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This paper deals with the limit load solutions for SEN(T) specimens under plane stress and plane strain 
conditions. The existing solutions are verified using the Finite Element Method and extended to 3D cases. The 
numerical results can be used to assess the strength of a structural element with a defect. This paper is a 
verification and extension of the author’s previous paper [2]. 
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1. Introduction (based on [1-4]) 
 
 The problem of limit loads is still valid in fracture mechanics. It has been discussed extensively by a 
number of researchers. Limit loads are required to determine the characteristic time for a failure of a 
structure with a crack subjected to external loads. The limit load can be defined as the load resulting in a 
state where the uncracked ligament of the specimen (or a structural element) is plasticized; this means that 
the effective stress calculated according to the Huber-Mises-Hencky hypothesis is equal to or greater than the 
yield stress [1-4]. It should be noted that this condition can be satisfied for specimens (structural elements) 
modeled as ones made of an elastic-perfectly plastic material. The limit load is determined by observing the 
growth of the plastic zone near the crack tip and analyzing the plots showing the relationship between the 
force and the load line displacement. The plateau generally suggests that full plasticity has occurred in the 
specimen (element), i.e., the limit load has been achieved [1- 4]. For this step of the determination of limit 
loads, the “twice elastic slope” method is often used. 
 Limit loads are well-suited for assessing the strength of structures with defects. The assessment is 
based on the analysis of, for example, Failure Assessment Diagrams or Crack Driving Force diagrams [1, 5]. 
Limit loads can be used in hybrid solutions to estimate the J-integral, the crack opening displacement and the 
load line displacement, which are dependent on the external load, the material characteristics and the element 
geometry. [5]. It is thus important to determine limit loads by employing adequate formulae without the need 
to create a finite element model or conduct numerical calculations. 
 There are many solutions available for SEN(T) plates (Fig.1) which allow us to estimate the limit 
load. The most famous is the EPRI solution [5], which requires calculating the limit load per unit thickness 
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where P0 is the limit load, 0 is the yield stress and  is the function dependent on the crack length a and the 
length of the uncracked ligament b of the specimen (b=W-a) 
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 The solution proposed by the EPRI [5] has been modified many times. In 1988, Miller [6] suggested 
that it should be modified as follows 
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where B is the specimen thickness. 
 

 
 

Fig.1. Single edge notched specimen in tension [1-2, 4]. 
 
 The next modification was made in 2013 [2] 
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where the yield stress 0 should be expressed in [MPa], the geometrical dimensions (the crack length a, the 
specimen width W and the specimen thickness B) in [m] and the limit load P0 to be calculated in [kN]. 
It can be seen that Eqs (1.1)-(1.4) are strongly dependent on the geometry of the SEN(T) specimens, which 
can be expressed by the length of the uncracked ligament. The formulae offer different accuracy for SEN(T) 
specimens with standard dimensions. Reference [7] indicates that the above solutions are not suitable for the 
analysis of miniature SEN(T) specimens. In this interesting paper [7], the authors discuss and compare the 
results of their numerical calculations and propose a new formula to determine limit loads for SEN(T) 
specimens 
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where the yield stress 0 should be expressed in [MPa], the geometrical dimensions (the crack length a, the 
specimen width W and the specimen thickness B) in [m] and the limit load P0 to be calculated in [kN]. 
Formula (1.5) proposed in [7] requires numerical calculations for plane stress and plane strain conditions, 
with the assumption of small strains and small displacements as well as large strains and large displacements.  
All the above equations used for calculating limit loads are valid for plane stress and plane strain conditions. 
The equations take into consideration the specimen thickness B, but they do not apply to structural elements 
characterized by a specific thickness. For this reason, the concept of limit loads will be extended in this paper 
to three-dimensional cases. 
 
2. Methodology – geometry, material and numerical analysis (based on [1-4]) 
 
2.1. Geometry and material of SEN(T) plates 
 
 The numerical analysis aimed at extending the limit load solutions to 3D cases. It was carried out for 
SEN(T) specimens shown in Fig.1. The numerical calculations were performed using the Finite Element 
Method (FEM). The SEN(T) plates had a width of W=40mm and a length L satisfying the condition that 
L2W. The numerical analysis was carried out for four relative crack lengths (a/W={0.05, 0.20, 0.50, 0.70}) 
and six specimen thicknesses (B={2, 4, 8, 16, 25, 40}mm). The different values of the relative crack length 
guarantee different levels of the “in-plane” constraints, which affect the fracture toughness and stress 
distribution near the crack tip [1, 4]. This wide range of specimen thicknesses guarantees that the analysis is 
well suited for structural elements characterized by intermediate stress state between the plane strain and 
plane stress. The total length of the plate will be L=176mm. For the plane stress and plane strain analysis 
performed according to the ADINA recommendations [8, 9], the specimen thickness will be B=1mm and 
B=1m, respectively.       
 The numerical analysis was performed for an elastic-perfectly plastic material with Young’s 
modulus E=206GPa and Poisson’s ratio =0.30. Four values of the yield stress were taken into 
consideration: 0={315, 500, 1000, 1500}MPa. The numerical calculations were conducted for a wide range 
of yield stress values, which allows us to model materials such as ferritic steels, structural steels and high 
strength steels [4]. 
 
2.2. Details of the numerical calculations – 2D and 3D cases 
 
 All the numerical calculations were performed using ADINA SYSTEM 8.7.3 [8, 9]. Small strain and 
small displacement options were considered for the plane strain, plane stress and 3D cases. The same FEM 
model was used to analyze the plate behavior under plane stress and plane strain conditions; however, 
different types of finite elements and different types of interpolation in the finite element were taken into 
account. A different finite element mesh was created for the 3D analysis. 
 The analysis of the plane stress and plane strain conditions involved using a finite element mesh with 
nine-node plane strain (with mixed formulation of the interpolation) or plane stress (with default formulation 
of the interpolation) elements [2, 3, 10]. Half of the specimen was modeled; the existing axis of symmetry 
was used. For the 3D analysis, only a quarter of the plate was modeled because of the symmetry and the 
finite element mesh was filled using eight-node three-dimensional brick elements with “mixed” type of the 
interpolation. ADINA [8, 9] recommends that elements in tension should be analyzed using eight-node brick 
finite elements for 3D cases and nine-node plane finite elements for the plane stress and plane strain options 
[2, 3, 10]. Each finite element has eight points of numerical integration for 3D cases and nine points of 
numerical integration for plane states. 
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a) b)  

 

c) 

 
Fig.2.  Numerical models of the SEN(T) specimens used in the analysis of (a) the plane stress and plane 

strain conditions and (b) the 3D cases. Finite elements of the mesh near the crack tip (c) [2, 3, 10]. 
 

 The numerical models were based on some reliable assumptions provided in [2, 3, 11-13]. For all the 
models considered, the size of the finite elements in the radial direction decreased towards the crack tip, 
while the size of the elements in the angular direction remained constant. The crack tip region was modeled 
using 3650 semicircles [2, 3]. The first of them was at least 20÷50 times smaller than the last one. It also 
means that the finite element closest to the crack tip is 3076÷10210 times smaller than the specimen width. 
The crack tip was modeled as a quarter of an arc with a radius of rw=(15)10-6m (which is 
(1/400001/800)W) [2, 3]. The whole SEN(T) specimen was modeled using 3149÷3428 finite elements and 
12803÷13921 nodes (plane stress and plane strain options) and 15552 finite elements and 18018 nodes (3D 
cases). 
 Two specimen thicknesses, i.e., B=1mm and B=1m, were considered for plane strain and plane 
stress, respectively. All the models used in the plane stress and plane strain analysis were built according to 
the guidelines provided in the literature by Brocks et al. [11-12] and in [13]. In the 3D analysis, the mesh 
consists of nine layers of 3D brick elements (across half of the thickness of the SEN(T) specimen). The layer 
interface is located at x3/B={0.000; 0.119; 0.222; 0.309; 0.379; 0.434; 0.472; 0.483; 0.494; 0.500}, where x3 
denotes the Cartesian coordinate in the thickness direction [2-4]. The layer in the center of the specimen 
(x3/B=0) is from twenty to fifty times thicker than that near the free surface (x3/B=0.5). This means that the 
layers become thinner as the free surface is approached [2-4]. 
 In all the case studies, the external load was applied to one edge of the specimen as a displacement 
increasing with time. To summarize, the analysis was performed using 32 plane models and 96 3D models of 
the SEN(T) specimens. An extensive program of numerical calculations may allow us to assess the limit 
loads for plates with different crack lengths (which determine the level of the in-plane constraints), different 
thicknesses (which determine the level of the out-of-plane constraints) and different yield stresses (which 
allow us to compare the actual structural materials with one of the model materials). Figure 2 presents the 
numerical models of the SEN(T) specimens used in the analysis. 
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3. Numerical results 
 
3.1. Numerical results for 2D cases – plane stress and plane strain 
 
 The numerical determination of the limit loads was based on the observations of the increasing 
plastic zone and the analysis of the plots showing the relationship between the external load and the load line 
displacement with the use of the “twice elastic slope” method. The values of the limit load obtained for plane 
stress and plane strain are presented in Tab.1.  
 
Table 1.  Limit load values calculated numerically for SEN(T) specimens under plane stress and plane strain 

conditions. 
 

a/W 

plane stress B=1mm plane strain B=1m 
P0 [kN] 
0=315 
MPa 

P0 [kN] 
0=500 
MPa 

P0 [kN] 
0=1000 

MPa 

P0 [kN] 
0=1500 

MPa 

P0 [kN] 
0=315 
MPa 

P0 [kN] 
0=500 
MPa 

P0 [kN] 
0=1000 

MPa 

P0 [kN] 
0=1500 

MPa 
0.05 11.94977 18.98046 37.96092 56.94139 13699.98 21708.00 43377.28 64794.47 
0.20 9.915604 15.74087 31.45846 47.19846 11331.73 18055.27 36037.39 54059.22 
0.50 6.107639 9.718953 19.39923 29.10425 6783.191 10760.62 21464.08 32196.26 
0.70 3.67877 5.830158 11.66481 17.49132 4035.573 6456.543 12852.43 19237.46 
 

a) b) 

 
Fig.3.  Influence of the relative crack length and the yield stress on the limit load for SEN(T) plates under 

(a) plane stress and (b) plane strain conditions. 
 
 Figures 3 shows the relationship between the relative crack length, the yield stress and the limit load. 
From the analysis of the numerical results a few obvious, almost natural conclusions, can be drawn; they 
were presented in [2]. The values of the limit load are greater for the plane strain cases than for the plane 
stress cases if the same value (the reference value) of the specimen thickness is used [2]. The higher the 
values of the yield stress, the greater the values of the limit load [2]. An increase in the crack length causes a 
decrease in the limit load. The analysis of the numerical results indicates that the limit load is proportionally 
dependent on the yield stress and the relative crack length. The results were compared with those obtained 
from Eq.(1.5) [7] – see Tab.2. 
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Table 2.  Comparison of the numerical results for the plane stress and plane strain conditions with those 
obtained from Eq.(1.5) [7] – P0=(P0_FEM-P0_EQ(5))/ P0_FEM)100%. 

 

a/W 
plane stress B=1mm plane strain B=1m 

P0 

0=315MPa 
P0 

0=500MPa 
P0 

0=1000MPa 
P0 
0=1500MPa 

P0 

0=315MPa 
P0 

0=500MPa 
P0 

0=1000MPa 
P0 
0=1500MPa 

0.05 0% 0% 0% 0% -1% -1% -1% -2% 
0.20 -2% -2% -2% -2% -3% -2% -3% -3% 
0.50 -3% -3% -3% -3% -7% -7% -8% -8% 
0.70 -3% -3% -3% -3% -8% -8% -8% -8% 
 
 As can be seen, the difference between the FEM solution and the solution presented in [7] does not 
exceed 3% when the plates are under plane stress conditions. For plates with short (a/W=0.20) or very short 
cracks (a/W=0.05) under plane strain conditions, the difference is equal to or less than 3%. For plates with a 
normalized crack length (a/W=0.50) or with very long cracks (a/W=0.70), the differences are greater. This 
may result from the different assumption made in this study and that described in [7] concerning the ratio 
between the width and the length of the plate. In the numerical program used in this study the ratio was 
W/L=0.23 while that considered in [7] was W/L=0.30. The results obtained by numerical calculations for 
elements in close proximity to the edge of the plate can be different, as shown by Kim in [14, 15]. Similar 
differences are observed between the FEM-based results presented here and those obtained from Miller’s 
formula – Eq.(1.3) [6]. It can be concluded that the values of the limit load guarantee conservative results. 
 
3.2. Numerical results for 3D cases 
 
 The behavior of the SEN(T) plates reaching full plasticity, which corresponds to the limit state, was 
assessed by observing the growth of the plastic zone near the crack tip and analyzing the plots showing the 
external force P as a function of the load line displacement vLL [2, 3, 10]. The same method of analysis was 
used both for the 3D cases as well as for the plane stress and plane strain conditions. The relationship 
between the external load and the load line displacement was plotted for all the analyzed specimens. The plot 
analysis and the evaluation of the plastic zone were conducted simultaneously [2, 3, 10]. The value of the 
limit load was determined as the value of the external load read from the plot of the external load P vs. the 
load line displacement vLL, i.e., from the horizontal segment of the P=f(vLL) curve (plateau on the graph 
P=f(vLL)), which corresponded to the full plasticity of the uncracked ligament of the specimen [2, 3, 10]. The 
values of the limit load for 3D SEN(T) plates calculated numerically are provided in Tab.3. 
 

Table 3.  Numerical results of the limit load for three-dimensional SEN(T) plates differing in the yield stress, 
the crack length and the specimen thickness. 

 

B 
[mm] 

P0 [kN] 

0 
[MPa] 

a/W 0 

[MPa] 
a/W 

0.05 0.20 0.50 0.70 0.05 0.20 0.50 0.70 
2 315 24.15101 20.05695 12.34691 7.556874 1000 76.55555 63.59522 39.39672 23.83143 
4 315 48.48864 40.32996 24.85668 15.25735 1000 153.6674 127.8684 79.31166 48.07711 
8 315 97.57423 81.52093 50.2971 30.95098 1000 310.3347 258.3944 159.0958 97.47878 

16 315 197.2242 165.8369 102.531 63.23182 1000 625.8454 526.1449 320.8519 196.5381 
25 315 310.5568 262.5115 162.8889 100.374 1000 982.3554 831.2139 510.1782 310.9526 
40 315 499.1794 425.7006 257.5039 160.7705 1000 1578.269 1345.334 828.9849 499.7293 
2 500 38.38117 31.89821 19.70546 11.90384 1500 114.8323 95.39284 59.09507 35.88097 
4 500 77.70345 64.14581 39.67075 24.01485 1500 230.5011 191.8025 118.9675 72.40494 
8 500 155.1857 129.555 80.27503 49.13062 1500 464.334 387.5916 235.6942 146.8207 

16 500 312.7091 263.6456 161.2033 100.372 1500 934.6839 788.2095 481.6773 299.8465 
25 500 488.6507 416.9564 256.2036 153.666 1500 1465.177 1246.972 765.8411 463.4406 
40 500 787.8539 673.234 414.3284 249.9752 1500 2350.946 2024.52 1272.692 841.5316 
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 Figure 4 presents the influence of the plate thickness, the yield stress and the relative crack length on 
the limit loads for SEN(T) 3D specimens. From the analysis of the numerical results [2, 3, 10] it can be 
concluded that the values of the limit load for thicker specimens are greater than for thinner specimen (Figs 
4a-b). The higher the yield stress, the greater the limit load (Figs 4c-d) [2]. An increase in the crack length 
causes a decrease in the limit load (Figs 4e-f). The analysis of the numerical results indicates that the limit 
load is proportionally dependent on the yield stress, the specimen thickness and the crack length. These facts 
will be taken into account in the approximation of the numerical results, which will be discussed in the next 
section of this paper [2, 3, 10]. 
 
a) 

 

c) e) 

 

b) 

 

d) 

 

f) 

 
Fig.4.  Influence of the plate thickness (a, b), the yield stress (c, d) and the relative crack length on the limit 

load for SEN(T) plates (3D cases). 
 
 For an element under plane stress conditions, the limit load is generally determined using a very thin 
element with a thickness of B=1mm; for the plane strain case, it is assumed that the element thickness is 
B=1m. If there are no results of the FEM-based analysis for a three-dimensional case, the limit load can be 
calculated using the result obtained for the plane stress or plane strain case multiplied by the element 
thickness. In this way, it is possible to verify the numerical results for 3D problems. Figure 5a compares the 
actual values of the load limit for three-dimensional SEN(T) plates under plane stress and plane strain 
conditions, which were multiplied by the reference value of plate thickness. The analysis reveals that the 
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lowest values of the limit load are obtained from the results for the plane stress case; we can say that the 
results are very conservative, i.e., safe. The highest values of the limit load are obtained when the results for 
plane strain are used; this approach, however, does not provide conservative results. The results for three-
dimensional SEN(T) plates range between the results for plane stress and those for plane strain (see Fig.5). 
Using the limit load to consider 3D engineering problems, we can reduce the level of conservatism, but this 
solution does not give a maximum stress-strain state of the material. These conclusions are obvious; they 
confirm the correctness of the calculations. 
 

a) b)

   
 

Fig.5. Comparison of the limit load values for SEN(T) plates (plane strain, 3D cases and plane stress). 
 
4. Approximation of the numerical results 
 
 From the above simple formulae, used to calculate the limit loads for SEN(T) specimens, new 
formulae can be derived. Limit loads can be written as a function of the yield stress 0, the specimen 
thickness B and the relative crack length a/W (but the relative crack length a/W can be replaced by the length 
of the uncracked ligament b=W-a).  
 In this paper, new empirical formulae are proposed to calculate the limit loads for SEN(T) plates 
under plane stress and plane strain conditions: 
for plane stress 
 
   /0 0P B f a W  , (4.1) 

 
     / . / .f a W 0 04037 a W 0 03976        with    R2=0.99965, (4.1a) 

 

  
     

 
/ . / . /

. / .

3 2
f a W 0 00566 a W 0 01094 a W

0 04566 a W 0 04021

    

  


     with     R2=1, (4.1b) 

 
for plane strain 
 
   /0 0P B f a W  , (4.2) 

 
     / . / .f a W 47 17113 a W 45 53878        with    R2=0.99934, (4.2a) 
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     

 
/ . / . /

. / .

3 2
f a W 14 848 a W 10 27835 a W

47 07730 a W 45 7481

   

  


    with    R2=1. (4.2b) 

 
 In the above equations, the yield stress should be expressed in [MPa] while the specimen thickness 
for the plane stress and plane strain cases in [mm] and [m], respectively. The limit load P0 is calculated in 
[kN].  
 For the 3D cases, another empirical formula was proposed to approximate the numerical results 
 
     / /0 0P B W f a W   , (4.3) 

 
     / . / .f a W 1 64828 a W 1 65906        with    R2=0.998, (4.3a) 

 

       / . / . / .
2

f a W 0 02877 a W 1 66983 a W 1 661240         with    R2=0.99921, (4.3b) 

 
In Eq.(4.3), the yield stress should be expressed in [MPa] and the limit load P0 in [kN]. 
 The above formulae are easy to use. For the plane stress, plane strain and 3D cases, other formulae 
can be proposed. The formulae are based on three dimensional diagrams showing the changes in the limit 
load as a function of the yield stress 0 and the relative crack length a/W (for plane stress and plane strain) – 
see Fig.6. 
 
a) b)

   
Fig.6.  Three-dimensional representation of the limit load for SEN(T) plates – P0=f(0, a/W), for plane stress 

(a) and plane strain (b). 
 
 For the plane stress and plane strain cases the surfaces can be approximated by the following formula 
 

   
2

2
0 1 2 0 3 4 0 5 6 0

a a a
P A A A A A A
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                  
    

    


   (4.4) 

 
where the coefficients A1, A2, A3, A4, A5, A6 are given in Tab.4. 
 
 
 

250

500

750

1000

1250

0 [MPa]
00.1

0.2
0.3

0.40.5
0.6

a/W

0 0

10 10

20 20

30 30

40 40

50 50

60 60

P
0
 [k

N
]

P
0
 [k

N
]

250

500

750

1000

1250

0 [MPa]
00.1

0.2
0.3

0.40.5
0.6

a/W

0 0

10000 10000

20000 20000

30000 30000

40000 40000

50000 50000

60000 60000

70000 70000

P
0
 [k

N
]

P
0
 [k

N
]



578  M.Graba 

Table 4.  Coefficients of approximation of the limit load for SEN(T) plates under plane stress and plane 
strain conditions, when Eq.(4.4) is used. 

 
 A1 A2 A3 A4 A5 A6 R2 

plane 
stress 0.28307353   0.039761727  -2.79729013  -6.9695e-10  3.749443805  -0.04038697  0.9999567376

plane 
strain 422.2384947  45.61697129  -4088.89577  -0.00013093  5279.599951  -46.9572924  0.9999012354

 
a) b) 

 
Fig.7.  Three-dimensional representation of the limit load values for 3D SEN(T) plates – P0=f(0, B), for 

a/W=0.05 (a) and a/W=0.70 (b). 
 
Table 5. Coefficients of approximation of the limit load for 3D SEN(T) plates, when Eq.(4.5) is used. 
 
a/W A1 A2 A3 A4 A5 A6 R2 
0.05 -3.05519416  0.009048015  -0.15264776  -6.7802e-06  0.008156069  0.039181601  0.9999920216  

0.20 7.147670856  -0.01353248  -1.01534951  1.94915e-06  0.024312039  0.033831376  0.9999735328  

0.50 13.87331683  -0.02434545  -1.44307791  6.94951e-06  0.027128338  0.021353732  0.9997358213  

0.70 31.32321605  -0.0648562   -2.25174024  2.7103e-05   0.036013231  0.014107603  0.9965975144  
 
 For 3D cases, a similar formula was proposed. It was based on three-dimensional plots showing 
changes in the limit load as a function of yield stress 0 and plate thickness B for different relative crack 
lengths a/W (Fig.7) 
 

   2 2
0 1 2 0 3 4 0 5 6 0P A A A B A A B A B              (4.5) 

 
where the coefficients A1, A2, A3, A4, A5, A6 are presented in Tab.5. 
 
Conclusions 
 
 This paper is a continuation of the author’s previous studies. In this paper, the existing limit load 
solutions for SEN(T) specimens have been briefly discussed. Numerical calculations were used to verify the 
existing limit load solutions for SEN(T) specimens and to expand the limit load theory to 3D cases [2, 3, 10]. 
Four elastic-perfectly plastic materials and four relative crack lengths were considered [2, 3, 10]. The 
numerical results were represented in the tabular and graphical forms. The conclusions drawn from the 
analysis of the numerical results are presented in [2, 3, 10]. New alternative approximation formulae were 
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proposed to calculate the limit load for all the analyzed cases – plane stress, plane strain, 3D. The 
approximation formulae can be used to solve practical engineering problems. 

 
Acknowledgements 
 
 The research reported herein was supported by a IUVENTUS PLUS grant from the Ministry of 
Science and Higher Education (No. IP2012 011872). 

 
Nomenclature 
 
 2D – two dimensional 
 3D – three dimensional 
 A1..A6 – coefficients of approximation 
 a – crack length [m] 
 a/W – relative crack length  
 B – specimen thickness [m] 
 b – length of the uncracked ligament, b=W-a [m] 
 CDF – Crack Driving Force Diagram 
 E – Young’s modulus [MPa] 
 EPRI – Electric Power Research Institute 
 FAD – Failure Assessment Diagram 
 FEM – Finite Element Method 
 f(a/W) – geometry function used for the approximation of the numerical results 
 J – J-integral [N/m] 
 L  – specimen length [m] 
 P – external load [kN] 
 P0 – limit load [kN] 
 rw – radius of the arc in crack tip [m] 
 SEN(T) – single edge notched plate in tension 
 vLL – load line displacement [m] 
 W – specimen width [m] 
 x1, x2, x3 – Cartesian coordinates: x1, x2 - in the crack plane, x3 - in the thickness direction 
 x3/B – normalized coordinate in the thickness direction (x3/B=0 – center of the specimen, x3/B=0.5 – free surface 

of the specimen) 
 P0 – difference between the numerical solution and the existing approximation, P0=(P0_FEM-P0_EQ(5))/P0_FEM)100% 

  – geometry function,    
.

/ /
0 521 a b a b      

  

  – Poisson’s ratio 
 0 – yield stress [MPa] 
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