
 
 

Int. J. of Applied Mechanics and Engineering, 2016, vol.21, No.1, pp.169-186 
DOI: 10.1515/ijame-2016-0011 

 
 

UNSTEADY LAMINAR MIXED CONVECTION BOUNDARY 
LAYER FLOW NEAR A VERTICAL WEDGE DUE TO 

OSCILLATIONS IN THE FREE-STREAM AND SURFACE 
TEMPERATURE 

 
N.C. ROY and Md. A. HOSSAIN* 

Department of Mathematics, University of Dhaka 
Dhaka-1000, BANGLADESH 
E-mail: anwar.cfd@gmail.com 

 
S. HUSSAIN 

Department of Mathematics and Natural Sciences, BRAC University 
BANGLADESH 

 
 

The unsteady laminar boundary layer characteristics of mixed convection flow past a vertical wedge have 
been investigated numerically. The free-stream velocity and surface temperature are assumed to be oscillating in 
the magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved 
by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and 
the extended series solution for low frequency range and the asymptotic series expansion method for high 
frequency range. The results demonstrate the effects of the Richardson number, Ri, introduced to quantify the 
influence of mixed convection and the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction 
and heat transfer. In addition, the effects of these parameters are examined in terms of the transient skin friction 
and heat transfer. 
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1. Introduction 
 
 Over a few decades, oscillating flow and heat transfer under the influence of free-stream oscillation 
have been the focus of research due to its occurrence in many interesting and important fluid-mechanical 
problems, for example, the accelerating and decelerating phases of missile flight, the intermittent flow in an 
engine during unstable combustion, heat transfer encountered in liquid rocket and turbo-jet engines, and 
thermal failure of the resonance tube heating in which the effect of heat generation appears to be significant. 
Many studies [1-8] were devoted to unsteady laminar boundary layer characteristics (e.g., fluctuating skin-
friction and heat transfer) between 1950 and 1980 as a result of its practical applications. Due to lack of the 
development of numerical simulation up to the early 1970’s, this issue was mainly investigated theoretically. 
As a result, a simplified problem was formulated of the actual technological problems and the complexity in 
obtaining the solutions was thus circumvented by imposing restrictions on oscillation amplitude or a 
frequency [1]. Accordingly, a body of knowledge about the problems was not fully uncovered. Even, there is 
still scope for further investigation about this large subject. 

Lighthill [2] first initiated the investigation of how a boundary layer responds to fluctuations of the 
external velocity about a steady mean. It was noted that the analysis is applicable to the fluctuations in 
relative velocity that arise from oscillations of a body parallel to a steady oncoming stream and when a body 
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having variable speed as well as constant orientation and direction moves through a fluid at rest. Using this 
concept, Glauert [3] examined the laminar boundary layer on oscillating plates and cylinders. A 
comprehensive description shows how the results for a flat plate can be used to illustrate the boundary layer 
in the neighbourhood of the front stagnation point on a cylinder making transverse or rotational oscillations.  

Ishigaki published a series of papers [1, 4-7] on unsteady laminar boundary layer flow in the 
presence of free-stream oscillations. He investigated the time-mean characteristics of the periodic boundary 
layer near a two-dimensional stagnation point [4]. Later, Ishigaki [5] focused on the temperature field in the 
laminar boundary layer near a two-dimensional stagnation point due to main-stream oscillation. He observed 
a time-mean modification in the temperature field through two effects, such as, the heat convection by the 
secondary flow induced by the oscillation which consists in the nonlinearity of the governing equation, and 
the other effect results from the combined influence between the fluctuations of velocity and temperature. 
Ishigaki [6] theoretically examined the effect of oscillation on the time-mean skin friction and surface 
temperature of an insulated flat plate taking into account the fluctuating stream velocity and the viscous 
dissipation in kinetic energy. In the subsequent study of the author [7], the oscillating heat transfer 
mechanism was investigated assuming the previous problem while the plate is kept at constant temperature 
instead of being insulated.   

From a practical point of view, the flow oscillation is seen not only along the horizontal and vertical 
plate but also in an inclined plate or wedge-type flow. In this investigation, attention will only be given to 
flow past a vertical wedge. Gersten [8] theoretically investigated the time-mean heat transfer in a wedge-type 
flow with small amplitude oscillation and found that that the time-mean heat-transfer rate is smaller than that 
without oscillation. Kumari and Gorla [9] carried out a boundary layer analysis considering the combined 
convection along a vertical non-isothermal wedge embedded in a fluid-saturated porous medium. Hossain et 
al. [10] examined a steady two dimensional laminar forced flow of a viscous incompressible fluid past a 
horizontal wedge with uniform surface heat flux. A steady mixed convection boundary layer flow over a 
vertical wedge with the effect of magnetic field embedded in a porous medium was studied by Kumari et al. 
[11]. Kandasamy et al. [12] presented the effects of variable viscosity and thermophoresis on magneto-
hydrodynamics mixed convective heat and mass transfer past a porous wedge in the presence of chemical 
reaction. However, it should be mentioned here that Nanda and Sharma [13] first analyzed the free 
convection laminar boundary layers on a flat plate assuming the oscillating plate temperature and isothermal 
free-stream. Also, the free convection flow and heat transfer from a semi-infinite vertical plate moving 
arbitrarily in its own plane and having variable surface temperature was examined by Sinha and Singh [14]. 

Since, in practice, unsteady heat transfer and flow field are encountered in some machinery, so it is 
expected that both the stream velocity and surface temperature can be oscillatory. Moreover, the effect of 
buoyancy driven flow has to be incorporated into the mathematical formulation as the aforementioned 
engineering problems take place under the gravitational field. Nevertheless, the previous studies did not 
consider mixed convection induced by buoyancy force and the oscillating free-stream velocity and surface 
temperature. Thus the purpose of this study is to investigate the oscillating laminar boundary layer of mixed 
convection flow past a vertical wedge under the influence of free-stream and surface temperature 
oscillations. The effects of the Richardson number, Ri, introduced to measure the effect of mixed convection 
and the Prandtl number, Pr, have been presented in terms of amplitudes and phase angles of skin-friction and 
heat transfer. The transient skin-friction and heat transfer are also shown for different values of Ri and Pr.   
 
2. Mathematical formulation 
 
 Let us consider a two-dimensional unsteady laminar boundary layer flow of an incompressible fluid 
with constant properties. To describe the flow configuration, we assume that x denotes the distance along the 
surface from the leading edge, y denotes the distance normal from the surface, u and v are the corresponding 
velocity components, T is the temperature, t is the time, U is the velocity at the edge of the boundary layer, ν 
is the kinematic viscosity, α is the thermal diffusivity, g  is the acceleration due to gravity, β is the 
coefficient of volumetric expansion. The coordinate system and the flow configuration are shown in Fig.1.   



Unsteady laminar mixed convection boundary layer … 171 

 
 

Fig.1. Flow configuration and coordinate system. 
 
 Thus the boundary-layer equations for a two-dimensional unsteady laminar boundary layer flow of 
an incompressible fluid are 
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 Here, the free-stream velocity U (x, t) is assumed to be of the form   
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where, U0, ε are constant and ω is the frequency. Based on the continuity Eq.(2.1), we can define the stream 
function  ψ by 
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 When ε << 1, the functions ψ and T may be developed in the following forms 
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where only the real part is to be taken as it has physical meaning. Now we substitute (2.6)-(2.9) into (2.2) 
and (2.3), and equate the coefficients of ε0 that give 
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 The set of equations for ψ0 and T0 represents the steady-state solutions that can be determined by the 
following functions 
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 Using Eqs (2.12) in Eqs (2.10) and (2.11), we obtain the dimensionless equations 
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with boundary conditions 
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(2.15) 
 

  ,f 1 0           as         η → ∞.                

 

(2.16) 
 
 Substituting the expressions (2.6)-(2.9) into Eqs (2.2), (2.3) and equating the coefficients of ε give 
equations for time-dependent components ψ1 and T1 as   
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 The associated boundary conditions become 
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 To non-dimensionalize Eqs (2.17) and (2.18), we introduce the following expressions  
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 Using Eqs (2.12) and (2.21) into Eqs (2.17) and (2.18), we obtain 
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Reynolds number and Pr = ν/α is the Prandtl number. 
 The boundary conditions for Eqs (2.22) and (2.23) are  
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 Now we obtain the appropriate equations for all Pr by introducing 
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into the set of Eqs (2.13)-(2.14) and (2.22)-(2.23) as well as the corresponding boundary conditions. Thus we 
get  
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 Once the solutions of the sets of Eq.(2.27) to Eqs (2.30) and (2.31) to Eq.(2.34) are known, the 
values of the physical quantities, namely, the skin friction and the rate of heat transfer at the surface of the 
plate, are readily obtained. These are important not only from the physical point of view but also from the 
experimental point of view. In this study, the results will be presented in terms of amplitudes and phases of 
the skin friction and the heat transfer rate having the following relations 
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where (τr, τi) and (qr, qi) are the corresponding real and imaginary parts of the transverse velocity and 
temperature gradients at the surface.  
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3. Methods of solution 
 
The set of Eq.(2.27) to Eq.(2.30) represents the steady mean flow and temperature fields which are 

solved by employing the straightforward finite difference method for different values of the physical 
parameters Pr and Ri. The resulting solutions are then used in finding the solutions of Eq.(2.31) to Eq.(2.34) 
that provide the oscillating parts of the flow and the temperature fields. With a view to validating the 
numerical solutions Eq.(2.31) to Eq.(2.34) are also solved using the extended series expansion method for 
small ξ and the asymptotic method for large ξ. Details of the solutions are discussed in the following 
sections. 
 
3.1. Extended series solutions (ESS) for small ξ 

 
In order to obtain the effect of mixed convection flow near the leading edge, the result based on the 

finite number of terms in the series is only valid in a very small range of frequencies. Thus 
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 Substituting Eq.(3.1) into Eqs (2.31) and (2.32), and then equating the terms of like powers of (2iξ) 
to zero, the following pairs of ordinary differential equations are obtained 
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 The corresponding boundary conditions are 
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 Here primes denote derivative with respect to ̂ . 

Evidently, Eq.(3.2) to Eq.(3.7) are linear, but coupled, and so these are solved independently pair-
wise one after another. In this study, the implicit Runge–Kutta–Butcher [15] initial value solver together with 
Nachtsheim–Swigert [16] iteration scheme is utilized to solve Eq.(3.2) to Eq.(3.7), up to O(ξ10). 
 
3.2. Asymptotic solutions (ASS) for large ξ 

 
This section concerns the behavior of the solutions of Eqs (2.31) and (2.32) when ξ is large. As the 

frequency of surface temperature oscillation becomes very high, the boundary layer response should be 
confined in a very thin region adjacent to the surface. Thus, as the frequency approaches infinity, the solution 
becomes independent of x. Now, a series solution in the high frequency range, utilizing the limiting solution 
as the zero-th order approximation, is sought. Accordingly, the following transformations are introduced in 
Eqs (2.31) and (2.32) 
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 (3.12) 

 
 For small values of ̂ , we can expand the solutions of Eqs (2.13) and (2.14) in the power series 

 

  
ˆ ˆ ˆ ˆ ˆ ,2 3 4 5

2 3 4 5f a a a a           (3.13) 
 

  
ˆ ˆ ˆ ˆ ˆ .2 3 4 5

0 1 2 3 4 5b b b b b b              (3.14) 
 
 Using Eqs (3.13) and (3.14) into Eqs (2.13)-(2.16) gives 

 

  

     , , .2 0 1
1

a f 0 b 0 b 0
2

         

 
 Now the solutions of Eqs (3.11) and (3.12) can be obtained in the following forms 
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 Substituting Eqs (3.15) into Eqs (3.11) and (3.12), and equating the like powers of ξ, we obtain 
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 The associated boundary conditions are 
 

  

       

 

     

, Pr ,

, for , ,

, , for , ,

1 2
m m 0

m

0 m m

E 0 E 0 0 E 1

E 0 m 0 1

L 0 1 L 0 L 0 m 1 2

     

   

    





 (3.24)

 

 
 Solving the above equations, we can find the expressions for F″(ξ, 0) and Θ′(ξ, 0) as 
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 (3.25) 
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4. Results and discussion 
 

The governing equations of the unsteady laminar mixed convection boundary layer flow past a 
vertical wedge have been solved by two distinct methods, namely, the straightforward finite difference 
method for the entire frequency range, and the extended series solution for low frequency range and the 
asymptotic series expansion method for high frequency range. It is worthwhile to note that the effect of the 
constant coefficients (1 + Pr)1/4 and (1 + Pr)−1/4 within the definitions of the skin friction and heat transfer 
(Eqs (3.25) and (3.26)), respectively, have not been included during the presentation of the results .  

With a view to validating the numerical solution, a comparison of the amplitudes and phase angles of 
skin friction obtained by the SFF and the series solutions for small and large ξ is shown in Fig.2. It is evident 
from the figures that the solutions are in excellent agreement. In addition, Fig.2 exhibits the effects of 
varying the Prandtl number, Pr, on amplitudes and phase angles of the skin friction. When the Prandtl 
number is increased, the amplitudes and phase angles of skin friction increase. This is because the Prandtl 
number becomes high due to either an increase of the kinematic viscosity or a decrease of the thermal 
diffusivity of the fluid, and the increase of the skin friction is the result of this change of the fluid property.
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Fig.2.  Amplitude and phase angle of skin friction for different values of Pr while Ri = 1.0. The solid (black) 

lines are for SFF, the dashed (red) lines are for extended series solution (ESS) for small ξ, and the 
dashed-dot (blue) lines are for asymptotic solution (ASS) for large ξ.   

 

                     
 
Fig.3.  Amplitude and phase angle of heat transfer for different values of Pr while Ri = 1.0. The solid 

(black) lines are for SFF, the dashed (red) lines are for extended series solution (ESS) for small ξ, 
and the dashed-dot (blue) lines are for asymptotic solution (ASS) for large ξ. 

 
 Figure 3 presents a comparison between the SFF and the series solutions for small and large ξ in 
terms of the amplitudes and phase angles of heat transfer. Evidently, the solutions obtained by the SFF 
provide a good agreement with the series solutions. Also, the effects of the Prandtl number on the heat 
transfer are comprehensible from Fig.3. It is seen that the increment of the Prandtl number causes an increase 
of the amplitudes and phase angles of heat transfer near the leading edge. Since the Prandtl number increases 
owing to either an increase of the kinematic viscosity or a decrease of the thermal diffusivity of the fluid, 
hence heat is accumulated near the leading edge that results in the increase of the amplitudes and phase 
angles of heat transfer.    
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           Table1. Amplitude and phase angle of skin friction for different Ri while Pr  = 0.72. 
 

 Au u 

 FDS ESS & ASS FDS ESS & ASS 

                                  Ri = 0.0
0.01 15.44288   15.45543s 0.12      0.16s

0.10 4.88661   4.89135s 1.51      1.61s

0.50 2.22211   2.22875s 7.64      7.87s

1.00 1.64739   1.65818s 14.45     14.66s

2.00 1.33356   1.34454s 24.02     23.96s

3.00 1.24320   1.30423s 29.41     30.41s

4.00 1.20444   1.19947a 32.69     32.45a

6.00 1.17383   1.17256a 36.40     36.32a

8.00 1.16167   1.16202a 38.36     38.37a

10.00 1.15546   1.15673a 39.58     39.64a

                                 Ri = 2.0
0.01 24.19662   24.23397s 0.04      0.05s

0.10 7.65152   7.66298s 0.46      0.46s

0.50 3.41938   3.42219s 2.34      2.31s

1.00 2.41382   2.41203s 4.82      4.81s

2.00 1.71211   1.70855s 10.49    10.78s

3.00 1.43917   1.44512s 16.71    17.28s

4.00 1.32304   1.31958a 22.17    21.08a

6.00 1.24484   1.23342a 28.42    27.83a

8.00 1.20174   1.19909a 31.77    31.67a

10.00 1.18296   1.18188a 34.29    34.13a

                                 Ri = 4.0
0.01 32.33106  32.39354s 0.01      0.01s

0.10 10.22308  10.24231s 0.11      0.08s

0.50 4.55937  4.56520s 0.52      0.44s

1.00 3.19704  3.19606s 1.17      1.05s

2.00 2.19798  2.18774s 3.31      3.32s

3.00 1.74511  1.73463s 7.01     7.44s

4.00 1.50073  1.48039a 11.97    11.57a

6.00 1.31603  1.31690a 21.16    20.09a

8.00 1.26245  1.25015a 25.88    25.32a

10.00 1.21931  1.21638a 28.83    28.79a

Notes: Here and hereafter, s and a represent the solutions due to 
ESS and ASS respectively. 
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Fig.4.  Amplitude and phase angle of skin friction for different values of Ri while Pr = 0.72. The solid 

(black) lines are for SFF, the dashed (red) lines are for extended series solution (ESS) for small ξ, 
and the dashed-dot (blue) lines are for asymptotic solution (ASS) for large ξ. 

 
 The effects of Richardson’s number, Ri, on the amplitudes and phase angles of the skin friction are 
shown in Fig.4. From the figure and Tab.1, it is observed that for higher Richardson’s number, Ri, the 
amplitudes of skin friction are higher while the phase angles are lower. As Richardson’s number, Ri, 
increases, mixed convection of flow and heat transfer increases. Accordingly, the amplitudes of skin friction 
are higher for higher Ri. But the rate \ of change of skin friction from the leading edge to the downstream 
region is higher for lower Ri so that the phase angles of skin friction are higher for lower Ri.            
 

                  
 
Fig.5.  Amplitude and phase angle of heat transfer for different values of Ri while Pr = 0.72. The solid 

(black) lines are for SFF, the dashed (red) lines are for extended series solution (ESS) for small ξ, 
and the dashed-dot (blue) lines are for asymptotic solution (ASS) for large ξ. 
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 Figure 5 exhibits the change of amplitudes and phase angles of heat transfer against Richardson’s 
number, Ri. With an increase of Ri, the amplitudes of heat transfer are higher near the leading edge while the 
reverse case is observed in the downstream region. On the other hand, for smaller Ri the phase angles are 
higher near the leading edge and then they become lower in the downstream region. Finally, the amplitudes 
and phase angles tend to an asymptotic value for all Ri.          
 

                 
 
Fig.6.  Numerical values of transient skin friction for different values of ξ against ωτ while Pr = 0.72,  

Ri = 0.0 and 2.0.  
 
4.1. Effects of different physical parameters on transient skin friction and heat transfer 
 

From a practical point of view, transient skin friction and heat transfer are important. The reason is 
that the unsteady behavior of these two properties over a wide region from the leading edge might damage 
a system. However, the transient skin friction and heat transfer are evaluated here by the following 
relations 

 
   coss u uA t        ,                                             (4.1) 

 

   coss q qq q A t                                                    (4.2) 

 
where τs and qs are, respectively, the steady-state skin friction and heat transfer.    

Numerical values of transient skin friction and heat transfer against ωt have been presented in Figs 6 
and 7, respectively, for Ri = 0.0 and 2.0 taking Pr = 0.72. It is clear from the figures that the amplitudes of 
oscillation of transient skin friction, τ, and heat transfer, q, increase owing to the increase of Richardson’s 
number, Ri. Also the intensity of oscillation of both transient skin friction and heat transfer subsides quickly 
away from the leading edge for a small value of Ri compared to a higher value of Ri. The reason is that the 
impact of mixed convection of flow and heat transfer is strong near the leading edge.    
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Fig.7.  Numerical values of transient heat transfer for different values of ξ against ωτ while Pr = 0.72,  

Ri = 0.0 and 2.0. 
 
 The effects of varying the Prandtl number, Pr, on the transient skin friction and heat transfer are 
shown in Figs 8 and 9, respectively. The figures suggest that the amplitudes of oscillation of transient skin 
friction, τ, and heat transfer, q, increase with an increase of the Prandtl number, Pr. The amplitudes of 
oscillation die down slowly from the leading edge to the downstream region but it happens swiftly for higher 
Pr.   
 

                    
 
Fig.8.  Numerical values of transient skin friction for different values of ξ against ωτ while Ri = 1.0,  

Pr = 0.05 and 0.72. 
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5. Conclusions 

 
 The periodic laminar boundary layer mixed convection flow past a vertical wedge with the effect of 

the fluctuations in the free-stream produced by fluctuations of the oncoming stream has been investigated 
numerically. The governing equations have been solved by the straightforward finite difference method for 
the entire frequency range, the extended series solution for low frequency range and the asymptotic series 
expansion method for high frequency range. The solutions obtained by the straightforward finite difference 
method provide good agreement with the series solutions. The effects of varying Richardson’s number, Ri, 
introduced to quantify the influence of mixed convection and the Prandtl number, Pr, on the amplitudes and 
phase angles of the skin friction and heat transfer as well as on the transient skin friction and heat transfer are 
examined. Based on the results, the following conclusions can be drawn. 
 

                 
 
Fig.9.  Numerical values of transient heat transfer for different values of ξ against ωτ while Ri = 1.0,  

Pr = 0.05 and 0.72. 
 
(1) The amplitudes and phase angles of skin friction and heat transfer increase with an increase of the 

Prandtl number, Pr; 
(2) When Richardson’s number, Ri, is increased, the amplitudes of skin friction become large but the phase 

angles are small. On the other hand, for higher values of Ri, the amplitudes of heat transfer are higher 
near the leading edge while the reverse circumstance is observed in the downstream region. Moreover, 
the phase angles are higher near the leading edge for smaller Ri and then they are lower in the 
downstream region. Finally, both the amplitudes and phase angles of skin friction and heat transfer 
reach the corresponding asymptotic values. 

(3) The amplitudes of oscillation of transient skin friction, τ, and heat transfer, q, are found to increase 
owing to the increase of Richardson’s number, Ri, and Prandtl number, Pr. Moreover, the amplitudes of 
oscillation of both transient skin friction and heat transfer subside quickly away from the leading edge 
for a small value of Ri compared to a higher value of Ri while the reverse situation is seen for the 
Prandtl number, Pr. 
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Nomenclature 
 
 Au, At – amplitudes of skin friction and the heat transfer rate 
 Grx – Grashof number 
 g  – acceleration due to gravity 

 Pr – Prandtl number 
 qr, qi – real and imaginary parts of the transverse temperature gradients at the surface 
 qs – steady-state heat transfer 
 Rex – Reynolds number 
 Ri – Richardson’s number 
 T – temperature 
 Tw – wall temperature of the wedge  
 T0 – temperature corresponding to the steady-state 
 T1 – temperature corresponding to time-dependent component 
 T∞ – ambient temperature  
 t – time 
 U – free-stream velocity 
 u – velocity component in x direction 
 v – velocity component in y direction 
 x – distance along the surface from the leading edge 
 y – distance normal from the surface of the wedge 
 α – thermal diffusivity 
 β – coefficient of volumetric expansion 
 η – similarity variable 
 θ, Θ – dimensionless temperature 
 ν – kinematic viscosity 
 ξ – similarity variable 
 τr, τi – real and imaginary parts of the transverse velocity gradients at the surface 
 τs – steady-state skin friction  
 φu, φt – phases of skin friction and the heat transfer rate 
 ψ – stream function     
 ψ0 – stream function corresponding to steady-state 
 ψ1 – stream function corresponding to time-dependent component 
 ω – frequency of oscillation 
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