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In the paper, the influence of both the bearing surfaces roughness as well as porosity of one bearing surface on 
the pressure distribution and load-carrying capacity of a curvilinear, externally pressurized, thrust bearing is 
discussed. The equations of motion of a pseudo-plastic Rabinowitsch fluid are used to derive the Reynolds 
equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-
Cameron approximation and Christensen theory of hydrodynamic lubrication with rough bearing surfaces the 
modified Reynolds equation is obtained. The analytical solution is presented; as a result one obtains the formulae 
expressing the pressure distribution and load-carrying capacity. Thrust radial and conical bearings, externally 
pressurized, are considered as numerical examples. 
 
Key words: pseudo-plastic fluid, Rabinowitsch model, curvilinear and conical thrust bearings, porous layer, 

Christensen roughness. 

 
1. Introduction 
 
 The reduction of energy consumption and the increase of the efficiency are, nowadays, important 
parameters in the design of machine elements, in particular slide bearings. Efficiency is also strongly 
dependent on lubricant formulation and its rheological behaviour (non-Newtonian fluids). 
 Viscosity of lubricating oils predominantly decreases with an increase of temperature. This viscosity 
increases with the additives concentration and it is relatively independent of temperature and usually exhibits 
a non-linear relation between the shear stress and the rate of shear in shear flow. There is no generally 
acceptable theory taking into account the flow behaviour of non-Newtonian lubricants. Studies have been 
done on fluid film lubrication employing several models such as micropolar (see e.g.: Walicka, [1]) couple-
stress (Walicki and Walicka [2]), mixture (Khonsari and Dai [3]), viscoplastic (Lipscomb and Denn [4]; 
Dorier and Tichy [5]), pseudo-plastic (Wada and Hayashi [6]; Swamy et al. [7]; Rajalingham et al. [8]). 
Naturally, this list is not complete and given only to present the possibility of mathematical modelling. A 
more complete list may be found in (Walicka [9]; Walicki [10]).  
 The contact between rough surfaces of two bodies has a strong influence on the phenomena of 
friction, wear and lubrication, as well as the heat and electricity conduction. In general, the structure of most 
surfaces appears to be random on a small scale. In recent years, a considerable amount of tribology research  
has been exactly devoted to the study of the effect of surface roughness or geometric imperfections on 
hydrodynamic lubrication because the bearings surfaces, in practice, are all rough and the height of the roughness 
asperities may have the same order as the mean bearing clearance. Under these conditions, the surface roughness 
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affects the bearing performance considerably. The work in this area has mainly been confined to impermeable 
surfaces. The well-established stochastic theory of hydrodynamic lubrication of rough surfaces developed by 
Christensen [11] forms the basis of this paper. In a series of works (Lin [12, 13]; Bujurke et al. [14]; Prakash 
and Tiwari [15]; Walicka [16, 17]; Walicka and Walicki [18, 19]) this model was applied to the study of the 
surface roughness of various geometrical configurations. 
 Porous bearings have been widely used in industry for a long time. Basing on the Darcy model, 
Morgan and Cameron [20] first presented theoretical research on these bearings. To get a better insight into 
the effect of surface roughness in porous bearings, Prakash and Tiwari [21] developed a stochastic theory of 
hydrodynamic lubrication of rough surfaces proposed by Christensen [11]. 
 The modified Reynolds equation (Gurujan and Prakash [22]) applicable to two types of directional 
roughness structure were used by Walicka and Walicki [18, 19] to find bearing parameters for the squeeze 
film between two curvilinear surfaces. 
 In recent years, tribologists have done a great deal of work on pseudo-plastic lubricants; the viscosity 
of these kinds of lubricants displays a non-linear relationship between the shear stress and the shear strain 
rate. There are many known formulae to model this relationship. One of the first was power-series 
development and in consequence polynomials were suggested. The polynomial given by Kraemer and 
Wiliamson [23] which was later independently proposed by Rabinowitsch [24] should be mentioned here. In 
the sixties of the past century Rotem and Shinnar [25] have returned to the polynomial representation 
proposing their own model similar to this one of Rabinowitsch. 
 Theoretical considerations and some ranges of experiments carried out by Wada and Hayashi [6] 
indicated the good usefulness of the Rabinowitsch fluid to modelling various lubrication problems. These 
problems have been analyzed by many investigators such as journal bearings by Wada and Hayashi [6], 
Rajalingham et al. [8], Sharma et al. [26]. Swamy et al. [7], hydrostatic thrust bearing by a Singh et al. [27], 
squeeze film bearings by Hashimoto and Wada [28], Lin [29], Lin et al. [30]. More general lubrication 
problems include the hybrid bearings modelled by two generally non-coaxial surfaces of revolution which 
can work simultaneously as journal and/or thrust bearings. Some theoretical considerations about these 
bearings may be found in the works given by Walicka et al. [31, 32], Ratajczak et al. [33], Walicka and 
Walicki [34]; these authors considered both externally pressurized bearings with and without rotational 
inertia and squeeze film bearings lubricated by a Rotem-Shinnar fluid. From the results of all the papers 
referred to above, it follows that the pseudo-plastic lubricant properties affect the bearing performance 
significantly. 
 Of late the use of non-Newtonian fluids as lubricants in porous bearings has gained importance in 
modern industry. From many studies, the works by Walicka [16], which contains considerations on the 
inertia effects in rough porous squeeze film bearings with visco-plastic Shulman's type lubricant, Walicka 
and Jurczak [35], who considered pressure distribution in squeeze film bearing lubricated by Vočadlo visco-
plastic lubricant should be mentioned. 
 In this paper, the Rabinowitsch fluid model is used to describe the pseudo-plastic behaviour of a 
lubricant in a conical thrust bearing, externally pressurized, with rough surfaces and one porous wall 
considered as a porous matrix. The modified Reynolds equation is derived and its general solution for the 
curvilinear thrust bearing is presented. The analysis is based on the assumption that the porous matrix 
consists of a system of capillaries of very small radii which allows a generalization of the Darcy law and use 
of the Morgan-Cameron approximation for the flow in a porous layer. According to the Christensen 
stochastic model [11], different forms of Reynolds equations are derived to take account of various types of 
surface roughness. Analytical solutions for the film pressure are presented for the longitudinal and 
circumferential roughness patterns. 
 
2. Derivation of the Reynolds equation for the Rabinowitsch fluid 
 
 It may be assumed that lubricating oils, with a viscosity index improver added, exhibit the same 
characteristics as pseudo-plastic fluids. Rotem and Shinnar [25] proposed a method for expressing 
empirically the relation between the stress and the shear rate as 
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Retaining only the first order term  i 1  the above equation reduces to the following form 
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
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well known as a Rabinowitsch model. The three-dimensional notation of Eq.(2.2) may be expressed as 
(Walicka [9]) 

   2
1 1 k   A Λ       where        tr

1
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2
     

Λ  (2.3) 

 
is the magnitude of the second-order shear stress tensor Λ , but 1A  is the first Rivlin-Ericksen kinematic tensor. 
 

 

 
Fig.1. Geometry of a curvilinear thrust bearing. 

 
 Let us consider a thrust bearing with a curvilinear profile of the working surfaces shown in Fig.1. 
The upper bound of a porous layer is described by the function  xR  which denotes the radius of this bound. 

The nominal bearing clearance thickness is given by the function ( )h x , while the porous layer thickness is 

given by const.pH   

 The expression for the film thickness is considered to be made up of two parts. 
 

     , ,sH h x h x     (2.4) 
 

where  h x  represents the nominal smooth part of the film geometry, while s r sh      denotes the random 

part resulting from the surface roughness asperities measured from the nominal level,   describes a random 
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variable which characterizes the definite roughness arrangement. An intrinsic curvilinear orthogonal 
coordinate system , ,x y  linked with the upper surface of a porous layer is also presented in Fig.1. 
Taking into account the considerations of the works (Walicka [9]; Walicki [10]) one may present the 
equation of continuity and the equations of motion of a Rabinowitsch fluid for axial symmetry in the form 
 

  
  yxR1

0
R x y

 
 

 
,            (2.5) 
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.            (2.6) 

 
The constitutive Eq.(2.3)1 takes the form 
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The problem statement is complete after specification of boundary conditions. These conditions for the 
velocity components are stated as follows 
 

   ,x x 0 0  ,       ,x x H 0  ,             (2.8) 

 
   ,y Hx 0 V  ,       ,y x H 0  .            (2.9) 

 
 Solving the equations of motion (2.5), (2.6) and taking into account the constitutive equation (2.7) 
one obtains the Reynolds equation [detailed solution may be found in works (Walicka [9]; Walicki [10])] 
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 (2.10) 

 
for a lubricating pseudo-plastic Rabinowitsch fluid. If k 0 , the above equation is identical to the Reynolds 
equation for a Newtonian lubricant. 
 
3. Modified Reynolds equation for a bearing with a porous pad 
 
 To solve Eq.(2.10) let us study the flow of an R-R-S fluid in the porous layer. Assume that this layer 
consists of a system of capillaries with an average radius cr  and porosity p . Let the porous layer be 

homogeneous and isotropic and let the flow within the layer satisfy the modified Darcy’s law. Thus one has 
[10, 36] 
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where x , y  are velocity components in the porous layer and  
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is permeability of the porous layer but p  is the coefficient of porosity. 

Since the cross velocity component y  must be continuous at the porous wall-fluid film interface and must 

be equal to HV , we have then – by virtue of Eqs (2.10) and (3.1) – the following form of the modified 
Reynolds equation 
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Using the Morgan-Cameron approximation (Morgan and Cameron [20]) one obtains 
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When  formula (3.4) is inserted into Eq.(3.3) the modified Reynolds equation takes the form 
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 (3.5) 

 
 If the film thickness is regarded as a random quantity, a height distribution function must be 
associated. Many real bearing surfaces show a roughness height distribution which is closely Gaussian, at 
least up to three standard deviations. From a practical point of view, the Gaussian distribution is rather 
inconvenient and therefore a polynomial form of its approximation is chosen. Following Christensen ([11], 
[37], [38]) such a probability density function is 
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where c  is the half total range of the random film thickness variable. The function terminates at c 3   , 
where   is the standard deviation. 
 Inserting expected values in Eq.(3.5), we get the general form of the stochastic Reynolds equation 
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where  E   is the expectancy operator defined by 
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E f h dh
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                (3.8) 

 
 The problem is now reduced to devising means of evaluating the left-hand side of Eq.(3.7) subject to 
the specific model of roughness. 
 The calculation of the mean film pressure distribution would require the evaluation of the expected 
value of various film thickness functions. 
The forms of the distribution function described by Eq.(3.8) are given in (Walicka [17, 36]). 
 
4. General solution to the modified Reynolds equation 
 
 In the present study, two types of roughness structure are of interest (see: Fig.1): the longitudinal 
(radial) one-dimensional roughness pattern, having the form of long narrow ridges and valleys running in the 
x  direction, and the circumferential (transverse) one-dimensional roughness pattern, having the form of long 
narrow ridges and valleys running in the   direction (Walicka [16, 36], Walicka and Walicki[18, 19]). 
For the longitudinal one-dimensional roughness 
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the stochastic Reynolds equation is 
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but for the circumferential one-dimensional roughness 
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the stochastic Reynolds equation is 
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Note that both Eqs (4.2) and (4.4) may be presented in one common form as follows 
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the case j l  refers to the longitudinal one-dimensional roughness, but the case j c  – to the 
circumferential one-dimensional roughness. 

 Consider the case of the R-R-S fluid of frequent occurrence for which the factor ;2
xyk 1   the value 

of this factor indicates that the solutions to the Reynolds equation (4.5) may be searched in a form of the sum 
[31, 32, 40] 
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Assuming that    1 0Ep Ep  and substituting Eq.(4.6) into Eq.(4.5), we arrive at two linearized equations, 
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and the other 
 

  

 
  

 
  

.

1

3 2
j p c p

3
0

5 4
j p c p

Ep1 3
R H r H

R x 2 x

Ep3k 1 5
R H r H

20 R x 3 x

           
 

                      

 (4.8) 

 
The boundary conditions for pressure are 
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 The solution of Eqs (4.7) and (4.8) is given as follows 
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The load-carrying capacity is defined by 
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the sense of angle   arises from Fig.1. 
All the above equations concern to general case of a curvilinear bearing. Note that the substitution 
 
   R x sx           where          ,0 s 1    

 
introduced into essential equations of this section, gives us the equations suitable for conical bearings (see 
Fig.5); for s 1  there are the equations suitable for radial bearings (see Fig.2). 
The calculation of the mean film pressure distribution would require the calculation of the expected value for 
various film thicknesses. For the distribution function given by Eq.(3.7) we have (Walicka [17, 36]) 
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In what follows, we will consider two cases of the bearing geometry, namely: a radial thrust bearing and 
conical bearing, both externally pressurized.  
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5. Radial externally pressurized thrust bearing 
 
 An externally pressurized radial thrust bearing with a central inlet pocket is modelled by two parallel 
disks (Fig.2). 
 

 
 

Fig.2. Radial externally pressurized thrust bearing. 
 

Introducing the following nondimensional parameters 
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 (5.1) 

 
we will obtain the following formulae for the dimensionless pressure distribution and load-carrying capacity 
for the externally pressurized radial thrust bearing lubricated by the Rabinowitsch type lubricant 
 

  
ln

,
lnj j2 2

1 1 x
p 1 1 P 1 1 P

x

                    




 (5.2) 

 

  ln ,
ln

2

j j2

1 1
N 2P 1 1 P

2

                
  (5.3) 

where 

  
 

  ln

5 3
j

j 3
j

M3 1
P

40 M

      
,             , ,3 3 5 52 4

j j p p j j p p
3 5

M H K H M H K H
2 3

        

 



726  A.Walicka, E.Walicki, P.Jurczak and J.Falicki 

 

   

 

 

**

*
*

for

for

22
3

3
j 1

2
2

3

c1 c
h 1 1 j l

3 3h
H

1 2 c 2
1 1 c j c

3 3hh



                
                   








 

   (5.4) 

   

 

 

*
*

*
*

for

for

2
25

5
j 1

2
2

5

10 c 10
h 1 1 c j l

9 9h

H

1 5 c 5
1 1 c j c

3 3hh



              
 

                  








 

a) b) 

 
Fig.3. Nondimensional mechanical parameters for the radial rough bearing for .0 2    and 0  : 

(a) pressure distribution; (b) load-carrying capacity. 
 
 Figures 3a and 4a present the dimensionless pressure distributions p  as functions of the radial 

coordinate x  for a definite value of the inlet pocket ratio .0 2   and for definite values of the dimensionless 
coefficient of pseudo-plasticity   and definite values of the dimensionless parameters pK  and pH  

characteristic for the bearing wall porosity. The pressure p  is presented for two kinds of surface roughness: 
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longitudinal  j l  and circumferential  j c  and for two cases of the bearing wall porosity: non-porous 

 ,p pK 0 H 0   and porous  .p pK H 0 2  . 

 A comparison with the case of Newtonian lubricants  0   generally shows that the dilatants 

effects  0   significantly decrease the film pressure, but the pseudo-plastic effects  0   significantly 

increase the film pressure [10, 28-34].  
 
a) b) 

 
Fig.4. Nondimensional mechanical parameters for the radial rough bearing for 0   and .0 2  : 

(a) pressure distribution; (b) load-carrying capacity. 
 

 
 In comparison with the case of smooth bearing surfaces (solid lines in Figs 3a-4a) it may be 
concluded that the influence of the surface roughness is small but twofold [10, 12-15, 18-22]; for 0   the 
longitudinal roughness causes little decreases in pressure values, but the circumferential roughness causes 
little increases in pressure values (Fig.3a); for 0   the changes in pressure run over in contrast. 
 The wall porosity little influencing the pressure distribution causes its increase for 0   and its 
decrease for 0   with respect to the pressure in the case of impermeable bearing walls. 
 Figures 3b and 4b present the dimensionless load-carrying capacity N  as a function of the inlet 
pocket ratio  . The load-capacities are similarly induced by rheological and geometrical parameters as the 
pressure p . 

 
6. Conical externally pressurized thrust bearing 
 
 An externally pressurized conical thrust bearing with a central inlet pocket is presented in Fig.5.  
For this bearing there are the following dimensional geometric relations 
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     sin sin ,cR x x x                because          /c 1  . 

 

 
 

Fig.5. Conical externally pressurized thrust bearing. 
 
Introducing the following nondimensional parameters 
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 (6.2) 

 
we will obtain formulae for the dimensionless pressure distribution and load-carrying capacity for the 
externally pressurized conical thrust bearing lubricated by the Rabinowitsch type lubricant 
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where 
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functions  A u ,  G u  and    NA u ,    NG u  are given in the Appendix. 

 Figures 6a-9a present the dimensionless pressure distributions p  as a function of the conical 

coordinate x  for definite values of the inlet pocket ratio .0 2   and clearance divergence ratio .h 0 5  . 

The pressure p  is presented for definite values of the dimensionless coefficient of pseudo-plasticity  , for 
two kinds of surface roughness: longitudinal and circumferential and for two cases of the bearing wall 

porosity: non-porous  p pH K 0   and porous  .p pH K 0 2  . 
 

a) b) 

 
Fig.6. Nondimensional mechanical parameters for the conical rough bearing with longitudinal roughness 

for .0 2    and 0  : (a) pressure distribution; (b) load-carrying capacity. 
 

 A comparison with the case of Newtonian lubricants  0   shows also that the dilatant effects 

 0   significantly decrease the film pressure, but the pseudo-plastic effects  0   significantly increase 

the film pressure.  
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a) b) 

 

Fig.7. Nondimensional mechanical parameters for the conical rough bearing with circumferential roughness 
for .0 2    and 0  : (a) pressure distribution; (b) load-carrying capacity. 

 
a) b) 

 
Fig.8. Nondimensional mechanical parameters for the conical rough bearing with longitudinal roughness for 

0   and .0 2  : (a) pressure distribution; (b) load-carrying capacity. 
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 In comparison with the case of smooth bearing surfaces (solid lines in Figs 6a-9a) it may be 
concluded that the influence of the surface roughness is expressive here but also twofold [10, 12-15, 18-22]; 
for 0   the longitudinal roughness causes clear decreases in pressure values, but the circumferential 
roughness causes clear increases in pressure values; for 0   the changes in pressure run over in contrast. 
 
a) b) 

 
Fig.9. Nondimensional mechanical parameters for the conical rough bearing with circumferential roughness 

for 0   and .0 2  : (a) pressure distribution; (b) load-carrying capacity. 
 

 

 The wall porosity also little influencing the pressure distribution causes its increase for 0   and its 
decrease for 0   in respect of the pressure in case of impermeable bearing walls. 
 Figures 6b-9b present the dimensionless load-carrying capacity N  as a function of the inlet pocket 
ratio   versus the clearance divergence ratio .h 0 5  . The load-capacities are similarly influenced by 

rheological and geometrical parameters as the pressure p , but these influences are more visible for 0  . 

 
7. Conclusions 
 
 The modified Reynolds equation for a Rabinowitsch type of pseudo-plastic lubricants flowing in a 
clearance of a thrust curvilinear bearing with rough surfaces is derived. A porous layer adheres to one 
bearing surface. Applying the Morgan-Cameron approximation to the Darcy flow of the Rabinowitsch 
lubricant in a porous layer the new modification of the Reynolds equation is introduced. According to the 
Christensen stochastic model of roughness the final form of the Reynolds equation is derived. As a result of 
solving this equation general formulae for pressure distributions and load-carrying capacity are obtained. 
 In the paper, two geometrically similar bearings are presented as practical examples: the radial 
bearing and conical thrust bearing both externally pressurized. It follows from the solutions of the Reynolds 
equation for these bearings, detailed calculations and their graphics presentations that both magnitudes 
(pressure distribution and load-carrying capacity) depend on the signs of the rheological parameters k  and 
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 . With the decrease of the   values both these magnitudes increase in respect of their values for 
Newtonian lubricants and this increase is more visible for the conical bearing.  
 The bearing surface roughness effect is twofold: for 0   the longitudinal roughness causes decreases 
in the pressure and load-carrying capacity values, but the circumferential roughness causes increases in the 
pressure and load-carrying capacity values; for 0   the changes of these magnitudes run over in contrast. 
The wall porosity causes the little increases for 0   and little decreases for 0   both these mechanical 
magnitudes. 
 
Nomenclature 
 
 1A  – the first Rivlin-Ericksen kinematic tensor 

 c  – maximum asperity deviation 

 *c  – nondimensional roughness parameter 
  E   – expectancy operator 

  sf h  – probability density distribution function 

  h x  – nominal film thickness 

   , ,sh x    – random deviation of film thickness 

 H  – film thickness 
 pH  – porous pad thickness 

 , ik k   – pseudo-plasticity coefficients 

 N  – load-carrying capacity 
 p  – pressure 
 r  – radius 
  xRR,  – local radius of the lower bearing surface 

 ,x y   – velocity components 

 ,x y  – orthogonal coordinate 
   – inlet pocket ratio 
 h  – clearance divergence ratio 

   – angular coordinate 
   – coefficient of viscosity 
   – random variable 
   – fluid density 

 
Appendix 
 
The function  A u  is given as follows 
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The denominator of the subintegral function is partially presented in a canonical form and it may be written as 
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where 1u  is only one real radical of the equation 
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this radical is given as follows 
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The coefficient A, B, C, D are determined from the following equation 
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by the method of multipliers. 

The function  G u  is given as follows 
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The coefficient , , ,i i i iA B C D  are determined from the following equation 
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by the method of multipliers. 

The function    NA u  is given as follows 

 

       
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04 02 032 22
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     

         
 . 

 

For the function    NG u  one has the following formula 
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The coefficients  NA ,   ,N
iB    ,N

iC   N
iD  are determined from the following equation 
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by the method of multipliers. 
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