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In the paper, the flow of a Newtonian type of lubricant in the clearance of a curvilinear bearing is considered. 
It is assumed that the bearing walls are modelled as smooth and impermeable. In analytical considerations,  full 
inertia of the longitudinal flow and partial inertia of the circumferential flow are taken into account. The equation 
of motion of the lubricant is solved by the modified method of averaged inertia. A thrust bearing and spherical 
bearing are considered, for which  dimensionless pressure distributions and the bearing capacity are given.  
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1. Introduction 
 
 Stable quasi radial flows and time-dependent squeezing flows of Newtonian fluids are used in many 
technical applications, especially in the engineering and chemical engineering industry. These flows are also 
encountered in many lubrication systems. 
 Flows of Newtonian fluids in the clearance between two impermeable surfaces have been considered 
theoretically and experimentally. The bearing walls have been modelled as two plates, two conical or 
spherical surfaces [1-4]. In a general case, the bearings are modelled by two surfaces of revolution [5]. 
 The classical theory of lubrication assumes that the flow of lubricants is laminar. Usually, the inertia 
effects in the equations of motion are neglected [6-11]. This approximation is correct only for small values of 
the Reynolds number. Unfortunately, many researchers apply this assumption in the bearing applications. 
Many experimental and theoretical studies on the high-speed bearings show that the inertia effects of 
longitudinal and circumferential flows can be significant [8, 9, 11, 12]. 
 In this paper, the Newtonian model was used to describe the lubricants behaviour in thrust 
hydrostatic bearings with a rotating shaft. The averaged inertia method [12, 13] was used to obtain the 
modified Reynolds equation which takes into account the inertia effects of longitudinal and circumferential 
flows. The solution of this equation leads to the formulae for pressure distribution and load-carrying 
capacity. 
 
2. Analysis of a lubricant flow in a bearing clearance 
 
 Let us consider a thrust bearing with a curvilinear profile of the working surfaces and rotating pin of 
the shaft shown in Fig.1. The lower surface is described by the functions  xR  which denotes the radius of 

this surface; the bearing clearance thickness is given by the function ( )h x . An intrinsic curvilinear 

orthogonal coordinate system yx ,,   linked with the lower bearing surface is also presented in Fig.1. 
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Fig.1. Configuration of the thrust hydrostatic bearing. 
 

 Taking into account the considerations of the works [11-13] we can present the equations of a 
Newtonian lubricant motion for axial symmetry as follows 
 

  
  yxR1

0
R x y

 
 

 
, (2.1) 
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2

2
0

y
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


; (2.3) 

 
here and in what follows the prime denotes derivation with respect to x.  
The boundary conditions for the velocity components and the pressure are as follows 
 
   ,x x 0 0  ,             ,x x h 0  , (2.4) 

 
   ,x 0 0  ,             ,x h R   , (2.5) 

 
   ,y x 0 0  ,            ,y x h 0  , (2.6) 

 
   i ip x p ,               o op x p . (2.7) 

 
Integrating Eq.(2.3) and determining the arbitrary constants from the boundary conditions (2.5) we get 
 

  
y

R
h   . (2.8) 
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By substituting the obtained result into Eq. (2.2) and averaging the left-hand side of  Eq.(2.2) across the 
clearance thickness, we get 
 

   
2

x
2

f x
y

 
 


 (2.9) 

 
where: 
 

    .
h2

2
x

0

dp RR
f x R dy

dx 3 Rh x

   
   

   (2.10) 

 
Integrating Eq.(2.9) and taking into account the boundary conditions (2.4), we obtain 
 

   2
x

f
y yh

2
  


. (2.11) 

 
Integrating the equation of continuity (2.1) and taking into account expression (2.11) and the boundary 
conditions (2.6), we get 
 

   31
Rh f 0

R x





 (2.12) 

 
a general form of the modified Reynolds equation. 
 
3. Solution to the Reynolds equation 
 
 The solution to Eq.(2.12) has the form 
 

  1
3

C
f

Rh
  (3.1) 

 
while the pressure distribution in the bearing clearance is given by the following equation 
 

  .
h2

2
x

0

dp RR
f R dy

dx 3 Rh x

   
   

   (3.2) 

 
To solve this equation we assume that the velocity x  of a lubricant flow with inertia effects is 

approximately equal to the velocity without inertia effects xR : x xR   . 
 
  x xR   . (3.3) 
 
For the Reynolds approximation (without the inertia effects) we have 
 

  R 1R
R 3

dp C
f

dx Rh
   (3.4) 
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and 
 

   2R
xR

dp1
y yh

2 dx
  


. (3.5) 

 
Substituting Eq.(3.3) into the Reynolds equation (2.12), integrating and taking into account the boundary 
conditions (2.7), we get 
 

   o i i o i o
R

i o i o

p A p A p p
p A x

A A A A

 
 

 
 (3.6) 

 
where 
 

    ,
3

dx
A x

Rh
             i iA A x ,           o oA A x . (3.7) 

 
Calculating Rdp dx from Eq. (3.6), we find 
 

  i oR
3

i o

p pdp 1
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



,          i o

1R
i o

p p
C

A A
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
 (3.8) 

 
and 
 

   21R
xR 3

C
y yh

2 Rh
  


. (3.9) 

 
Substituting  assumption (3.3) and putting Eqs (3.1) and (3.9) into Eq.(3.2), integrating the obtained result 
and taking into account the boundary conditions Eqs (2.7), we get 
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where 
 

  
2

i o
R 2
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p p
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A A240
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 The bearing load capacity is defined by the formula 
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    cos
o

i

x
2

i i i

x

N x R p 2 pR dx      (3.12) 

 
whereas the sense of angle   arises from Fig.1. 
 Formula (3.12) may also be presented in the following form 
 

       2
i o o o iN x R p 2 G x G x        (3.13) 

 
where 
 

     cos
dp

G x R dx dx
dx

   . (3.14) 

 
here 
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1

R 3 3
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2P
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and 
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

. (3.16) 

 
4. Examples of thrust bearings  
 
 To consider examples of thrust bearings we will transform formula (3.10) and (3.13) into a 
dimensionless form. To this aim let us introduce the following nondimensional parameters 
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o
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   (4.1) 

     
3
o o

o

h R
A x A x

x
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2
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
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The dimensionless pressure distribution and load-carrying capacity are given in the following forms 
 

     
       

,

2
c l i o c l o i2

c l
i o i o

P P B A x A 1 P P B A x A
p x P R P B x

A A A A

               
 

             (4.2) 

 
and 
 
       N 2 G G 1     

   (4.3) 
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where 
 

  
2 2

o
c

o
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6 p


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l lo
o i o

P 1
P P

p A A

  
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 (4.4) 

 

here  cP  is the inertia effects of the circumferential flow and  lP  is the inertia effects of the longitudinal 

flow. The coefficient 
 

  
4
o o

lo 2 2
o

h p
P

240 R





 (4.5) 

 
is dependent on the bearing geometry and physical lubricant properties. Its practical values are contained in 
the interval 
 
  .lo0 P 1 0   
 
while  the practical values of the coefficient cP  are contained in the interval 
 
  .c0 P 1 5  . 
 

Note that the zero values of the above coefficients  ,c lP 0 P 0   denote the lubricant flow without inertia. 

 Let us consider two bearings as examples, the first of them is a radial thrust bearing shown in Fig.2 
and  the other one is a spherical bearing shown in Fig.3. 
  

 
 
 

 
  

 
Fig.2. Configuration of the thrust plane bearing. Fig.3. Configuration of the spherical bearing. 

 
Mechanical parameters of the thrust plane bearing are described by the relationship 
 

          ln

ln
2 2

c l c l2 2

1 1 x
p x 1 P 1 x P 1 1 P 1 P 1

x

                         

  


, (4.6) 

 
and 
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   
 

 ln
ln

2
c l4 2

2
c l

1
1 P 1 P 1

1
N P 2P 1

2 2

                 


  (4.7) 

 
Figures 4a and 5a show the dimensionless pressure distribution and the load-carrying capacity for the low-
speed plane bearing, whereas Figs. 4b and 5b show the same parameters for the high-speed plane bearing. 
 
a) b) 

 
 

 

Fig.4. Dimensionless pressure distribution for the radial bearing: 
a) low-speed bearing, b) high-speed bearing. 

 
a) b) 

 
 

Fig.5. Dimensionless load-carrying capacity for the radial thrust bearing: 
a) low-speed bearing, b) high-speed bearing. 

 
Mechanical parameters of the spherical bearing for a clearance of constant thickness oh h const   are 
given by the following formulae 
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     ln tg , , ,
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2 2
s
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o
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A B P

2 6 p


    


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 
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sin sin
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where 
 

    sin2p
G d


   


 ; (4.11) 

 
here 
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ln tg ln tg

4
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P
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 
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 

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Therefore 
 

  

   

     
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
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


     
                    





 (4.13) 

 
Figures 6a and 7a show the dimensionless pressure distribution and the load-carrying capacity for the low-
speed spherical bearing for a clearance of constant thickness oh h const  , whereas Figs 6b and 7b show 
the same parameters for the high-speed spherical bearing. 
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a) b) 

 
 

 

Fig.6. Dimensionless pressure distribution for the spherical bearing with a constant clearance thickness: 
a) low-speed bearing, b) high-speed bearing. 

 
a) b) 

 
 

 

Fig.7. Dimensionless load-carrying capacity for the spherical bearing with a constant clearance thickness:
a) low-speed bearing, b) high-speed bearing. 

 
Let us consider the coincident spherical bearing cosh e  : 

    ln tg , , , ,
cos sin cos

22 2 4
s o

c l2 2 2 2 2
o i os

R e p1 1 1
A B P P

6 p A A2 240 R

    
         

     
 

   (4.14) 
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Figures 8a and 9a present the dimensionless pressure distributions and load-carrying capacity for the low-
speed spherical bearing for a clearance of the coincident bearing, whereas Figs. 8b and 9b show the same 
parameters for the high-speed spherical coincident bearing. 
 
a) b) 

 
 

 

Fig.8. Dimensionless pressure distribution for the spherical coincident bearing: a) low-speed bearing, 
b) high-speed bearing. 

 
a) b) 

 
 

 

Fig.9. Dimensionless load-carrying capacity for the spherical coincident bearing: a) low-speed bearing, 
b) high-speed bearing. 
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 
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 
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 


 

 (4.15) 
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
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
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 (4.16) 

 
Substituting Eq.(4.16) into Eq. (4.10) we get the formula for the load-carrying capacity for the spherical 
coincident bearing. 

 For the spherical eccentricity bearing (clearance of variable thickness)  cosh C 1     we have 

 

  

   
 
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    




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 (4.17) 

 
but the pressure distribution is given by formula (4.15); where 
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4
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      

       
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 

 (4.18) 

 
and the load-carrying capacity is given by Eq.(4.10). 
Figures 10a and 11a present the dimensionless pressure distributions and load-carrying capacity for a low-

speed spherical bearing for a clearance of variable thickness,  cosh C 1     and Figs 10b and 11b show 

the same parameters for the high-speed spherical bearing for a clearance of variable thickness. 
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a) b) 

 
 

 

Fig.10. Dimensionless pressure distribution for the spherical bearing with a variable clearance thickness: 
a) low-speed bearing, b) high-speed bearing. 

 
a) b) 

 
 

 

Fig.11. Dimensionless load-carrying capacity for the spherical bearing with a variable clearance thickness:  
a) low-speed bearing, b) high-speed bearing. 

 
5. Conclusion 
 
 In this paper, a Newtonian lubricant flow in the clearance of a thrust bearing is considered. The 
bearing clearance is limited by two curvilinear co-working surfaces. The nondimensional pressure 
distributions and the load carrying capacity are calculated for the value of the parameter 5   (the parameter 

5   determines the pressure difference between the inlet pressure ip  and the outlet pressure op ). 

 In the analytical considerations, full inertia of the longitudinal flow  lP  and partial inertia of the 

circumferential flow  cP  are considered. 
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 Figures 4a-11a show the mechanical parameters for low-speed bearings  . ; .cP 0 1 0 2 , while Figs 

4b-11b show the mechanical parameters for high-speed bearings  . ; .cP 0 5 1 0 . For cP 0  the bearing 

shaft does not rotate. 
 Figures 4 and 5 show the nondimensional pressure distribution and the load carrying capacity, 
respectively, for the thrust plane bearing. The plots show that the pressure and the load carrying capacity 
increases with the increase in the longitudinal inertia parameter  lP  compared to the plots drawn for lP 0  

(flow without the longitudinal inertia effects). With an increase of the circumferential inertia cP  the values 

of pressure distributions and load-carrying capacities decrease compared to the plots drawn for cP 0  (flow 
without the circumferential inertia effects). The greatest increases in the values of the mechanical parameters 
of  the thrust plane bearing are observed near the clearance inlet (small values of  ).  
 Figures 6 and 7 show the dimensionless pressure distribution and the load-carrying capacity for the 
spherical bearing for a clearance of constant thickness oh h const  . These plots show that an increase in 

the parameter lP  causes essential increases in the mechanical parameters of the bearing, while an increase in 

the parameter cP  causes a small decrease in the values of the mechanical parameters. 
 Figures 8 and 9 present the dimensionless pressure distributions and load-carrying capacity for the 
spherical bearing for a clearance of coincident bearing, cosh e  . This plots show that the values of the 

mechanical parameters of the bearing increase with the increase of the values of the parameter lP  and 
decrease with the increase of the values of the parameter cP . 
 Figures 10 and 11 present the dimensionless pressure distributions and load-carrying capacity for the 
spherical bearing for a clearance of variable thickness,  cosh C 1    . The longitudinal inertia, expressed 

by lP , results in an increase of the values of  the bearing mechanical parameters, but the circumferential 

inertia, expressed by cP , results in some small increase of the values of the bearing mechanical parameters. 
 From the analytical considerations and their graphical interpretations shown in Figs 4-11 we may 
conclude that the longitudinal inertia  lP  has a dominant influence on the increase of the values of the 

bearing mechanical parameters, while the circumferential inertia  cP  causes a small decreases of pressure 

and load carrying capacity. These decreases are more visible for high-speed bearings. 
 
Nomenclature 
 
  , ,i oA x A A  – functions defined by formula (3.7) 

  B x  – functions defined by formula (3.11)2 

 1C  – pressure coefficient given by formula (3.16) 

 1RC  – pressure coefficient given by formula (3.8)2 

  ,f f x  – function defined by formula (2.10) 

  G x  – function defined by formula (3.14) 

  ,h h x  – thickness of the gap between bearing walls 

  , iN N x  – load-carrying capacity 

 lP  – inertia effects parameter 

 loP  – coefficient dependent on the bearing geometry and physical lubricant properties 

 RP  – function defined by formula (3.11) 

 p  – pressure 
  ,R R x  – local radius of the bearing lower surface 

 r  – radius 
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 ,x y   – velocity components 

 , ,x y  – orthogonal coordinate system 
   – viscosity coefficient 
   – density 
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