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The longitudinal dispersion of a solute between two parallel plates filled with two immiscible electrically 
conducting fluids is analyzed using Taylor’s model. The fluids in both the regions are incompressible and the 
transport properties are assumed to be constant. The channel walls are assumed to be electrically insulating. 
Separate solutions are matched at the interface using suitable matching conditions. The flow is accompanied by 
an irreversible first-order chemical reaction. The effects of the viscosity ratio, pressure gradient and Hartman 
number on the effective Taylor dispersion coefficient and volumetric flow rate for an open and short circuit are 
drawn in the absence and in the presence of chemical reactions. As the Hartman number increases the effective 
Taylor diffusion coefficient decreases for both open and short circuits. When the magnetic field remains constant, 
the numerical results show that for homogeneous and heterogeneous reactions, the effective Taylor diffusion 
coefficient decreases with an increase in the reaction rate constant for both open and short circuits.  
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1. Introduction 
 

A wide application of the dispersion model began fifty five years ago when numerous authors 
noticed that longitudinal mixing can be treated the same as diffusion; see Levenspiel and Smith [1]. The 
most notable is the work of Danckwerts [2] and Taylor [3-5] who in his pioneering papers introduced the 
concept of longitudinal dispersion superimposed on plug flow to describe the fact that not all fluid elements 
travel at equal speed through a system. 
 Taylor [3-5] investigated the way in which a liquid spreads out longitudinally as it moves down a 
straight tube and demonstrated by a few careful experiments and a novel mathematical analysis of a rather 
heuristic kind, that for downstream of the source the longitudinal spread is equivalent to a diffusion process; 
he also provided estimates for the longitudinal dispersion coefficient. Since then the notion of a longitudinal 
dispersion has been recognized as being relevant in a wide variety of contexts, like in flows in rivers and 
estuaries, in oil pipelines, in water mains, in pneumatic and hydraulic industrial devices, in blood vessels, in 
tubules, in paints. An enormous variety of extensions and generalizations of Taylor’s simple result for a 
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steady flow in a straight circular tube has been developed; see Batchelor [6]. The most notable developments 
of the classical asymptotic theory of Taylor, while still preserving the basic ideas of his original work, were 
produced by Aris [7], Horn [8], and Brenner [9, 10]. Considerable attention has also been paid to the one-
dimensional dispersion of the solute during relatively short times, too short for the macro transport process to 
be fully established; see Philip [11], Gill and Sankarasubramanian [12, 13], DeGance and Johns [14-15], 
Hatton and Lightfoot [16-18], Yamanaka [19-21], and Smith [22, 23]. The importance for practice of the 
diffusion analysis of Taylor and the subsequent investigations lies in the ability of the one-dimensional 
transport equation to take into account complicated velocity and concentration profiles in the same manner, 
as well as providing a theoretical framework for the dispersion coefficient. 

But in the above papers, it was assumed that there is no chemical reaction of any kind between the 
solute and the fluid during the course of dispersion. This was not always true. In many physical phenomena, 
homogeneous and heterogeneous chemical reactions are always present. Such an analysis of a finite first-order 
homogeneous reaction in a laminar pipe flow was first studied both theoretically and experimentally by Cleland 
and Wilhem [24]. The effect of the heterogeneous reaction taking place at the wall was discussed by Katz [25], 
whereas Walker [26], Soloman and Hudson [27], investigated the combined effect of first-order heterogeneous 
and homogeneous chemical reactions on the dispersion of soluble matter in a parallel plate channel flow. 

The flow aspects of immiscible fluids are of special importance. In modeling such problems, the 
presence of a second immiscible fluid phase adds a number of complexities as to the nature of interacting 
transport phenomena and interface conditions between the phases. In general, multi-phase flows are driven 
by gravitational and viscous forces. There has been some theoretical and experimental work on a stratified 
laminar flow of two immiscible fluids in a horizontal pipe (Packham and Shail [28], Alireza and Sahai [29], 
Malashetty and Leela [30, 31]). Loharsbi and Sahai [32] studied two-phase MHD flow and heat transfer in a 
parallel plate channel with one of the fluids being electrically conducting. A two-phase MHD flow and heat 
transfer in an inclined channel was investigated by Malashetty and Umavathi [33]. Chamkha [34] reported 
analytical solutions for the flow of two-immiscible fluids in porous and non-porous parallel-plate channels. 
Later on, a magnetohydrodynamic two-fluid convective flow and heat transfer in a composite porous 
medium was analyzed by Malashetty et al. [35-37]. Umavathi et al. [38] analyzed the Poiseuille-Couette 
flow of two immiscible fluids between two inclined parallel plate. Recently, Umavathi and Shekar [39] 
studied the fully developed laminar mixed convection flow in a vertical wavy channel filled with two 
immiscible viscous fluids with traveling thermal waves using the perturbation method. Kumar et al. [40, 41] 
studied the solute dispersion in a composite porous medium 

Keeping in view the wide area of practical importance of multi-fluid flows as mentioned above, it is 
the objective of the present study to investigate the dispersion of the solute in an electrically conducting 
immiscible channel flow. 
 
2. Mathematical formulation of the problem 
 

The physical configuration considered in this study is shown in Fig.1. Consider the laminar flow of 
two immiscible fluids between two parallel plates distant 2h  apart, taking the X -axis along the mid-section 
of the channel and the Y -axis perpendicular to the walls. The magnetic field 0B  is applied normal to the 

flow field and the electric field is applied along the flow field. Region-1  h Y 0    is filled with the 

electrically conducting fluid of conductivity e1 , density 1 , viscosity 1 , under a uniform pressure 

gradient 1dP

dX
, whereas region-2  0 Y h   is filled with another electrically conducting fluid of 

conductivity e2 , density 2 , viscosity 2 , under a uniform pressure gradient 2dP

dX
. The fluids in both the 

regions are Newtonian fluids.   
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Fig.1. Physical configuration. 
 

 It is assumed that the flow is steady, laminar, fully developed, and that fluid properties are constant. 
The flow in both the regions is assumed to be driven by a common constant pressure gradient. Under these 
assumptions, the governing equations of motion for incompressible fluids are 
Region-1 

2
21 1

1 e1 0 1 e1 0 02

d U dP
B U B E 0

dXdY
       . (2.1) 

Region-2 
2

22 2
2 e2 0 2 e2 0 02

d U dP
B U B E 0

dXdY
        (2.2) 

 

where iU  is the X -component of fluid velocity and iP  is the pressure. The subscripts 1 and 2 denote the 

values for region-1 and region-2, respectively. 
 The boundary conditions on velocity are no-slip conditions requiring that the velocity must vanish at 
the walls. In addition, continuity of velocity and shear stress at the interface is assumed. With these 
assumptions, the boundary and interface conditions on velocity become 

 
at1U 0 Y h   , 

 

at2U 0 Y h  , 
                                                  (2.3) 

at1 2U U Y 0  , 
 

at1 2
1 2

dU dU
Y 0

dY dY
    . 
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in Eqs (2.1) to (2.3) become 
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Region-1 
2

2 21 1
12

d u dp
M u M E 0

dxd


   


, (2.5) 

Region-2 
2 2 2

2 2 r r
22 2

d u dp M M E
u 0

dx md m n

  
   


, 

 (2.6) 
at1u 0 1    , 

 

at2u 0 1   , 
 (2.7) 

, at21 2
1 2

du du
u mnu m n 0

d d
   

 
 

 

where  2 1m          and      1 2n    ,      e2
r

e1


 


. 

 

 Solutions of Eqs (2.5) and (2.6) are 
 

   cosh sinh1 1 2 2

A
u a M a M

M
     ,                              (2.8) 

 

   cosh sinh2 3 4 2

c
u a B a B

B
     .                                 (2.9) 

 

 From Eqs (2.8) and (2.9) the average velocities become 
 

  
0

1 1

1

1
u u d

2


  ,            (2.10) 

 

  
1

2 2

0

1
u u d

2
  .            (2.11) 

 
Case 1: Diffusion of a tracer in the absence of a first-order chemical reaction. 
 

The equation for the concentration 1C  of the solute for the region-1 satisfies 
 

2 2
1 1 1 1

1 1 2 2

C C C C
u D

t X X Y

    
        

.            (2.12) 

 

 Similarly, the equation for the concentration 2C  of the solute for the region-2 satisfies 
 

2 2
2 2 2 2

2 2 2 2

C C C C
u D

t X X Y

    
        

,                                     (2.13) 

 

in which 1D  and 2D  are the molecular diffusion coefficients (assumed constants) for the region-1 and 
region-2, respectively.  
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 If we now consider convection across a plane moving with the mean speed of the flow, then relative 
to this plane the fluid velocities are given by 
Region-1 

   cosh sinh1x 1 1 2 1u u u a M a M l       .                           (2.14) 

Region-2 

   cosh sinh2x 2 3 4 2u u u a B a B l                                   (2.15) 
 

where u  is the sum of average velocities of region-1 and region-2. 
 Introducing the dimensionless quantities 
 

, , , , ,1 1 1 1 2 2 2 2
1 1 1 2 2 2

1 1 2 2

t L x u t t L x u t
t t

t u L t u L

 
          ,            (2.16) 

 

and using Eqs (2.14) and (2.15), Eqs (2.12) and (2.13) (assuming that 
2 2

1 1
2 2

C C

X Y

 


 
 and 

2 2
2 2
2 2

C C

X Y

 
   

 become  

Region-1 
2

1x1 1 1 1
2 2

1 1

uC C D C1

t L h

  
 

  
.            (2.17) 

Region-2 
2

2x2 2 2 2
2 2

2 2

uC C D C1

t L h

  
 

  
            (2.18) 

 

where L  is the typical length along the flow direction. Following Taylor [3], we now assume that partial 
equilibrium is established in any cross-section of the channel so that the variations of 1C  and 2C  with   are 
calculated from Eqs (2.17) and (2.18) as 
Region-1 

2 2
1 1

1x2
1 1

C Ch
u

D L

 



.            (2.19) 

Region-2 
2 2

2 2
2x2

2 2

C Ch
u

D L

 



.            (2.20) 

 

 To solve these equations we use the following boundary conditions 
 

1C
0





    at    1       and    2C

0





    at    1  .                             (2.21) 

 

 Equations (2.19) and (2.20) are solved exactly for 1C  and 2C  which are given by  
Region-1 

   cosh sinh 21 2 1
1 1 1 22 2

a a l
C Z M M b b

2M M

         
 

.            (2.22) 

Region-2 

     cosh sinh 23 4 2
2 2 3 42 2

a a l
C Z B B b b

2B B

         
 

.             (2.23) 

 

where 2b  and 4b  are constants to be determined using the entry conditions. 
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 The volumetric flow rates at which the solute is transported across a section of the channel of unit 
breadth 1Q  (region-1) and 2Q  (region-2) using Eqs (2.16), (2.17) and (2.22), (2.23), respectively are, given 
by 

0 0

1 1 1x 1 11 1x

1 1

Q h C u d Z h C u d
 

                                                   (2.24)  

 

1 1

2 2 2x 2 22 2x

0 0

Q h C u d Z h C u d                                        (2.25) 

 

where   
   cosh sinh 2

1 2 1
11 112 2

a M a M l
C b

2M M

   
       

 
,  

 

   cosh sinh 2
3 4 2

22 322 2

a B a B l
C b

2B B

   
       

 
. 

  
 Following Taylor [3], we assume that the variations of 1C  and 2C  with   are small compared with 

those in the longitudinal direction, and if m1C  and m2C  are the mean concentration over a section, 1 1C   

and 2 2C   are indistinguishable from m1 1C   and m2 2C  , respectively, so that Eqs (2.24) and 
(2.25) may be written as  
Region-1 

* m1
1 1

1

C
Q D


 


.                                    (2.26) 

Region-2 

* m2
2 2

2

C
Q D


 


.                                                (2.27) 

 

 The fact that no material is lost in the process is expressed by the continuity equation for m1C  and 

m2C , namely:  
Region-1 

m11

1

CQ
2

t


 

 
.            (2.28) 

Region-2 

m22

2

CQ
2

t


 

 
.            (2.29) 

 

 Equations (2.28) and (2.29) using Eqs (2.24) and (2.25) become 
Region-1 

* 2
m1 m11

2
1

C CD

t 2

 


 
.            (2.30) 

Region-2 
* 2

m2 m22
2
2

C CD

t 2

 


 
,            (2.31) 

which are the equations governing the longitudinal dispersion, where 
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 * , , , , ,
02 2

1 11 1x 1 1 2
1 11

h h
D C u d F M E p p m n

2D 2 D


   , 

 * , , , , ,
02 2

2 12 1x 2 1 2
2 21

h h
D C u d F M E p p m n

2D 2 D


   . 

 

 Equations (2.30) and (2.31) are the well known heat conduction equations which can be solved easily 
for given initial conditions. 
 
Case 1b: Diffusion of a tracer in the absence of a first order chemical reaction and for purely viscous 
fluid (two fluid model) 
 
 To validate the results of the present model, the problem is solved in the absence of the magnetic 
field and compared with the results of Gupta and Gupta [42].  
 The non-dimensional equations of motion for incompressible fluids are 
Region-1 

2
1 1

2

d u dp
0

dxdy


  .            (2.32) 

Region-2 
2

2 2
2

d u dp
0

dxdy


  .            (2.33) 

 

 The boundary and interface conditions are defined as in Eq.(2.7). Using Eq.(2.7) in Eqs (32) and 
(33), the solutions become 
 

2
1

1 1 2
p

u a a
2


    ,            (2.34) 

 

2
2

2 3 4
p

u a a
2


    .            (2.35) 

 

 The average velocities become 
 

1 1
1 2

p a1
u a

2 6 2
    
 

,            (2.36) 

 

31
2 4

ap1
u a

2 6 2
    
 

.            (2.37) 

 

 The solutions of Eqs (2.19) and (2.20) in the absence of the applied magnetic field 0B  and applied 

electric field 0E  yields 
 

4 3 22
1 1 1 1

1 1 01
1 1

C p a lch
C b C

D L 24 6 2

    
         

,                 (2.38) 

 

34 22
32 2 2

2 3 02
2 2

aC p lch
C b C

D L 24 6 2

   
         

            (2.39) 
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where 01C  and 02C  being constants to be determined using entry conditions. 
 The volumetric rates at which the solute is transported across a section of the channel of unit breadth 

1Q  (region-1) and 2Q  (region-2) and the effective dispersion coefficients iiF  are evaluated as explained in 

the case 1a. The values of  , , ,i 1 2F p p m n  are computed for different values of the dimensionless parameters 

ip  and m  and are shown in Tab.4. 

 
Case 1c: Diffusion of a tracer in the absence of a first order chemical reaction and for purely viscous 
fluid (one fluid model). 
 
 The non-dimensional equation of motion is 
 

2

2

d u dp

dxd



,            (2.40) 

 

along with boundary conditions  
 

atu 0 1    .            (2.41) 
 

 The solution of Eq.(2.40) is  
 

 2u p 1 2   . 
 

 The average velocity is given by 
 

u p 3  . 
 

 The concentration equation for one fluid model using Taylor [3] become 
 

2 2

x2

C h C
u

DL

 



                 (2.42) 

 

where   
2

x
p p

u
2 6


  . 

 The solution of Eq.(2.42) using boundary conditions 
C

0





 at 1  is  

 

2
4 2

0
h C p p

C C
DL 24 12

         
            (2.43) 

 

where 0C  is a constant to be determined using entry conditions. 
 The volumetric flow rate in which the solute is transported across a section of the channel of unit 
breadth is  
 

1 2 2

x

1

h p C 2
Q h C u d

D 945


          ,            (2.44) 

 

so that the value for *D  can be written as 
2 2h p 2

D 945
 by comparing with Fick’s law of diffusion which 

agrees with the results of Wooding [43] where p  is the non-dimensional pressure gradient. *D  is also the 
effective dispersion co-efficient obtained by Gupta and Gupta [42] in the absence of chemical reactions. 
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Case 2a: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction 
 

The physical model and the assumptions made in case 1 are true here, except that we have the 
chemical reaction. In this case we assume that the chemical reaction is first order and it occurs under such 
conditions that the gas film resistance is negligible. This means that the reaction term is 1KC  (region-1) 

and 2KC  (region-2) - -3 1mol cm s , which represents the volume rate of disappearance of the solute due to 

the chemical reaction. Here K  represents the first-order reaction rate constant. 
 The velocity and average velocity are exactly the same as in Eqs (2.8)-(2.11). The equations for 
concentration, instead of Eqs (2.12) and (2.13), are 
Region-1 

2 2
1 1 1 1

1 1 1 12 2

C C C C
u D K C

t X X Y

    
         

.                                    (2.45) 

Region-2 
2 2

2 2 2 2
2 2 2 22 2

C C C C
u D K C

t X X Y

    
         

.                                    (2.46) 

 

 Along with the boundary condition (2.21), the continuity of concentration and continuity of mass 
flux at the interface is considered to evaluate the integrating constants. That is  
 

and at1 2 2
1 2

1

C D C
C C 0

D

 
   

 
.                                                (2.47) 

 

 Following the analysis of case 1, the non-dimensional form of Eqs (2.45) and (2.46) are 
Region-1 

2 2
21 1

1 1 1x2
1 1

C Ch
C u

D L

 
 


.                                                (2.48) 

Region-2 
2 2

22 2
2 2 2x2

2 2

C Ch
C u

D L

 
 


                                    (2.49) 

 

where   1 1 1h K D       and     2 2 2h K D  . 
 

 The solutions of Eqs (2.48) and (2.49) become 
Region-1 

       cosh sinh
cosh sinh 1 2 21

1 1 1 2 1 1 2 2 2 2 2
1 1 1

a M a M l
C b b Z

M M

  
               

.  (2.50) 

Region-2 

       cosh sinh
cosh sinh 3 4 22

2 3 2 4 2 2 2 2 2 2 2
2 2 2

a B a B l
C b b Z

B B

  
               

.   (2.51) 

 

 The expressions for 1C  and 2C  can also be written as 
 

2 2
1 2

1 11 12
1 1 2 2

C Ch h
C C C

D L D L

 
 

 
,       

2 2
1 2

2 21 22
1 1 2 2

C Ch h
C C C

D L D L

 
 

 
. 
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 The volumetric flow rates at which the solute is transported across a section of the channel of unit 
breadth 1Q (region-1) and 2Q  (region-2) using Eqs (2.14), (2.15) and (2.50), (2.51), respectively are given by 
Region-1 

 
0

1 1 1x 11 12

1

Q h C u d Q Q


     .            (2.52) 

Region-2 

 
1

2 2 2x 21 22

0

Q h C u d Q Q                 (2.53) 

 

where   
0

11 1 11 1x

1

Q Z h C u d


   ,         
0

12 2 12 1x

1

Q Z h C u d


   ,  

 

1

21 1 21 2x

0

Q Z h C u d   ,        
1

22 2 22 2x

0

Q Z h C u d   . 

 

 Following the procedure explained in case 1 and using the fact that no material is lost in the process 
expressed by the continuity equation for 1C  and 2C , given by Eqs (2.50) and (2.51), we obtain an effective 

dispersion coefficient *D  in the form 
 

 * , , , , , , ,
02 2

11 11 1x 11 1 2 1 2
1 11

h h
D C u d F M E p p m n

2D 2 D


     , 

 

 * , , , , , , ,
02 2

12 12 1x 12 1 2 1 2
2 21

h h
D C u d F M E p p m n

2D 2 D


     , 

 (2.54) 

 * , , , , , , ,
02 2

21 21 2x 21 1 2 1 2
1 11

h h
D C u d F M E p p m n

2D 2 D


     , 

 

 * , , , , , , ,
02 2

22 22 2x 22 1 2 1 2
2 21

h h
D C u d F M E p p m n

2D 2D


     .  

 Values of iiF  are computed for different values of dimensionless parameters such as the Hartman 

number M, viscosity ratio m  and pressure gradients ,1 2p p  for variations of and1 2   for both open and 
short circuits. The volumetric flow rate is also computed for variations of the Hartman number, viscosity 
ratio, pressure gradients and height of the channel. 
 
Case 2b: Diffusion of a tracer with a combined homogeneous and heterogeneous first-order chemical 
reaction 
 

We now discuss the problem of diffusion in a channel with a first-order irreversible chemical 
reaction taking place both in the bulk of the fluid as well as at the walls which are assumed to be catalytic. In 
this case the diffusion equations remain the same as defined in Eqs (2.48) and (2.49) subject to the 
dimensionless boundary and interface conditions as 
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at1
1 1

C
C 0 1


    


, 

 

at2
2 2

C
C 0 1


    


, 

            (2.55) 
at1 2C C 0   , 

 

at1 2
1 2

C C
D D 0

 
  

 
 

 

where 1 1f h   and 2 2f h   are the heterogeneous reaction rate parameters (or wall catalytic parameters) 
corresponding to the catalytic reaction at the walls. 
 The solutions of Eqs (2.48) and (2.49) are the same as in Eqs (2.50) and (2.51). The integrating 
constants , ,1 2 3b b b  and 4b  are obtained using boundary and interface conditions as defined in Eq.(2.55) and 
are given as follows  
 

1 1 11 2 12b Z b Z b  ,     2 1 21 2 22b Z b Z b  ,     3 1 31 2 32b Z b Z b  ,     4 1 41 2 42b Z b Z b  . 
  

 The procedure of evaluating the volumetric flow rate and effective dispersion coefficient is the same 
as in Eqs (2.52) to (2.54). 
 
Case 2c: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction in the 
absence of the magnetic field for a purely viscous fluid (two fluid model). 
 

We justify our results by comparing them with the results obtained by Gupta and Gupta [42] (one 
fluid model) with a first order chemical reaction for a purely viscous fluid. 
 The solutions of velocities and average velocities are the same as in Eqs (2.34) to (2.37). 
The solutions of Eqs (2.19) and (2.20) for a purely viscous fluid yields 
 

     cosh sinh 2
1 1 1 2 1 1 1 2 3C b b Z l l l          ,                        (2.56) 

 

     cosh sinh 2
2 3 2 4 2 2 4 5 6C b b Z l l l          .                        (2.57) 

 
 The volumetric rates at which the solute is transported across a section of the channel of unit breadth 

1Q  (region-1) and 2Q  (region-2) and the effective dispersion coefficients iiF  are evaluated as explained in 

case1a. The values of  , , , , ,ii 1 2 1 2F p p m n   are computed for different values of the dimensionless 

reaction rate parameters i , ip  and m and are shown in Tab.4. 
 
Case 2d: The channel filled with only a viscous fluid (one fluid model) for a homogeneous chemical 
reaction. 
 

The solutions of velocities and average velocities are given in case 1c. The concentration equation 
for one fluid model using Taylor [3] becomes 
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2 2

2
x2

C h C
C u

DL

 
 


                        (2.58) 

 

where   
2

x
p p

u
2 6


  . 

 

 The solution of Eq.(2.58) using boundary conditions 
C

0





 at 1  is  

 

 cosh
2

2
2 2

h C p p p
C A

2 6DL

          
.                                 (2.59) 

 
 The volumetric flow rate in which the solute is transported across a section of the channel of unit 
breadth is  
 

 coth1 2 2

x 2 4 2
1

h p C 1 1 1
Q h C u d

45D 3

  
          
 .                   (2.60) 

 
 Comparing Eq.(2.60) with Fick’s law of diffusion, we find that the solute is dispersed relative to a 

plane moving with the mean speed of the flow with an effective dispersion coefficient D  given by 
 

( )
2 2h p

D F
D

    

 

where   
 coth

( )
2 4 2

1 1 1 1
F

453

  
        

.                                    (2.61) 

 

 Values of  F   are computed for different values of the dimensionless reaction rate parameter   

and are shown in Tab.4. When 0  , Eq.(2.61) gives 
 

 lim
0

2
F

945
  , 

 

so that the value for D  can be written as 
2 2h p 2

D 945
 which agrees with the results of Wooding [43] where 

p  is the non-dimensional pressure gradient. 
 The solution for a heterogeneous chemical reaction is also found for two fluid and one fluid model 
and the results are shown in Tab.4. The constants which appeared in all the above equations are given in the 
Appendix. 
 
4. Results and discussion 
 

The longitudinal dispersion of a two-fluid MHD fluid flow between two parallel plates in the 
presence of a transverse magnetic field and uniform electric field applied across the channel is 
discussed. The dispersion of a solute is analyzed with or without a first order chemical reaction 
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following the Taylor diffusion model. The average velocities in both the regions are evaluated using no-
slip conditions at the boundaries and continuity of velocity and shear stress at the interface. The 
effective Taylor diffusion coefficient (ETDC) in each region is evaluated for the governing parameters 
and is tabulated. 
 
Case 1: Diffusion of a tracer in the absence of a homogeneous first-order chemical reaction. 
 

The effect of Hartman number M on the velocity for open and short circuits is shown in Fig.1. We 
observe that the effect of increasing the magnetic field is to decrease the velocity in both the regions. We 
also observe the flattening of the velocity profile for large values of the Hartman number. This is due to the 
overall retarding effect of the Lorentz force J B . The Hartmann number represents the ratio of the Lorentz 
force to the viscous force. The velocity near the walls increases in order to keep the mass flow rate constant. 
This is the classical Hartmann result. Figure 1 also shows the effect of the electric field load parameter E  on 
the flow. The two cases E 0  (short circuit) and E 1   (open circuit) are considered in the graph. The 
effect of increasing M is quite opposite in the case when E 1  . In this case we observe that the 
electromagnetic force tends to accelerate the fluid. Again a positive E  accelerates the flow in opposite 
direction. Since we are considering the fluids in both the regions to be electrically conducting, we observe 
the symmetric profiles for both open and short circuits.  

 

 
 

Fig.2. Velocity profiles for different values of the Hartman number M and electric load parameter E . 
 
 The effect of the Hartman number M, viscosity ratio m  and pressure gradient on ETDC for open 
and short circuits is shown in Tabs 1a, b, c. It is seen that the ETDC decreases with an increase in the 
Hartman number M for both open and short circuits. The results are compatible with the physics of the 
problem. In a Hartman flow, it is seen that the velocity profile becomes flatter with an increase of the 
Hartman number M. However, the ETDC decreases more rapidly with increasing the Hartman number M in 
a short circuited channel flow as compared with an open-circuited flow. 
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 As the viscosity ratio m  2 1   increases, the ETDC  F  decreases for values of m 1  and 

increases in magnitude for m 1  for both open and short circuits. This is due to the fact that viscosity ratio 
m  has a significant effect on velocity in region-2. The values of ETDC are symmetric for the pressure 
gradient p 0  and p 0 . This is due to the fact that as p increases for p 0 , velocity increases which 

causes an increase in F  (it should be noted that p is defined as p x  ). 
 
Table 1a. Values of the effective dispersion coefficient for variations of the Hartman number, viscosity ratio, 

pressure gradients and electric load parameter in the absence of a first order chemical reaction. 
 

 E 1   

M  , , ,1 rF M m p  , , ,2 rF M m p  , , ,rF M m p  

4  0.002260 0.002260 0.004521
6 0.001823 0.001823 0.003646
8 0.001341 0.001341 0.002681
10 9.9643E-4 9.9643E-4 0.001993
12 7.6092E-4 7.6092E-4 0.001522

m   
0.1 2.349260 2.130990 4.480250
0.5 0.025626 0.022898 0.048523
1 0.001133 0.001133 0.002266
2 0.008650 0.005368 0.014018
3 0.012810 0.013202 0.026011
4 0.009183 0.011565 0.020748
p  
-15 0.045440 0.045440 0.090879
-10 0.024671 0.024671 0.049342
-5 0.010196 0.010196 0.020391
0.1 0.001915 0.001915 0.003829
5 1.2587E-4 1.2587E-4 2.5174E-4
10 0.004531 0.004531 0.009063
15 0.015230 0.015230 0.030461
1 0.001133 0.001133 0.002266

r   
2 0.002939 0.001507 0.004446
3 0.005228 0.001579 0.006807
4 0.007163 0.001685 0.008847
5 0.008730 0.001821 0.010551
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Table 1b.  Values of the effective dispersion coefficient for variations of the Hartman number, viscosity ratio, 
pressure gradients and electric load parameter in the absence of a first order chemical reaction. 

 

 E 0  

M  , , ,1 rF M m p  , , ,2 rF M m p  , , ,rF M m p  

4  1.00464E-5 1.00464E-5 2.00927E-5
6 1.48823E-6 1.48823E-6 2.97647E-6
8 3.37759E-7 3.37759E-7 6.75518E-6
10 1.01667E-7 1.01667E-7 2.03333E-7
12 3.72109E-8 3.72109E-8 7.44218E-8
m   
0.1 2.2388E-5 0.002 0.00202
0.5 1.9476E-4 7.16E-4 9.1076E-4
1 1.2587E-4 1.2587E-4 2.5174E-4
2 0.0019 8.4955E-4 0.00275
3 0.00108 -0.00333 -0.00224
4 -0.02861 -0.02518 -0.05378
p   

-15 0.0283211 0.0283211 0.0566422
-10 0.0125871 0.0125871 0.0251743
-5 0.0031468 0.0031468 0.0062936
0.1 1.2587E-6 1.2587E-6 2.5174E-6
5 0.0031468 0.0031468 0.0062936
10 0.0125871 0.0125871 0.0251743
15 0.0283211 0.0283211 0.0566422

r   
1 5.0349E-4 5.0349E-4 0.001007
2 7.8688E-4 6.1199E-4 0.001399
3 0.001289 7.2795E-4 0.002017
4 0.001725 7.7905E-4 0.002504
5 0.002077 8.0366E-4 0.002880
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Fig.3.  Volumetric flow rate Q  versus the Hartman number M , viscosity ratio m , pressure gradient p  

height of the channel h  and electric load parameter in the absence of a first order chemical reaction. 
 

Table 1c.  Values of the effective dispersion coefficient for variations of the Hartman number, viscosity ratio, 
pressure gradients and electric load parameter in the absence of a first order chemical reaction. 

 
 E=1

M  , , ,1 rF M m p  , , ,2 rF M m p  , , ,rF M m p  

4  0.002903 0.002903 0.005807
6 0.002037 0.002037 0.004075
8 0.001427 0.001427 0.002854
10 0.001037 0.001037 0.002074
12 7.82359E-4 7.82359E-4 0.001565
m   
0.1 2.444240 1.868800 4.313040
0.5 0.022215 0.017162 0.039377
1 0.003147 0.003147 0.006294
2 0.007024 -0.011538 -0.004513
3 0.004653 -0.046234 -0.041582
4 -0.003975 -0.111673 -0.115648
p   

-15 0.015230 0.015230 0.030461
-10 0.004531 0.004531 0.009063
-5 1.2587E-4 1.2587E-4 2.5174E-4
0.1 0.002116 0.002116 0.004232
5 0.010196 0.010196 0.020391
10 0.024671 0.024671 0.049342
15 0.045440 0.045440 0.090879

r   
1 0.003147 0.003147 0.006294
2 0.003528 0.002630 0.006158
3 0.003972 0.002093 0.006065
4 0.004334 0.001759 0.006093
5 0.004619 0.001550 0.006170
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The effects of the Hartman number M, viscosity ratio m , pressure gradient and height of the channel 

h  on the volumetric flow rate Q  is shown in Fig.2. As the Hartman number M increases the volumetric 

flow rate Q  decreases for M 3  for E 1   and E 0  whereas it increases for E 1  and remains 

invariant for M 3  for both open and short circuits. The volumetric flow rate increases as the viscosity ratio 
m  increases up to .m 1 5  (approximately) and remains constant for both open and short circuits. However 
the effect of m  on Q  is larger for an open circuit when compared to a short circuit. The Volumetric flow 

rate is symmetric for negative and positive values of the pressure gradient p  and the optimal flow rate is 

attained in the absence of the pressure gradient for both open and short circuits. The flow rate for E 0  lies 
between E 1   for 0p   and p 0 . As the height of the channel h  increases, the volumetric flow rate 
decreases in magnitude for both open and short circuits. However the magnitude of retardation is larger for 
an open circuit when compared to a short circuit. 

The results obtained (two-fluid model) in the absence of a chemical reactions agree with the results 
obtained by Gupta and Chatterjee [45] for the effect of the Hartman number M on the ETDC for a short 
circuit. That is, as M increases F  decreases. Letting M 0  and fixing m 1 , p 1  and h 1  (i.e., 

considering the same fluid in both the regions) we obtain the results of Gupta and Gupta [37] for KC 0  
which are also the results of Wooding [43] as shown in Tab.4. 
 
Case 2: Diffusion of a tracer with a combined homogeneous and heterogeneous first-order chemical 
reaction. 
 
 The ETDC 1F  (region-1) and 2F  (region-2) for various values of the viscosity ratio m , pressure 

gradient p , and Hartman number M for a homogeneous chemical reaction for open and short circuit is 

shown in Tabs 2a, b, c, respectively. As the reaction rate parameter   increases the total ETDC 

 1 2F F F   decreases for all values of m , p  and M  for both open and short circuits. This is due to the 

fact that an increase in   signifies the increasing number of moles of the solute undergoing a chemical 
reaction results in a drop in the dispersion coefficient. As the viscosity ratio m  increases, the ETDC 
decreases for values of m 1  and increases for m 1  for both open and short circuits. ETDC decreases as 
p  increases for p 1  and increases as p  increases for p 1  for E 1   and 0, whereas it increases in 

magnitude for both p 1  and p 1  for E 1 . 
 As the Hartman number increases the ETDC decreases for E 1   and 0. For the electric field 
parameter E 1 , the ETDC decreases as M increases for .M 0 1  and M 5  whereas the ETDC increases 
in magnitude for values of M 5  as seen in Tab.2b. That is, as the Hartman number M increases, the ETDC, 
the reaction rate parameter   and the wall catalytic parameter   decrease. Let M 0 , m 1 , p 1  then 
the present model agrees with the results of Gupta and Gupta [42] for both homogeneous and heterogeneous 
chemical reactions as shown in Tab.4. For a short circuit the effect of the Hartman number, reaction rate 
parameter   and wall catalytic parameter  , ETDC for the present model (two-fluid model) agree with the 
results of Sundhanshu et al. [44] (one fluid model). 
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Table 2a.  Values of the effective dispersion coefficient for variations of the reaction rate parameter  , 
Hartman number M, viscosity ratio m , pressure gradients p  and electric load parameter E  in 
the presence of a first order chemical reaction. 

 

E 1 
 .m 0 1  m 1

   ,1 1 2F    ,2 1 2F     ,1 2F    ,1 1 2F    ,2 1 2F     ,1 2F  
0.4 2.761310 2.548470 5.309780 0.002226 0.002226 0.004452 
0.8 2.341920 2.173110 4.515030 0.002129 0.002129 0.004258 
1.2 1.871380 1.750980 3.622370 0.001985 0.001985 0.003971 
1.6 1.463460 1.383620 2.847080 0.001815 0.001815 0.003630 
2.0 1.145730 1.095930 2.241660 0.001636 0.001636 0.003272 
  m 2  1 2p p 5    

0.4 0.005810 0.007913 0.013723 0.004363 0.004363 0.008726 
0.8 0.005139 0.006757 0.011896 0.004173 0.004173 0.008346 
1.2 0.004362 0.005451 0.009813 0.003891 0.003891 0.007783 
1.6 0.003655 0.004308 0.007963 0.003557 0.003557 0.007115 
2.0 0.003069 0.003407 0.006476 0.003206 0.003206 0.006413 
  .1 2p p 0 1   1 2p p 5   

0.4 0.002501 0.002501 0.005002 0.001197 0.001197 0.002394 
0.8 0.002392 0.002392 0.004784 0.001145 0.001145 0.002290 
1.2 0.002231 0.002231 0.004462 0.001068 0.001068 0.002135 
1.6 0.002039 0.002039 0.004079 9.76079E-4 9.76079E-4 0.001952 
2.0 0.001838 0.001838 0.003676 8.79748E-4 8.79748E-4 0.001760 
  .M 0 1  M 5  

0.4 0.001012 0.001012 0.002024 0.002055 0.002055 0.004110 
0.8 9.66401E-4 9.66401E-4 0.001933 0.001967 0.001967 0.003934 
1.2 8.98947E-4 8.98947E-4 0.001798 0.001837 0.001837 0.003673 
1.6 8.19049E-4 8.19049E-4 0.001638 0.001682 0.001682 0.003364 
2.0 7.35214E-4 7.35214E-4 0.001470 0.001519 0.001519 0.003038 
  M 10  .r 0 1   

0.4 9.82728E-4 9.82728E-4 0.001965 0.003985 0.007798 0.011783 
0.8 9.44031E-4 9.44031E-4 0.001888 0.003582 0.006766 0.010349 
1.2 8.86594E-4 8.86594E-4 0.001773 0.003104 0.005583 0.008687 
1.6 8.18166E-4 8.18166E-4 0.001636 0.002654 0.004523 0.007177 
2.0 7.45802E-4 7.45802E-4 0.001492 0.002267 0.003664 0.005931 
  r 1   r 2   

0.4 0.002226 0.002226 0.004452 0.003218 0.001694 0.004911 
0.8 0.002129 0.002129 0.004258 0.002964 0.001652 0.004617 
1.2 0.001985 0.001985 0.003971 0.002646 0.001576 0.004222 
1.6 0.001815 0.001815 0.003630 0.002324 0.001470 0.003794 
2.0 0.001636 0.001636 0.003272 0.002028 0.001348 0.003376 
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Table 2b.  Values of the effective dispersion coefficient for variations of the reaction rate parameter  , 
Hartman number M, viscosity ratio m , pressure gradients p  and electric load parameter E  in 
the presence of a first order chemical reaction. 

 
 E=0 
 .m 0 1  m 1  

   ,1 1 2F     ,2 1 2F     ,1 2F     ,1 1 2F     ,2 1 2F     ,1 2F    

0.4 8.00589E-6 1.49616E-4 1.57622E-4 9.8934E-6 9.8934E-6 1.97868E-5
0.8 8.35876E-6 1.36619E-4 1.44978E-4 9.46219E-6 9.46219E-6 1.89244E-5
1.2 8.50548E-6 1.20835E-4 1.29341E-4 8.82393E-6 8.82393E-6 1.76479E-5
1.6 8.30537E-6 1.05557E-4 1.13862E-4 8.06677E-6 8.06677E-6 1.61335E-5
2.0 7.82051E-6 9.20293E-5 9.98498E-4 7.27065E-6 7.27065E-6 1.45413E-5
  m 2  1 2p p 5    

0.4 6.297E-5 2.11697E-5 8.41398E-5 2.47335E-4 2.47335E-4 4.9467E-4
0.8 5.85902E-5 2.08786E-5 7.94688E-5 2.36555E-4 2.36555E-4 4.73109E-4
1.2 5.29001E-5 2.01194E-5 7.30195E-5 2.20598E-4 2.20598E-4 4.41196E-4
1.6 4.69458E-5 1.88913E-5 6.58371E-5 2.01669E-4 2.01669E-4 4.03338E-4
2.0 4.12782E-5 1.73595E-5 5.86377E-5 1.81766E-4 1.81766E-4 3.63532E-4
  .1 2p p 0 1   1 2p p 5   

0.4 9.8934E-8 9.8934E-8 1.97868E-7 2.47335E-4 2.47335E-4 4.9467E-4
0.8 9.46219E-8 9.46219E-8 1.89244E-7 2.36555E-4 2.36555E-4 4.73109E-4
1.2 8.82393E-8 8.82393E-8 1.76479E-7 2.20598E-4 2.20598E-4 4.41196E-4
1.6 8.06677E-8 8.06677E-8 1.61335E-7 2.01669E-4 2.01669E-4 4.03338E-4
2.0 7.27065E-8 7.27065E-8 1.45413E-7 1.81766E-4 1.81766E-4 3.63532E-4
  .M 0 1  M 5  

0.4 0.00103000 0.00103000 0.00206514 3.56801E-6 3.56801 E-6 7.13602 E-6
0.8 9.86023E-4 9.86023E-4 0.00197205 3.41511 E-6 3.41511 E-6 6.83022 E-6
1.2 9.17199E-4 9.17199E-4 0.00183440 3.18869 E-6 3.18869 E-6 6.37737 E-6
1.6 8.35679E-4 8.35679E-4 0.00167136 2.91988 E-6 2.91988 E-6 5.83976 E-6
2.0 7.50142E-4 7.50142E-4 0.00150028 2.63695 E-6 2.63695 E-6 5.27390 E-6
  M 10  .r 0 1   

0.4 1.00268 E-7 1.00268 E-7 2.00536 E-7 2.68126E-4 1.74734E-4 4.42859E-4
0.8 9.63199 E-8 9.63199 E-8 1.92640 E-7 2.3091E-4 1.57484E-4 3.88394E-4
1.2 9.04596 E-8 9.04596 E-8 1.80919 E-7 1.88526E-4 1.37013E-4 3.25539E-4
1.6 8.34778 E-8 8.34778 E-8 1.66956 E-7 1.50963E-4 1.17758E-4 2.68721E-4
2.0 7.60945 E-8 7.60945 E-8 1.52189 E-7 1.20901E-4 1.01186E-4 2.22087E-4
  r 1   r 2   

0.4 9.8934E-6 9.8934E-6 1.97868E-5 1.04941E-5 1.63515E-5 2.68456E-5
0.8 9.46219E-6 9.46219E-6 1.89244E-5 9.62562E-5 1.41923E-5 2.38179E-5
1.2 8.82393E-6 8.82393E-6 1.76479E-5 8.56359E-5 1.17153E-5 2.02789E-5
1.6 8.06677E-6 8.06677E-6 1.61335E-5 7.52492E-5 9.49710E-5 1.7022E-5
2.0 7.27065E-6 7.27065E-6 1.45413E-5 6.59314E-5 7.69917E-5 1.42923E-5
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Table 2c.  Values of the effective dispersion coefficient for variations of the reaction rate parameter  , 
Hartman number M, viscosity ratio m , pressure gradients p  and electric load parameter E  in 
the presence of a first order chemical reaction. 

 
 E 1
 .m 0 1  m 1  

   ,1 1 2F    ,2 1 2F     ,1 2F    ,1 1 2F    ,2 1 2F     ,1 2F  
0.4 2.748030 2.500990 5.249030 0.002859 0.002859 0.005718 
0.8 2.330730 2.133620 4.464350 0.002735 0.002735 0.005469 
1.2 1.862520 1.720360 3.582870 0.002550 0.002550 0.005100 
1.6 1.456600 1.360530 2.817130 0.002331 0.002331 0.004663 
2.0 1.140410 1.078570 2.218980 0.002101 0.002101 0.004202 
  m 2  1 2p p 5    

0.4 0.005893 0.008481 0.014374 0.001197 0.001197 0.002394 
0.8 0.005353 0.007296 0.012649 0.001145 0.001145 0.002290 
1.2 0.004703 0.005948 0.010651 0.001068 0.001068 0.002135 
1.6 0.004080 0.004756 0.008836 9.76079E-4 9.76079E-4 0.001952 
2.0 0.003532 0.003805 0.007338 8.79748E-4 8.79748E-4 0.001760 
  .1 2p p 0 1   1 2p p 5   

0.4 0.002564 0.002564 0.005129 0.004363 0.004363 0.008726 
0.8 0.002453 0.002453 0.004905 0.004173 0.004173 0.008346 
1.2 0.002287 0.002287 0.004574 0.003891 0.003891 0.007783 
1.6 0.002091 0.002091 0.004182 0.003557 0.003557 0.007115 
2.0 0.001885 0.001885 0.003769 0.003206 0.003206 0.006413 
  .M 0 1  M 5  

0.4 0.001053 0.001053 0.002107 0.002412 0.002412 0.004824 
0.8 0.001006 0.001006 0.002012 0.002309 0.002309 0.004617 
1.2 9.35635E-4 9.35635E-4 0.001871 0.002156 0.002156 0.004311 
1.6 8.52476E-4 8.52476E-4 0.001705 0.001974 0.001974 0.003948 
2.0 7.6522E-4 7.6522E-4 0.001530 0.001783 0.001783 0.003565 
  M 10  .r 0 1   

0.4 0.001023 0.001023 0.002046 0.002770 0.006362 0.009132 
0.8 9.82559E-4 9.82559E-4 0.001965 0.002664 0.005725 0.008389 
1.2 9.22778E-4 9.22778E-4 0.001846 0.002501 0.004959 0.007460 
1.6 8.51557E-4 8.51557E-4 0.001703 0.002301 0.004229 0.006529 
2.0 7.7624E-4 7.7624E-4 0.001552 0.002085 0.003592 0.005677 
  r 1   r 2   

0.4 0.002859 0.002859 0.005718 0.003355 0.001978 0.005333 
0.8 0.002735 0.002735 0.005469 0.003135 0.001928 0.005063 
1.2 0.002550 0.002550 0.005100 0.002847 0.001836 0.004683 
1.6 0.002331 0.002331 0.004663 0.002543 0.001710 0.004253 
2.0 0.002101 0.002101 0.004202 0.002250 0.001565 0.003815 

 
Tables 3a, b, c display the variations of the ETDC on the wall catalytic parameter  , viscosity ratio 

m , pressure gradient p  and Hartman number M  for a fixed value of the homogeneous reaction rate 

parameter    1 2     for both open and short circuits, respectively. The effects of m , p  and the 
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Hartman number M on the ETDC show the same results as observed for a homogeneous chemical reaction 
for both open and short circuits (Tables 2a, b, c). 
 
Table 3a.  Values of the effective dispersion coefficient for variations of wall catalytic parameter  , 

Hartman number M, viscosity ratio m , and pressure gradients p  in the presence of a first order 
chemical reaction. 

 
 1E  
 .m 0 1  m 1  
   ,1 i iF     ,2 i iF     ,i iF    ,1 i iF     ,2 i iF     ,i iF    

2 1.984610 1.898800 3.883410 0.002018 0.002018 0.004037 
4 1.402270 1.566430 2.968710 0.001850 0.001850 0.003699 
6 1.136290 1.399450 2.535740 0.001791 0.001791 0.003582 
8 0.995491 1.308140 2.303630 0.001764 0.001764 0.003528 
10 0.908249 1.250680 2.158930 0.001748 0.001748 0.003496 
  m 2  1 2p p 5    

2 0.004817 0.005622 0.010439 0.003956 0.003956 0.007912 
4 0.004966 0.003443 0.008409 0.003625 0.003625 0.007251 
6 0.004956 0.002509 0.007465 0.003511 0.003511 0.007022 
8 0.004936 0.002027 0.006963 0.003457 0.003457 0.006914 
10 0.004919 0.001731 0.006650 0.003426 0.003426 0.006852 
  .1 2p p 0 1   1 2p p 5   

2 0.002268 0.002268 0.004536 0.001085 0.001085 0.002171 
4 0.002078 0.002078 0.004157 9.94742E-4 9.94742E-4 0.001989 
6 0.002013 0.002013 0.004025 9.63291E-4 9.63291E-4 0.001927 
8 0.001982 0.001982 0.003964 9.48563E-4 9.48563E-4 0.001897 
10 0.001964 0.001964 0.003928 9.40021E-4 9.40021E-4 0.001880 
  .M 0 1  M 5  

2 9.17127E-4 9.17127E-4 0.001834 0.001865 0.001865 0.003729 
4 8.48274E-4 8.48274E-4 0.001697 0.001704 0.001704 0.003407 
6 8.24406E-4 8.24406E-4 0.001649 0.001648 0.001648 0.003296 
8 8.13229E-4 8.13229E-4 0.001626 0.001622 0.001622 0.003243 
10 8.06746E-4 8.06746E-4 0.001613 0.001607 0.001607 0.003213 
  M 10  .r 0 1   

0.4 8.95191E-4 8.95191E-4 0.001790 0.003447 0.005719 0.009166 
0.8 8.09645E-4 8.09645E-4 0.001619 0.003797 0.003661 0.007458 
1.2 7.7999E-4 7.7999E-4 0.001560 0.003892 0.002786 0.006679 
1.6 7.66102E-4 7.66102E-4 0.001532 0.003930 0.002336 0.006266 
2.0 7.58048E-4 7.58048E-4 0.001516 0.003950 0.002061 0.006011 
  r 1   r 2   

0.4 0.002018 0.002018 0.004037 0.002658 0.001657 0.004315 
0.8 0.001850 0.001850 0.003699 0.002011 0.001835 0.003846 
1.2 0.001791 0.001791 0.003582 0.001754 0.001911 0.003665 
1.6 0.001764 0.001764 0.003528 0.001625 0.001951 0.003576 
2.0 0.001748 0.001748 0.003496 0.001547 0.001975 0.003522 
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Table 3b.  Values of the effective dispersion coefficient for variations of the wall catalytic parameter  , 

Hartman number M, viscosity ratio m , and pressure gradients p  in the presence of a first order 
chemical reaction. 

 
 E 0  
 .m 0 1  m 1  
   ,1 i iF     ,2 i iF     ,i iF     ,1 i iF     ,2 i iF     ,i iF    

2 8.80015E-6 1.25461E-4 1.34261E-4 8.97079 E-6 8.97079 E-6 1.79416E-5
4 1.06137E-5 1.09507E-4 1.20121E-4 8.22100 E-6 8.22100 E-6 1.6442E-5
6 1.15313E-5 1.0242E-4 1.13951E-4 7.96109 E-6 7.96109E-6 1.59222E-5
8 1.20341E-5 9.8707E-5 1.10741E-4 7.83936 E-6 7.83936E-6 1.56787E-5
10 1.23509E-5 9.64181E-5 1.08769E-4 7.76877 E-6 7.76877E-6 1.55375E-5
  m 2  1 2p p 5    

2 5.42686E-5 2.04981E-5 7.47668E-5 2.2427E-5 2.2427E-5 4.48539E-5
4 4.7363E-5 2.06885E-5 6.80515E-5 2.05525E-5 2.05525E-5 4.1105E-5
6 4.4527E-5 2.09914E-5 6.55185E-5 1.99027E-5 1.99027E-5 3.98054E-5
8 4.3087E-5 2.11933E-5 6.42803E-5 1.95984E-5 1.95984E-5 3.91968E-5
10 4.22133E-5 2.1331E-5 6.35443E-5 1.94219E-5 1.94219E-5 3.88438E-5
  .1 2p p 0 1   1 2p p 5   

2 8.97079E-8 8.97079 E-8 1.79416E-7 2.2427E-5 2.2427E-5 4.48539E-5
4 8.22100 E-8 8.22100 E-8 1.64420 E-7 2.05525E-5 2.05525E-5 4.1105E-5
6 7.96109 E-8 7.96109 E-8 1.59222 E-7 1.99027E-5 1.99027E-5 3.98054E-5
8 7.83936 E-8 7.83936 E-8 1.56787 E-7 1.95984E-5 1.95984E-5 3.91968E-5
10 7.76877 E-8 7.76877 E-8 1.55375 E-7 1.94219E-5 1.94219E-5 3.88438E-5
  .M 0 1  M 5  

2 9.35748E-4 9.35748E-4 0.00187150 3.23731E-6 3.23731 E-6 6.47463 E-6
4 8.65498E-4 8.65498E-4 0.00173100 2.95774 E-6 2.95774 E-6 5.91549 E-6
6 8.41145E-4 8.41145E-4 0.00168229 2.86083 E-6 2.86083 E-6 5.72166 E-6
8 8.2974E-4 8.2974E-4 0.00165948 2.81544 E-6 2.81544 E-6 5.63089 E-6
10 8.23126E-4 8.23126E-4 0.00164625 2.78912 E-6 2.78912 E-6 5.57824 E-6
  M 10  .r 0 1   

0.4 9.13367 E-8 9.13367 E-8 1.82673 E-7 1.9335E-4 1.51182E-4 3.44532E-4
0.8 8.26084 E-8 8.26084 E-8 1.65217 E-7 1.19893E-4 1.64294E-4 2.84187E-4
1.2 7.95827 E-8 7.95827 E-8 1.59165 E-7 8.88153E-5 1.67752E-4 2.56567E-4
1.6 7.81657 E-8 7.81657 E-8 1.56331 E-7 7.28403E-5 1.69096E-4 2.41936E-4
2.0 7.73439 E-8 7.73439 E-8 1.54688 E-7 6.30865E-5 1.6978E-4 2.32867E-4
  r 1   r 2   

0.4 8.97079 E-6 8.97079 E-6 1.79416E-5 9.42998 E-6 1.18866E-5 2.13166E-5
0.8 8.22100 E-6 8.22100 E-6 1.6442E-5 1.06612E-5 7.14330 E-6 1.78044E-5
1.2 7.96109 E-6 7.96109E-6 1.59222E-5 1.10628E-5 5.16619 E-6 1.6229E-5
1.6 7.83936 E-6 7.83936E-6 1.56787E-5 1.12445E-5 4.15603 E-6 1.54005E-5
2.0 7.76877 E-6 7.76877E-6 1.55375E-5 1.13477E-5 3.54119 E-6 1.48889E-5
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Table 3c.  Values of the effective dispersion coefficient for variations of the wall catalytic parameter  , 

Hartman number M, viscosity ratio m , and pressure gradients p  in the presence of a first order 
chemical reaction. 

 
 E 1
 .m 0 1  m 1  
   ,1 i iF     ,2 i iF     ,i iF    ,1 i iF     ,2 i iF     ,i iF    

2 1.973670 1.866970 3.840630 0.002593 0.002593 0.005185 
4 1.388180 1.549230 2.937410 0.002376 0.002376 0.004752 
6 1.121350 1.388600 2.509950 0.002301 0.002301 0.004602 
8 0.980221 1.300590 2.280810 0.002266 0.002266 0.004531 
10 0.892810 1.245150 2.137960 0.002245 0.002245 0.004490 
  m 2  1 2p p 5    

2 0.005195 0.006053 0.011248 0.001085 0.001085 0.002171 
4 0.005781 0.003521 0.009302 9.94742E-4 9.94742E-4 0.001989 
6 0.005954 0.002460 0.008414 9.63291E-4 9.63291E-4 0.001927 
8 0.006028 0.001917 0.007945 9.48563E-4 9.48563E-4 0.001897 
10 0.006068 0.001586 0.007655 9.40021E-4 9.40021E-4 0.001880 
  .1 2p p 0 1   1 2p p 5   

2 0.002325 0.002325 0.004651 0.003956 0.003956 0.007912 
4 0.002131 0.002131 0.004262 0.003625 0.003625 0.007251 
6 0.002064 0.002064 0.004127 0.003511 0.003511 0.007022 
8 0.002032 0.002032 0.004064 0.003457 0.003457 0.006914 
10 0.002014 0.002014 0.004027 0.003426 0.003426 0.006852 
  .M 0 1  M 5  

2 9.54557E-4 9.54557E-4 0.001909 0.002188 0.002188 0.004377 
4 8.82894E-4 8.82894E-4 0.001766 0.001999 0.001999 0.003999 
6 8.58052E-4 8.58052E-4 0.001716 0.001934 0.001934 0.003868 
8 8.46418E-4 8.46418E-4 0.001693 0.001903 0.001903 0.003806 
10 8.39671E-4 8.39671E-4 0.001679 0.001885 0.001885 0.003771 
  M 10  .r 0 1   

0.4 9.31725E-4 9.31725E-4 0.001863 0.002702 0.005009 0.007710 
0.8 8.42688E-4 8.42688E-4 0.001685 0.003180 0.003526 0.006706 
1.2 8.11823E-4 8.11823E-4 0.001624 0.003366 0.002919 0.006285 
1.6 7.97369E-4 7.97369E-4 0.001595 0.003459 0.002611 0.006070 
2.0 7.88985E-4 7.88985E-4 0.001578 0.003514 0.002424 0.005938 
  r 1   r 2   

0.4 0.002593 0.002593 0.005185 0.002868 0.001900 0.004769 
0.8 0.002376 0.002376 0.004752 0.002328 0.001979 0.004307 
1.2 0.002301 0.002301 0.004602 0.002117 0.002020 0.004137 
1.6 0.002266 0.002266 0.004531 0.002012 0.002043 0.004055 
2.0 0.002245 0.002245 0.004490 0.001949 0.002057 0.004007 
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Table 4. Values of the effective dispersion coefficient. 
 

 Two fluid model (present model) One fluid model 
Gupta and Gupta [42] 

 In the absence of first-order chemical reaction 
m p   ,1F m p   ,2F m p   ,F m p   ,F m p  

1 0.0010582 0.0010582 0.0021164 0.0021164 
 In the presence of first-order homogeneous chemical reaction 

   ,1 1 2F     ,2 1 2F     ,1 2F     F   

0.4 0.0010099 0.0010099 0.0020199 0.00201987 
0.8 9.1846E-4 9.1846E-4 0.0018369 0.00183692 
1.2 8.2952E-4 8.2952E-4 0.0016590 0.00165904 
1.6 7.474E-4 7.474E-4 0.0014948 0.00149480 
2 6.70579E-4 6.70579E-4 0.0013412 0.00134116 

 
In the presence of first-order combined homogeneous and heterogeneous 

chemical reaction
   ,1 i iF     ,2 i iF     ,i iF     ,F    

2 8.48463E-4 8.48463E-4 0.00169693 0.0016969 
4 8.30289E-4 8.30289E-4 0.00166058 0.0016606 
6 8.22866E-4 8.22866E-4 0.00164573 0.0016457 
8 8.18832E-4 8.18832E-4 0.00163766 0.0016377 
10 8.16298E-4 8.16298E-4 0.00163260 0.0016326 

 
5. Conclusion 
 
1. The ETDC decreases with an increase in the Hartman number for E 1   and E 0  whereas it decreases 

for M 1  and increases for M 1  for E 1  with or without chemical reactions. 
2. The ETDC decreases for m 1  and p 1  whereas it increases for m 1  and p 1  as m  and p  

increases for both open and short circuits in the absence or in the presence of chemical reactions. 
3. As the homogeneous reaction rate parameter and wall catalytic parameter increases, the ETDC decreases 

for all values of the viscosity ratio, pressure gradient and Hartman number for both open and short 
circuits. 

4. The results for the two fluid model (present model) agree with the results for one fluid models of Gupta 
and Chatterjee [45], Gupta and Gupta [42] and Wooding [43]. 
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Appendix  
 
Case 1: Diffusion of a tracer in the absence of a first-order chemical reaction. 
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Case 1b: Diffusion of a tracer in the absence of a first order chemical reaction and for a purely viscous 
fluid (two fluid model) 
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Case 2a: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction. 
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Case 2b: Diffusion of a tracer with a combined homogeneous and heterogeneous first-order chemical 
reaction. 
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Case 2c: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction in the 
absence of the magnetic field for a purely viscous fluid (two fluid model). 
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Nomenclature 
 
 B  – constant 
 0B  – applied magnetic field 

 iC  – concentration of the solute         

 D – ratio of molecular diffusion coefficient  /2 1D D  

 iD  – molecular diffusion coefficient   

 i

i

dP

dX
 – pressure gradient 

 E – electric load parameter  
 0E  – applied electric field        

 h – distance between the plates, m 
 iK  – first-order reaction rate constant  

 L – typical length along the flow direction, m 
 iQ  – volumetric flow rate   

 iU  – velocity, -1ms  

 iu  – non-dimensional average velocity 

 iu  – non-dimensional velocity   

 M – Hartman number           
 m – viscosity ratio  2 1   

 n – density ratio  1 2   

 ip  – non-dimensional pressure gradient 

 i  – dimensionless reaction rate parameters  

 i  – wall catalytic parameter  

   – dimensionless length 
 i  – dynamic viscosity   

 i  – density of the fluid  

 ei  – electrical conductivities 

 r  – ratio of electrical conductivity 
 

Subscripts 
 

 ,i 1 2  – where 1, 2 –quantities for region-1 and region-2, respectively 
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