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The thermal instability of a Kuvshiniski viscoelastic fluid is considered to include the effects of a uniform 
horizontal magnetic field, suspended particles saturated in a porous medium. The analysis is carried out within 
the framework of the linear stability theory and normal mode technique. For the case of stationary convection, the 
Kuvshiniski viscoelastic fluid behaves like a Newtonian fluid and the magnetic field has a stabilizing effect, 
whereas medium permeability and suspended particles are found to have a destabilizing effect on the system, 
oscillatory modes are introduced in the system, in the absence of these the principle of exchange of stabilities is 
valid. Graphs in each case have been plotted by giving numerical values to the parameters, depicting the stability 
characteristics. Sufficient conditions for the avoidance of overstability are also obtained.  

 
Key words: thermal convection, Kuvshiniski fluid, suspended particles, magnetic field and porous medium.  

 
1. Introduction 

 
Thermal convection in an electrically conducting layer of Newtonian fluids in the presence of a 

uniform magnetic field has been treated in detail by Chandrasekhar [1]. Scanlon and Segel [2] considered the 
effect of suspended particles on the onset of Benard convection and found that the critical Rayleigh number 
was reduced solely because the heat capacity of the pure fluid was supplemented by that of the particles. The 
derivation of the basic equations of a layer of fluid heated from below in a porous medium, using the 
Boussinesq approximation, has been given by Joseph [3]. The study of a layer of a fluid heated from below 
in porous media is motivated both theoretically and by practical applications in engineering disciplines. 
Among the applications in engineering disciplines one can find the food processing industry, chemical 
processing industry, solidification and centrifugal casting of metals. The development of geothermal power 
resources has increased general interest in the properties of convection in a porous medium. There has been 
considerable interest in recent years in the study of the breakdown of the instability of a layer of a fluid 
subjected to a vertical temperature gradient in a porous medium and the possibility of convective flow. The 
stability of a flow of a single component fluid through a porous medium taking into account Darcy’s 
resistance has been considered by Lapwood [4] and Wooding [5]. Darcy’s equation describes the 
incompressible flow of a Newtonian fluid of viscosity   through a macroscopically homogeneous and 

isotropic porous medium of permeability 1k . If ν  is the filter velocity of the fluid, the resistance term 

 replaces the usual viscous term in the equations of fluid motion. There is mounting evidence, both 

theoretical and experimental, that suggests that Darcy’s equation sometimes provides an unsatisfactory 
description of the hydrodynamic conditions, particularly near boundaries of a porous medium. Beavers et al. 
[6] demonstrated experimentally the existence of shear within the porous medium near a surface where the 
porous medium is exposed to a freely flowing fluid, thus forming a zone of shear- induced fluid flow. Since 

1k

 
 
 

v
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viscoelastic fluids play an important role in polymers and electrochemical industry, the studies on waves and 
stability in different viscoelastic fluid dynamical configurations have been carried out by several researchers. 
 The present paper attempts to study thermal instability of a Kuvshiniski viscoelastic fluid with 
suspended particles in hydromagnetics in a porous medium. Chaudhary and Singh [7] considered the flow of 
a dusty viscoelastic (Kuvshiniski-type) fluid down an inclined plane. The effect of a magnetic field on the 
flow of a dusty viscoelastic (Kuvshiniski-type) fluid down an inclined plane was studied by Johari and Gupta 
[8]. Varshney and Dwivedi [9] studied the unsteady effect on MHD free convection and mass transfer flow 
of a Kuvshiniski fluid through a porous medium with constant suction and constant heat and mass flux. 
Kumar and Singh [10] studied a viscoelastic fluid heated from below in a porous medium and found that a 
Kuvshiniski fluid behaves like a Newtonian fluid in a stationary convection; rotation has a stabilizing effect, 
whereas medium permeability has both stabilizing and destabilizing effects. Also, Kumar and Singh [11] 
studied thermal instability of a Kuvshiniski viscoelastic fluid with fine dust in a porous medium and found 
that for a stationary convection medium permeability and suspended particles have destabilizing effects on 
the systems. Sharma and Sharma [12] studied adusty viscoelastic flow in a slip flow regime; the solution of 
the equations governing the flow was derived with the help of the Laplace transform technique. It was found 
that the effect of slip flow regime on the velocity fields is to increase them near the plate significantly which 
reduces the skin friction at the lower plate. Prakash et al. [13] studied MHD free convective flow of a 
viscoelastic ( Kuvshiniski-type) dusty gas through a porous medium induced by the motion of a semi-infinite 
flat plate under the influence of radiative heat transfer moving with velocity decreasing exponentially with 
time. Kumar [14] studied magneto-rotatory stability of a two stratified fluid layers of a Kuvshiniski 
viscoelastic superposed fluid in a porous medium. Kumar and Kumar also [15] studied the effect of the 
magnetic field on an incompressible (Kuvshiniski-type) viscoelastic rotating fluid heated from below 
through a porous medium. 

The knowledge regarding fluid-particle mixtures is not commensurate with their scientific and 
industrial importance. The analysis would be relevant to the stability of Kuvshiniski viscoelastic fluids. The 
present paper attempts to study the thermal instability of a Kuvshiniski viscoelastic fluid with suspended 
particles saturated in a porous medium in the presence of a magnetic field. 

 
2. Formulation of the problem 
 

Here we consider an infinite horizontal layer of an electrically conducting Kuvshiniski viscoelastic 
fluid permeated with suspended particles and bounded by the planes andz 0 z d   in a porous medium. 

The pressure p and density   are functions of the vertical coordinate z only. A uniform horizontal magnetic 

field ( , , )H 0 0H  pervades the whole system. This layer is heated from below so that a steady adverse 

temperature gradient (
dT

dz
   is maintained. As a consequence of Brinkman’s equation, the resistance 

1k

 
 
 

v  will also occur with the usual viscous term in the equations of motion. The constitutive equation of 

a Kuvshiniski-type fluid, studied by Kuvshiniski [16] and Mandal et al. [17] is characterized as 
 

   (2.1) 

 
     . ,0 u                                                                                                         (2.2) 
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where ( , , ), , ( , )u v w x tu   and ),( txN  denote the fluid velocity, the fluid density, suspended particle 

velocity and the suspended particle number density, respectively, where ( , , ) and ( , , )x x y z 0 0 1   , 
K 6  ,   being particle radius, is the Stokes drag coefficient, and   is the medium porosity. Assuming 
a uniform particle size, a spherical shape and small relative velocities between the fluid and particles, the 
presence of particles adds an extra force term in the equations of motion (2.1), proportional to the velocity 
difference between the particles and the fluid. 

Since the force exerted by the fluid on the particles is equal and opposite to that exerted by the 
particles on the fluid, there must be an extra force term, equal in magnitude but opposite in sign, in the 
equations of motion for the particles. Interparticle reactions are ignored because the distances between the 
particles are assumed to be quite large compared with their diameter. The effects due to pressure, gravity, 
Darcy’s force, and magnetic field on the particles are small and so are ignored. If mN is the mass of particles 
per unit volume, then the equations of motion and continuity of the particles, under the above assumptions, 
are 

 

         . ,
1

mN KN
t

       

v
v v u v                                                                 (2.3) 

 

       .
N

N
t





v  = 0.                                                                                           (2.4) 

 
 If , , andptC C T q  denote the heat capacity of the fluid, the heat capacity of the particles, the 

temperature and the “ effective thermal conductivity” of the pure fluid, respectively, and when the fluid and 
the particles are in thermal equilibrium, the equation of heat conduction gives 
 

          . . 2
s s pt

T
C C 1 C T mNC T q T

t t

                   
u v                   (2.5)  

 
where ,s sC  stand for the density and the heat capacity of the solid matrix, respectively. 
 The Maxwell equations yield 
 

        . ,2d

dt
   

H
H u H                                                                   (2.6) 

 
        . .0 H                                                                                                   (2.7) 
 
 The equation of state for the fluid is  
 

           ,0 01 T T                                                                                   (2.8) 

 
where   is the coefficient of thermal expansion and ,0 0T  are , respectively, the mean density and 
temperature of the clean fluid at the bottom surface z = 0.  
 The initial state of the system is taken to be a quiescent layer (no setting) with a uniform particle 
distribution 0N . The initial state 
 
  , , , 00 0 T z N    u v Constant.                                                    (2.9) 
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3. Perturbation equations and dispersion relation  
 
Let , , , ( , , ), ( , , ), ( , , ) andx y zp u v w l r s h h h N   u v h  denote, respectively, the perturbations in 

temperature T, pressure p, density  , fluid velocity (zero initially), particle velocity (zero initially), magnetic 

field H and number density 0N . Let us scale the physical variable using , , , , and
2

2

d k k
d d

k d d


  as the 

length, time, velocity, pressure and temperature scale factors, respectively. The change in density ,  caused 

by the perturbation   is given by 
 
  0    .                                                                                  (3.1) 
 
 Then the linearized dimensionless hydromagnetic perturbation equations are  
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u
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

 (3.2) 

 
  . ,0 u                                                                                                    (3.3) 
 

  1
t
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v u ,                                                                                          (3.4) 
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
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
v                                                                                              (3.5) 

 

      ,2E h w hs
t


      


                                                                    (3.6) 

 

   . ,2k k
t


   


h

H u h                                                                          (3.7) 

 
  . ,0 h                                                                                                      (3.8) 
 
 In writing Eq.(3.2), use has been made of the Boussinesq equation of state (3.1), w and s are the 
vertical fluid and particle velocities,   is the kinetic viscosity of the fluid, k is the thermal diffusivity, 

pN
k


  is the modified Prandtl number, 

4

R
g d

N
k
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


is the Rayleigh number, ,
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 

0
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0
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f N  


 is the mass fraction, / , /2 2

1mk Kd P k d   , / , /pt 0h fC C M N N  , 

 / and /2
s sk d E 1 C C       .  

 Consider the case of two free surfaces having uniform temperatures. The case of two free surfaces is 
a little artificial (except in stellar atmospheres where it is most appropriate) but allows an analytical solution 
to the problem. The boundary conditions appropriate to the problem are  
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at and

and , , are continuous with an external

vacuum field on a nonconducting boundary

2
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
      
 






                                                 (3.9) 

 
 Eliminating and pv , the fluid, heat and Maxwell equations become  
 

  ,
2

2 2 22 2 z
1 2 R 1

0
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1 L w L N 1

t P t 4 k x

                                  
           (3.10) 
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                                                         (3.11) 
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 Eliminating and zh  between Eqs (3.10) and (3.12), we obtain 
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  (3.13) 

 
 Analyzing the disturbances into normal modes, we seek solutions whose dependence on x, y, and t is 
given by  
 
                                                                       (3.14) 

 

where  
1

2 2 2
x yk k k   is the wave number of the disturbance and n is the growth rate, which is, in general, 

a complex constant,  are wave numbers along the x and y directions, respectively. Using Eq.(3.14), 

Eq.(3.13) becomes 
 

( ) exp( ) ,x yw W z ik x ik y nt  

andx yk k
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     (3.15) 

 

where      , ( )1 2
1 P 2L N n Fn L 1 n      , 

 

  ,
2 2

0

d H d
D Q

dz 4
 
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. 

 
4. The oscillatory mode 
 

Here we examine oscillatory modes, if any and their impact  on the flow stability due to the presence 
of the magnetic field, porous medium, suspended particles, and viscoelastic effects. 
 

  Let  2 2U D k W  ,                                                                                                      (4.1) 

 
and 
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.                                                                                                (4.2) 

 
 The equation satisfied by W, in terms of X, is 
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 Multiplying Eq.(4.3) by *X , the complex conjugate of X, and integrating over the range of z and 
using boundary conditions (3.9), we obtain  
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which all are positive definite. 
 Putting , where0 0n in n  is real, into Eq.(4.4) and equating the imaginary parts, we obtain 
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Now we consider some special cases. 
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 In the absence of the magnetic field, suspended particles and electrically non-conducting fluid 
   , we obtain 

 
  ,0n 0                                                                                                    (4.8) 
or 

  .
2

2 2 1 2 24 4
2 0 R P 4 R

I I
EI n k N N I k N

P P


                       
                                (4.9) 

 
Equation (4.9) gives 
 

  .

1
2 2

2 2 1 2R 4 4
0 2 R P 4

k N I I
n EI k N N I

P P




      
                

                             (4.10) 

 
 It is evident from Eq.(4.10) that the values of 0n  are imaginary, which is impossible as 0n  is real. 

Therefore ,0n 0  and the principle of exchange of stabilities is valid. 
 Now, in the absence of the magnetic field and presence of suspended particles and electrically non - 
conducting fluid, we have 
 
  0n 0 ,                                                                                (4.11) 
or 

  

    

   .

2
2 2 1 4

2 0 R P 4

2 1 4
R P 4

I
E h I n k N N I H F

P

I
k N N FHI H

P





                
    

          
  

  (4.12) 

 
Equation (4.12) gives 
 

  

    

  

2 2 1 4
0 2 R P 4

1
2

2 1 4
R P 4

I
n E h I k N N FHI H

P

I
k N N I H F

P






               
  

            
    

  (4.13) 

 
Both the values of 0n  are imaginary, which is impossible as 0n  is real. Therefore, 0n 0  and the principle of 
exchange of stabilities is valid. 

However, in the presence of the magnetic field, suspended particles and for finite electrically 
conducting fluid, it clear from Eqs (4.11) and (4.13) that and 0n 0 , meaning thereby that the modes will be 
oscillatory. The presence of the magnetic field, suspended particles, viscoelasticity and porous medium effects 
brings about oscillatory modes in the system, which did not exist in their absence. 
  
5. Stationary convection  
 

Here we consider the case of two free boundaries. It can be shown that all the even order derivatives 
and hence the proper solution of Eq.(3.15) characterizing the lowest mode is  
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  sin0W W z                                                                                (5.1) 
 

where 0W  is constant. Substituting the solutions (5.1) in (3.15), we obtain 
 

  

   

 
   

 

cos ( )

2 2 2 22
1

R 2

2 2 2 2 2

2 2

L
1 n L k E h n k

P
N

k n H

Q 1 n 1 n k k E h n

n
n H k

                     
 

             
 

      

        (5.2) 

 
where cosxk k   . 
 When instability sets in as stationary convection, the marginal state will be characterized by n = 0 
and Eq.(5.2) reduces to  
 

  cos .

22 2 2 2
2

R 2

k k
N Q

Hk HP

                                                                       (5.3) 

 
 Thus for stationary convection, the Kuvshiniski viscoelastic fluid behaves like an ordinary 
Newtonian fluid as the stress relaxation time and strain retardation time parameters vanish with n. To 
investigate the effects of medium permeability, suspended particles, and the magnetic field, we examine the 
nature of , , andR R RdN dP dN dH dN dQ  analytically. Equation (5.3) yields 
 

  ,

22 2

R
2 2

kdN

dP k HP

                                                                                                     (5.4) 

 
which is always negative. Thus medium permeability, therefore, has a destabilizing effect on the system. 
Equation (5.3) also yields 
 

  
 

cos

2 22 2
2R

2 2

kkdN
Q

dH H k P

           
 
 

,                                                             (5.5) 

 
which is always negative, therefore, the suspended particles have a destabilizing effect on the system. It is 
evident from Eq.(5.3) that 

 

  
 

cos

2 2
2R

kdN

dQ H

 
  ,                                                                                          (5.6) 

 
which implies that the magnetic field has a stabilizing effect on the system. We now examine the dispersion 
relation (5.3) numerically. We have plotted the Rayleigh number RN  versus the medium permeability P, 
suspended particles parameter H and magnetic field Q in Figs 1, 2 and 3, respectively. 
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In Fig.1: the Rayleigh number RN  is plotted against P = 25, 50, 75, 100, 125, for fixed values of 

H = 20, Q = 10, 045   and k = 1, 2, 3, 4, 5. The Rayleigh number decreases with the increase in the 
permeability parameter showing its destabilizing effect on the system in the presence of suspended particles, 
horizontal magnetic field in a Kuvshiniski viscoelastic fluid through a porous medium. 

 

 
 

Fig.1.  Variation of the Rayleigh number NR, with the wave numbers  , , , ,k 1 2 3 4 5  for  , ,P 1 5 25  when 

Q=10, H=20 and 045  . 
 

 In Fig.2: the Rayleigh number NR is plotted against H = 20, 40, 60, for fixed values of P = 25, Q = 10, 
045   and k = 1, 2, 3, 4, 5. As the value of the suspended particles parameter increases, the corresponding 

value of the Rayleigh number decreases, showing its destabilizing effect on the system. 
 

 
Fig.2.  Variation of the Rayleigh number NR, with the wave numbers  , , , ,K 1 2 3 4 5  for fixed values 

P 25 , Q=10 and 045   for  , ,H 20 40 60 . 
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 In Fig.3: the Rayleigh number RN  is plotted against Q = 10, 20, 30, 40, 50, for a fixed value of  

P = 25, H = 20, 045   and k = 1, 2, 3, 4, 5. As the value of magnetic field increases, the corresponding 
value of the Rayleigh number increases, showing its stabilizing effect on the system. 

 

 
 

Fig.3.  Variation of the Rayleigh number (NR), with the wave numbers  , , , ,k 1 2 3 4 5  for 

 , ,Q 10 20 30  when H=20, P=25 and 045  . 

 
 Thus, the medium permeability and suspended particles have destabilizing effects, whereas the 
magnetic field has a stabilizing effect on the system for  stationary convection. 

 
6. The overstable case 

 
Here we consider the possibility of an overstability. Put 0n in , where 0n  is real, in Eq.(5.2). Since 

for overstability we wish to determine the critical Rayleigh number for the onset of instability via a state of 
pure oscillations, it suffices to find conditions for which Eq.(5.2) has solutions. If we equate real and 
imaginary parts of Eq.(5.2) and eliminate RN  between them, we obtain 

 

            ,4 3 2
1 0 2 0 3 0 4 0 5A n A n A n A n A 0                     (6.1) 
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   (6.2) 

  ,2 1 2
4 x P 4A k QN Fk I  
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since 0n  is real for overstability, the four values of 0n  are positive. If all the coefficients 1 5A A 0  , i.e., if  
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   (6.3) 

  i.e. 
 

, max. , ,1
P 2

E h 1 1
F H 1 N 1

P Fk
        

 
, and 

 


,                                             

 
are the sufficient conditions for the non-existence of overstability for the thermal instability of a Kuvshiniski 
viscoelastic fluid with suspended particles in hydromagnetics in a porous medium. 
 
7. Concluding remarks 
 

In the present paper, we have investigated the effect of suspended particles on an electrically 
conducting Kuvshiniski viscoelastic fluid layer heated from below in the presence of a horizontal magnetic 
field saturated in a porous medium. The dispersion relation governing the effects of suspended particles, the 
magnetic field, Kuvshiniski fluid and a porous medium is derived. The main results obtained are as follows:  
(i):  Medium permeability and suspended particles has destabilizing effects as well as magnetic field has 

stabilizing effect on the system, in the presence of suspended particles, magnetic field and porous 
medium on thermal instability of Kuvshiniski viscoelastic fluid. 

(ii):  Graphically observations of the problem is analyzed by the Figs 1 – 3. 
(iii):  Absence of magnetic field, suspended particles and electrically non- conducting fluid and absence of 

magnetic field, presence of suspended particles and electrically non – conducting fluid observed 
separately, by Eqs (4.8), (4.10) and (4.11), (4.13).   

(iv):  The presence of magnetic field, suspended particles, viscoelasticity and porous medium effects brings 
oscillatory modes in the system, in the absence of these principle of exchange of stabilities is valid. 
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(v):  The sufficient conditions for the avoidance of overstability are obtained in Eq.(6.3), for 
thermal instability of Kuvshiniski viscoelastic fluid with suspended particles in hydromagnetics 
saturated in a porous medium. 

 
Nomenclature  
 
 pC   specific heat at constant pressure  1Jkg K   

 ptC   heat capacity of the particles    

 D  mass diffusion coefficient  2 1m s  

 F  dimensionless couple-stress parameter            
 ( , , )H 0 0H   magnetic field intensity vector 

 K  Stoke’s  drag coefficient  1kgs                      

   /1 22 2
x yk k k    wave number  1m  

  ,N tx   number density of suspended particles 

 Np  modified Prandtl number 
 NR  Rayleigh number  
 p  fluid pressure  pa                                          

    thermal diffusivity  2 1m s                    

    steady adverse temperature gradient  1Km  

    medium porosity  0 0 0m s k                     

    electrical resistivity    

    dimensionless temperature                   

    dynamic viscosity  1 1km s   

    density  3kgm     

 
Subscripts  
 
 w - conditions at the wall 
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