

Erratum to: R. Goraj

Impact of the pulse width modulation on the temperature distribution in the armature of a solenoid valve

International Journal of Applied Mechanics and Engineering. Volume 20, Issue 4, 2015, pages 773-786

DOI: 10.1515/ijame-2015-0050

	faulty state	correction
page 775	$\sqrt[n]{z} = \sqrt[n]{ z } \left(\cos \frac{\arg z + 2\pi k}{n} + i\cos \frac{\arg z + 2\pi k}{n} \right)$	$\sqrt[n]{z} = \sqrt[n]{ z } \left(\cos \frac{\arg z + 2\pi k}{n} + j\sin \frac{\arg z + 2\pi k}{n} \right)$
eq. 3.12	für $k = 0, 1,, n - 1$	for $k = 0, 1,, n - 1$
page 775	The investigations were restricted only to the fundamental wave of the saw-function of electric current which has the frequency equal $f = 2\pi\omega$	The investigations were restricted only to the fundamental wave of the saw-function of electric current which has the frequency equal $f = \omega / (2\pi)$
page 777	The analysis of the inductive power was performed for different armature radii and different electro-motoric forces.	The analysis of the inductive power was performed for different armature radii and different magnetomotive forces.
page 777 Fig. 2	Inductive power set in the armature penetration depth of the electromagnetic wave	Inductive power set in the armature (left) and penetration depth of the electromagnetic wave
page 778	The estimation of the temperature distribution was carried out under the assumption of isothermal separated armature from the surroundings of the HSV.	The estimation of the temperature distribution was carried out under the assumption of an adiabatically separated armature from the surroundings of the HSV.
page 778	for the threefold penetration depth $l - \exp(3\delta) \cong 95$ [%]	for the threefold penetration depth $l - \exp(-3) \cong 0.95$
page 781	The equation (24) becomes after the use of (46) and the Laplace transformation (Krysinski & Wlodarski, 1998):	The equation (24) becomes after the use of (46) and the Laplace transformation (Krysinski & Wlodarski, 1998):
eq. B2	$r^{-l}\partial_r\left(r\underline{T}_r\right) = q\underline{T}$	$r^{-1}\partial_r(r\underline{T}_r) = q^2\underline{T}$
page 785	θ_a -electro-motoric force	θ_a -magnetomotive force

DOI: 10.1515/ijame-2017-0052