), which were modelled as half an arc 
with a diameter of 16 mm, also divided into 90 equal size two-node contact finite elements [30]. Figure 5 
presents a numerical model of the SEN(B) specimen used in the FEM program. 
 The modelling of the crack tip of the SEN(B) specimen required considering a quarter of an arc with 
the radius rw ranging 1÷5 m. In extreme cases, the radius of the crack tip opening displacement was 40000 
and 8000 smaller than the specimen width W. The crack tip was divided into 12 elements. The density of the 
elements located closer to the edges was higher. Depending on the model, the edge elements were 5÷20 
times smaller than the largest elements located in the central part of the arc. The size of the radius of the arc 
was conditioned by the level of external load as well as the crack length. For each specimen, the area near 
the crack tip with a radius of about 1.0÷5.0 mm was divided into 36÷50 finite elements. The smallest, located 
closest to the crack tip, was 20÷50 times smaller than the element located furthest from the crack tip. Thus, 
in extreme cases, the smallest element, located very close to the crack tip, constituted about 1/3024 or 
1/10202 of the specimen width W, while the largest element modelling the area near the crack accounted for 
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about 1/151 or 1/240 of the specimen width. The parameters of the numerical model were strictly dependent 
on the geometry (the specimen type, the crack length), the material characteristics and the external load. The 
analysis was carried out assuming that the deformations and displacements were small [6, 16-18]. The 
numerical model of the structural element under predominantly plane strain conditions was filled with nine-
node finite elements of the 2-D SOLID plane strain type (mixed order interpolation scheme) with nine 
integration points. The total number of FEs in the model used in the analysis was 6029 ÷ 6308, which 
resulted in 24625 ÷ 25743 nodes [30].  
 

 
 

Fig.5. Numerical model of the SEN(B) specimens used in the study. 
 
 The numerical analysis performed for a constant width of the SEN(B) specimens, i.e., W=40mm, 
involved modelling the distance between the supports S=4W=160mm, the total length L=176mm and four 
relative crack lengths a/W={0.05, 0.20, 0.50, 0.70}. The specimens considered had very short, short, 
normalised (a/W=0.50) and very long cracks. It should be noted that the limit load was verified using 16 
specimens differing in the yield strength and the relative crack length. In the elastic-plastic analysis, 
however, 64 specimens were used taking into account different definitions of the material and different crack 
lengths. Figure 5 illustrates a numerical model of the SEN(B) specimen used in the FEM program [30]. 
The J-integral was determined using the virtual shift method [27, 28], based on the concept of virtual crack 
growth, to calculate the virtual energy shift [27, 28]. The analysis employed eight integration contours going 
through the area covering all the FEs within the radius with a length of {10, 15, 20, 25, 30, 35, 40, 45} FEs 
near the crack tip. The integration contour was plotted according to the recommendations given in [3, 17-19]. 
It should be mentioned that the values of the J-integral obtained from the eight integration contours were 
similar [30]. The crack tip opening displacement T, however, was determined according to the diagram 
shown in Fig.1a.  
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3. Numerical results 
 
 Figures 6-8 show the influence of the relative crack length a/W, the strain hardening exponent n and 
the yield strength on the numerically calculated values of the crack tip opening displacement for different 
geometrical configurations of the SEN(B) specimens and different material characteristics.  
 

a) 

 

b) c) 

 
Fig.6.  Relationships between (a) the relative crack length a/W, (b) the exponent n in the RO law, (c) the 

yield strength 0 and the crack tip opening displacement  determined numerically using the Shih 
method [31] as a function of the external load 

 
 The natural conclusion is that the crack tip opening displacement increases with increasing external 
load P normalised by the limit load P0, as shown in the plots; the external load can also be expressed by 
means of the J-integral. The rate of changes is conditioned by the material characteristics and the relative 
crack length. The shorter the crack length, the higher the values of the crack tip opening displacement T 
with the level of the external load being the same (Figs 6-7a). It is also clear that the smaller the degree of the 
material strain hardening (a higher value of the exponent n in the RO law), the higher the values of the crack 
tip opening displacement T at the same level of external load (Figs 6-7b). An increase in the yield strength 
0 is also accompanied by an increase in the crack tip opening displacement T (Fig.6c). 
 

a) 

 

b) c) 

 
Fig.7.    Relationships between (a) the relative crack length a/W, (b) the exponent n in the RO law, 

(c) the yield strength 0 and the value of the crack tip opening displacement  determined 
numerically using the Shih method [31] as a function of the J-integral.
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a) 

 

b) c) 

 
Fig.8.  Relationships between (a) the relative crack length a/W, (b) the exponent n in the RO law,  

(c) the yield strength 0 and the value the crack tip opening displacement  determined 
numerically using the Shih method [31] as a function of the Q-stresses – a measure of in-plane 
constraints [3-4,7-8]. 

 
 It is interesting to analyse the influence of the level of in-plane constraints (expressed with Q-stresses 
calculated according to formulae (1.1)-(1.2) on the crack tip opening displacement T. As mentioned above, 
in-plane constraints [3-4] are treated as the resistance offered by the material of a structural element to plastic 
deformations. In fracture mechanics, in-plane constraints are generally determined for predominantly plane 
strain conditions using Q-stresses defined by O’Dowd [7-8], which are the difference between actual stresses 
in the structural element (established by means of FEs) and the HRR solution [1-2] calculated according to 
the theoretical formulae. In the case of plane strain state, Q-stresses generally have a non-zero value. When 
the level of in-plane constraints is low, which is characteristic of specimens with short and very short cracks, 
the value of the Q-stresses is negative; however, when the level of in-plane constraints is high, which is 
typical of specimens containing long cracks, the value of the Q-stresses is high [3-4]. 
 From the analysis of the numerical results it is evident that an increase in the external load causes the 
level of in-plane constraints to fall (the Q-stresses show increasingly negative values). This is accompanied 
by a rise in the crack tip opening displacement T (Fig.8). The shorter the crack, the smaller the in-plane 
constraints (Fig.8a). An increase in the degree of material hardening leads to a drop in the values of the in-
plane constraints, while the crack tip opening displacement T remains constant (Fig.8b). It can be concluded 
that for materials where strain hardening becomes increasingly worse, the values of the crack tip opening 
displacement increase at the same level of the in-plane constraints (Fig.8b). The higher the yield strength, the 
greater the in-plane constraints (Fig.8c). When the value of Q-stresses does not change, the values of the 
crack tip opening displacement T are higher for materials described with a higher value of yield strength. 
Using the numerical results presented above, we can apply the formula proposed by O’Dowd et al. (formula 
(1.12)) [7-8], which relates the crack tip opening displacement T with the J-integral through the coefficient 
dn. In the calculations it was assumed that =1, thus we can write that 
 

   , / ,T n 0
0

J
d n E Q   


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 Figures 9-11 show the coefficient dn(n, 0/E, Q) against Q-stresses (a measure of in-plane 
constraints), the J-integral and the external load P normalised by the limit load P0. From the plots it is clear 
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that, first, the coefficient dn(n, 0/E, Q) decreases with increasing external load and, then, after P/P0 
exceeds 1, it reaches a certain level of saturation. This suggests that a decrease in the level of in-plane 
constraints causes the coefficient dn(n, 0/E, Q) to increase until it reaches a state of saturation (Fig.9). 
Since Q-stresses are dependent on the relative crack length a/W and the material characteristics (through n 
and the ratio 0/E), the coefficient dn is assumed to be a function in the form of dn=dn(n, 0/E, a/W). Table 
1 shows values of the coefficient dn(n, 0/E, a/W) determined for the state of saturation of the dn(n, 0/E, 
a/W)=f(J) curves. 
 

a) 

 

b) c) 

 
Fig.9.  Relationships between (a) the relative crack length a/W, (b) the exponent n in the RO law, (c) the 

yield strength 0 and the coefficient dn(n, 0/E, Q) as a function of the level of in-plane constraints 
expressed by Q-stresses. 

 
a) 

 

b) c) 

 
Fig.10. Relationships between (a) the relative crack length a/W, (b) the exponent n in the RO law, (c) the 

yield strength 0 and the coefficient dn(n, 0/E, Q) as a function of the J-integral J. 
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a) 
 

 

b)
 

c) 
 

 
Fig.11. Relationships between (a) the relative crack length a/W, (b) the exponent n in the RO law, (c) the 

yield strength 0 and the coefficient dn(n, 0/E, Q) as a function of the external load P normalised by 
the limit load P0. 

 
Table 1.  Values of the coefficient dn(n, 0/E, a/W) determined for the state of saturation of the dn(n, 0/E, Q 

a/W)=f(J) curves. 
 

n a/W 
dn 

0=315MPa 
(0/E=0.00153)

0=500MPa 
(0/E=0.00243)

0=1000MPa 
(0/E=0.00485)

0=1500MPa 
(0/E=0.00728)

3.36 0.05 0.213 0.245 0.299 0.329 
3.36 0.2 0.200 0.229 0.275 0.314 
3.36 0.5 0.189 0.215 0.260 0.290 
3.36 0.7 0.184 0.209 0.252 0.281 

5 0.05 0.343 0.377 0.436 0.469 
5 0.2 0.328 0.358 0.407 0.437 
5 0.5 0.299 0.331 0.372 0.397 
5 0.7 0.296 0.321 0.358 0.381 
10 0.05 0.553 0.586 0.622 0.645 
10 0.2 0.508 0.537 0.569 0.587 
10 0.5 0.462 0.478 0.501 0.516 
10 0.7 0.448 0.462 0.485 0.500 
20 0.05 0.683 0.693 0.721 0.740 
20 0.2 0.607 0.621 0.643 0.658 
20 0.5 0.538 0.548 0.563 0.573 
20 0.7 0.522 0.531 0.545 0.556 
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a) 
 

 

b)
 

 

c) 
 

 
Fig.12. Relationships between (a) the yield strength 0, (b) the exponent n in the RO law, (c) the relative 

crack length a/W and the coefficient dn(n, 0/E, a/W) for SEN(B) specimens with different geometry-
material configurations. 

 
 Figure 12 shows the relationship between the coefficient dn(n, 0/E, a/W) and the parameters 
affecting the level of the geometric constraints. The value of the coefficient dn is strongly dependent on the 
exponent n (Fig.12a and Fig.12b); the greater the strain hardening of the material, the higher the value of the 
coefficient dn. The higher the yield strength, the higher the value of the coefficient dn (Figs 12a and 12c). An 
increase in the crack length results in a decrease in the coefficient dn (Figs 12b and 12c).  
 It is fully justified to analyse the values of the coefficient dn(n, 0/E, a/W) in the saturation state 
achieved for the external load P satisfying the condition P/P01.0. Most materials fracture after they reach 
full plasticity, i.e., when the external load is equal to or greater than the value of the limit load. Sumpter and 
Forbes [31] used the example of mild steel with 0=315MPa and n=5 to show that the material reached a 
critical value of the J-integral (J=40kN/m) when the limit load was P/P01.25. 
 
4. Approximation of selected numerical results 
 
 The results of the numerical analysis presented in this paper can be used to determine the values of 
the crack tip opening displacement for SEN(B) specimens under predominantly plane strain conditions when 
the value of the J-integral is known. The value can be calculated using hybrid solutions presented in [30]. 
Some of the numerical results were approximated to simplify the calculations. The approximation was 
performed for the FE results, determined for the saturation state of the dn(n, 0/E, a/W)=f(J) curves. It was 
essential to generate three-dimensional surface plots of dn=f(n, 0/E) for the specimens according to the 
relative crack length (Fig.13a). Then, Table Curve 3D [32] was applied to describe the resultant surfaces on 
the basis of the following formula 
 

       , , / ln 1d
n 0 1 1 0 1d n E a W a b E c n      (4.1) 

 
where the coefficients a1, b1, c1 and d1 are functions of the relative crack length a/W. The values of the 
approximation coefficients a1..d1 are provided in Tab.2. 
 For convenience, additional formulae could be used to determine the values of the coefficients a1..d1 
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         / . / . / . / .
3 2

1a a W 5 6957 a W 8 5515 a W 4 241 a W 1 5734        ,  (4.2) 

   

         / . / . / . / .
3 2

1b a W 0 011 a W 0 0191 a W 0 0508 a W 0 0652       ,  (4.3) 

  

         / . / . / . / .
3 2

1c a W 8 2892 a W 10 394 a W 3 2233 a W 1 242        ,  (4.4) 

 

  
   
 

/ . / . for / . ,  .

/ for / . ,  .

1

1

d a W 3 3333 a W 0 3333 a W 0 05 0 20

d a W 1 a W 0 20 0 70

     


  
 (4.5) 

 
 For each of the formulae, the coefficient of regression was R2=1. Figure 14 compares the 
approximation results (formulae 3.1-4.5) with the numerical data. 
 

a) b)

 

Fig.13. a) An example diagram of the surface used to approximate the data dn=f(n, 0/E) for SEN(B) 
specimens with the relative crack length a/W=0.05; b) Graphical representation of the differences 
between the numerical results and the approximation data using formula (4.1) with the coefficient 
being dn=f(n, 0/E) for SEN(B) specimens with the relative crack length a/W=0.05. 

 
Table 2.  Values of the approximation coefficients a1..d1 dependent on the relative crack length a/W required 

in Eq.(4.1) to calculate the function dn(n, 0/E, a/W). 
 

a/W a1 b1 c1 d1 R2 

0.05 1.3821 0.0627 -1.3782 -0.5 0.994 

0.20 1.0217 0.0559 -1.5372 -1.0 0.992 

0.50 0.8788 0.0460 -1.2914 -1.0 0.990 

0.70 0.8413 0.0428 -1.2485 -1.0 0.992 
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Fig.14.  Numerical data (solid lines) compared with the approximation results (circles, triangles and stars) 

obtained with formulae (3.1)-(4.5). 
 
 If the approximation of the coefficient dn(n, 0/E, a/W) with formulae (4.1)-(4.5) gives unsatisfactory 
results, it is recommended to use another approximation formula 
 

  

         
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E E
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E E

        

     

 

 

  

 (4.6) 

  
 The values of the coefficients a2..j2, dependent on the relative crack length, are presented in Tab.3. 
 
Table 3.  Values of the approximation coefficients a2..d2 dependent on the relative crack length a/W required 

in Eq.(4.6) to calculate the dn(n, 0/E, a/W) function. 
 

 a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 

a2 0.7749 0.7749 0.5837 0.5689 

b2 29.4251 29.4251 24.1249 19.1304 

c2 -2.9126 -2.9126 -1.5587 -1.4705 

d2 -5776.9 -5776.9 -5518.3 -3999.5 

e2 0.6943 0.6943 -2.1733 -1.9054 

f2 223.3 223.3 166.4 131.8 

g2 360681.4 360681.4 371065.5 268116.4 

h2 6.1441 6.1441 7.2443 6.0984 

i2 -369.5 -369.5 -213.4 -129.7 

j2 -6067.5 -6067.5 -4940.4 -4800.6 

R2 0.9998 0.9998 0.9998 0.9999 
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 If there is a need to determine the value of the coefficient dn for a geometry-material configuration 
not studied before, and there exist no recommendations, it is vital to find a solution for two cases of a 
configuration that is most similar to the desired one and use the data for linear approximation. 
 The best results would be reported for a case when the formulae given described changes in the 
coefficient dn(n, 0/E, a/W) against the external load, which can be expressed by the J-integral. The author is 
currently working on the code of a computer program that would contain all the numerical data with 
approximations to be used in engineering analysis. 
 
Conclusion  
 
 This paper has examined the effects of the in-plane geometric constraints expressed by Q-stresses on 
the crack tip opening displacement T for typical SEN(B) specimens under predominantly plane strain 
conditions. The work has briefly discussed the existing relationships between the crack tip opening 
displacement T and the J-integral. Details of the numerical modelling have also been given. Reference [32] 
shows the relationship between the in-plane constraints, i.e., Q-stresses, the relative crack length and the 
material characteristics expressed by the yield strength 0 and the strain hardening exponent n. The findings 
of the study described in [33] were used to determine the relationship between the crack tip opening 
displacement and the external load P normalised by the limit load P0, the J-integral and the Q-stresses – a 
measure of the in-plane constraints. The research involved studying how the relative crack length was 
dependent on the material characteristic. The analysis results were used to propose a new formula to 
calculate the value of the coefficient dn(n, 0/E, a/W) while taking into account the effect of the in-plane 
constraints on the strain hardening exponent n, the ratio 0/E and the relative crack length a/W.  
 As shown above, the proposed formula would definitely be more accurate if the influence of the 
external load on the coefficient dn(n, 0/E, a/W) was considered. The use of the coefficient dn(n, 0/E, a/W) 
for the saturation state would provide satisfactory results in the assessment of the crack tip opening 
displacement dependent on the J-integral. In the near future, the author intends to develop a computer 
program, which will be a collection of numerical results and their approximations to be used in theoretical 
considerations and engineering analysis. 
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Nomenclature 
 
 2D – two dimensional 
 3D – three dimensional 
 a1..d1 – coefficients of approximation 
 a2..j2 – coefficients of approximation 
 a – crack length [m] 
 a/W – relative crack length  
 B – specimen thickness [m] 
 b – length of the uncracked ligament, b=W-a [m] 
 CTOD – crack tip opening displacement [m] 
 dn – function which is dependent on the parameters of the Ramberg–Osgood curve, the yield strength, 

Young’s modulus and the distribution of stresses near the crack tip defined according to the HRR 
solution 

 E – Young’s modulus [MPa] 
 EPRI – Electric Power Research Institute 
 FEM – Finite Element Method 
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 f(a/W) – geometry function used for the approximation of the numerical results 
 In – quantity dependent on the material through the exponent n, the method of loading and the specimen 

thickness, which defines whether plane stress or plane strain conditions are predominant 
 i, j – components of the stress tensor 
 J – J-integral [N/m] 
 KIC  – critical value of the stress intensity factor [MPam0.5] 
 L – specimen length [m] 
 n – exponent in the Ramberg-Osgood (RO) law 
 Q  – the Q-stress parameter defined by O’Dowd and Shih as a difference between the FEM and HRR stress 

distributions 
 P – external load [kN] 
 P0 – limit load [kN] 
 rw – radius of the arc in crack tip [m] 
 r,  – coordinates of the polar coordinate system hooked on crack tip  
 SEN(B) – single edge notched specimen in bending 
 Tz – the stress triaxiality parameter defined by Guo Wanlin as Tz=33/(11+22) 
 vLL – load line displacement [m] 
 W – specimen width [m] 
 x1, x2, x3 – Cartesian coordinates: x1, x2 - in the crack plane, x3 - in the thickness direction 
 x3/B – normalized coordinate in the thickness direction (x3/B=0 – center of the specimen, x3/B=0.5 – free 

surface of the specimen) 
   – material constant in the RO law 
 T – crack tip opening displacement (CTOD) [m] 
 0 – strain corresponding to the yield strength, calculated as 0=0/E 
 ()FEM – numerical value of stresses 
 ()HRR – the value of stresses resulting from the HRR solution 
  ,ij n   – functions dependent on the material through the exponent n, the angle  and on the specimen thickness, 

according to the dominance of the plane stress or plane strain state 
  – Poisson’s ratio 
 0 – yield stress [MPa] 
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