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The present investigation is concerned with a two dimensional axisymmetric problem in a homogeneous 
isotropic micropolar porous thermoelastic circular plate by using the eigen value approach. The Laplace and 
Hankel transform are used to solve the problem. The expression of displacements, microrotation, volume fraction 
field, temperature distribution and stresses are obtained in the transformed domain subjected to thermomechanical 
sources. A computer algorithm is developed for numerical computations. To obtain the resulting quantities in a 
physical domain, a numerical inversion technique is used. The resulting quantities are depicted graphically for a 
specific model. Some special cases are also deduced. 
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1. Introduction 
 
 The theory of micropolar elasticity developed by Eringen [1] aroused much interest because of its 
possible utility in investigating the deformation properties of solids for which the classical theory is 
inadequate. The micropolar theory is significantly useful for investigating materials consisting of bar-like 
molecules which exhibit microrotation effects and support body and surface couples. A special micropolar 
material was fabricated in which a uniformly distributed rigid aluminium shot was cast in an elastic epoxy 
matrix by Gauthier [2] and the values of the relevant parameters based on specimen of aluminium-epoxy 
composite were investigated. 
 The linear theory of micropolar thermoelasticity was developed by Eringen [3] and Nowacki [4] to 
include thermal effects. Touchert et al. [5] developed the linear theory of micropolar thermoelasticity in 
which Duhamel-Neumann analogy is extended to micropolar materials and the thermoelastic problem is 
reduced to a corresponding isothermal one with body forces and couples. Boschi and Iesan [6] investigated 

                                                            
* To whom correspondence should be addressed 



584  R.Kumar, P.Kaushal and R.Sharma 

the linear theory of generalized micropolar thermoelasticity. Passeralla [7] established some results in 
micropolar thermoelasticity.  
 Cowin and Nunziato [8] investigated the linear theory of elastic materials with voids. This theory 
differs significantly from the classical linear elasticity in that the volume fraction corresponding to the void 
volume is taken as an independent kinematical variables. Several applications of the theory are developed, 
including the response to homogeneous deformations, pure bending of a beam, and small amplitude acoustic 
waves. In each of these applications, the change in the volume fraction field induced by the deformation is 
determined. Iesan [9] studied the shock waves in micropolar elastic materials with voids. Iesan [10] 
developed the linear theory of thermoelastic materials with voids. Scarpetta [11] studied the fundamental 
solution for the differential system of micropolar elasticity with voids for the steady vibration case and 
reciprocal properties are also explored. Marin [12] studied the mixed boundary value problem in elastostatic 
micropolar materials with voids. Marin [13] applied the general results from the theory of elliptic equations to 
obtain the existence and uniqueness of the generalized solutions for the boundary value problems in micropolar 
elasticity with voids.  
 Ciarletta et al. [14] constructed the fundamental solutions of the systems of equations of the steady 
oscillation of the linear theory of micropolar thermoelasticity for materials with voids. Kumar and Panchal 
[15] studied the propagation of circular crested waves in a micropolar porous medium possessing cubic 
symmetry. Ailawalia and Kumar [16] studied the thermomechanical deformation of micropolar generalized 
thermoelastic materials with voids under the influence of various sources. Othman and Youssef [17] studied 
the deformation of a micropolar thermoelastic solid with voids considering the influence of various sources 
acting on the plane interface. Sharma and Marin [18] studied the reflection of plane waves at the free surface 
of a micropolar generalized thermoelastic solid with distinct conductive and thermodynamic temperatures. 
Sharma et al. [19] studied the propagation of Lamb waves in a homogeneous, isotropic thermoelastic 
micropolar solid with two temperatures bordered with layers of inviscid liquid. Sharma [20] studied the 
effect of two temperatures on the reflection coefficient for a micropolar thermoelastic solid. Sharma and 
Kumar [21] studied the propagation of plane waves in a thermoviscoelastic medium with voids. Kumar et al. 
(2015) constructed the fundamental solution to a system of micropolar viscothermoelastic solids with voids 
in terms of elementary functions. Marin [23] formulated a heat flux dependent theory for micropolar porous 
materials. 
 
2. Basic equations 

 
 Following Kumar and Partap [24], the constitutive relations and the field equations in a micropolar 
porous thermoelastic medium with body forces, body couples, heat sources and extrinsic equilibrated body 
force are given by 
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where u is the displacement vector,   is the microrotation vector,   is the density, j  is the micro inertia, 

*
1K  is the coefficient of thermal conductivity, T  is the change in temperature of the medium at any time, *C  

is the specific heat at constant strain, *  is the change in volume fraction field, , , , , , K      are 

micropolar constants,  , ,ω ,,1 1 0 mb   and   are the elastic constants due to the presence of voids, 

  t3 2 K       , t  is the coefficient of linear thermal expansion, 0 , 1 , are the thermal relaxation 

times, , ij ijt m  are the stress tensor and couple stress tensor, ij  is the Kronecker delta and 

r θ

2 2 2
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2 2 2 2
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rr r z

   
    

  
 is the Laplacian operator. For L-S theory, ,  ,1 00 0     and .0 1   For 

G-L theory, 1 0 0     and .0 0   
 
3. Formulation of the problem 
 
  Consider an infinite, homogeneous isotropic micropolar porous thermoelastic circular plate of 
thickness 2h occupying the region defined by ,  .0 r h z h       The cylindrical polar coordinates 

 ,   ,   r z  are introduced. The plate is axisymmetric with the z-axis as the axis of symmetry. The origin of 

the co- ordinate system  ,   ,   r z  is taken as the middle surface of the plate and the z-axis normal to it along 

the thickness. We take the r z  plane as the plane of incidence. The initial temperature in the thick plate is 
given by a constant temperature .0T  
  For a two dimensional problem, we take 
 
       ,  ,  ,         ,  ,  r zu 0 u 0 0  u  . (3.1) 

 
 The dimensionless quantities are given by 
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 We define the Laplace and Hankel transform as 
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Equations (2.1)-(2.4) with the aid (3.1)-(3.4) recast into the form 
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  The system of Eqs (3.5)-(3.9) can be written as 
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To solve Eq.(3.10), we take 
 

     , , , qzW z s X s e   ,  (3.12) 

 
with 
 

       , , , , ,  A s W z s qW z s    ,  (3.13) 

 
which leads to the eigen value problem. The characteristic equation corresponding to Eq.(3.13) on 
expansion, yields     
 

  10 8 6 4 2
1 2 3 4 5q q 0q q q            (3.14) 

 

where ,  ,  ,  1 2 3 4     and 5  are given in Appendix I and ,  ( , , , , )iq i 1 2 3 4 5   are the roots of Eq.(3.14). 

 The eigenvectors  , iX s  corresponding to the eigenvalues iq  may be obtained by solving 

 
        , . iA qI X s 0    
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 The set of eigen vector   , iX s  can be written as 

 

     
 

, 
,  

, 
i1

i
i2

X s
X s

X s

  
    

 

 
where 
 

     , ,      , ,        ; , , , , ,

2
i i i i

i i i

i1 i2 ii

i i i

i i i

a q a q
b b q

X s X s q q i 1 2 3 4 5q
d d q
e e q

  
  
  
       
  
  
     

 

 

     , ,      , ,      ,   ; , , , ,

2
i i i i

i i i

j1 j2 ii

i i i

i i i

a q a q
b b q

X s X s j i 5 q q i 1 2 3 4 5q
d d q
e e q

  
     
          
  
  
      

 

 

Where , , , , , , , , i i i i i 1 2 3 4a b d e r r r r  and 5r  are given in Appendix II 
 We assume the solution of Eq.(3.12) as 
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where , , , 1 2 3 4K K K K  and 5K  are arbitrary constants. 
 
4. Boundary conditions 
 
 The boundary conditions at the surface z h   of the plate are given by 
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( )  is a Dirac delta function and ( )H  is the Heavy side unit step function and ,   zz zrt t  and zm   are given by 
 

    *z r r
zz 1

u u u
t 2 K 1 T b

z r r r

                       
, (4.6) 

 

    r z
zr

u u
t K K

z r 
 

      
 

,  (4.7) 

 

  zm
z





 


.  (4.8) 

 
 From Eqs (3.2)-(3.4) and (3.15)-(4.8), after some algebraic calculations, we get 
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Particular cases 
 
(i) Without the thermal effect,  the boundary conditions (4.1)-(4.5) for a micropolar porous medium 

reduce to the form 
 

  
    *

,   ,   ,  ,zz 0 zr z
r H t d

t p t 0 m 0 0
2 r dz

 
   


 

 
and following the same procedure, the corresponding expressions for displacements, microrotation, volume 
fraction field and stresses for a micropolar porous are obtained as 
 

       *
*

,   ,  , ,   , ,   Δ cosh
Δ

4

r z i i i i i i
i 1

1
u u a q b d q z




      , 

 

       *
*

,   ,   ,  ,  Δ cosh
Δ

4

zz zr z i i i i i
i 1

1
t t m L M P q z



     

where 

  

* * * *

* * * *
*

* * * *

* * * *

                 

           
Δ ,

            

         

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

T T T T

U U U U

V V V V

W W W W

  

 

and *( , , , )i i 1 2 3 4   are obtained from *Δ  by replacing ith column of *Δ   with , , ,  ,
tr

R 0 0 0  also 

 

         * * * * * * *cosh , cosh , cosh ,  cosh ,i i i i i i i i i i i i iT L q h U M q h V P q h W d q q h     

 

  * ,   , , , ,          i i
i 0 i i i2 2

1 1

a q 2 K
L p d b q i 1 2 3 4

c c

      
          

 

 

  * ,     , , , , 2i
i i i2 2 2

1 1 1

b K K
M a q i 1 2 3 4

c c c

     
            

 

 

  
*

* ,    , , , .
2

i
i 4

1

q
P i 1 2 3 4

c


 


 

 

(ii) Neglecting the porous effect, i.e., ,  ,  ,  ,  1 1 0b     and * 0  , yields the boundary conditions for 
micropolar thermoelastic medium as 
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(iii) Taking ,  ,1 00 1     in Eqs (4.9)-(4.10), yields the corresponding expressions for micropolar 

porous thermoelastic with one relaxation time. 
(iv) The corresponding expressions for a micropolar porous thermoelastic with two relaxation times are 

obtained by taking ,  1 00 0     in Eqs (4.9)-(4.10). 
 

5. Inversion of transforms 
 
 The transformed displacements, microrotation vector, volume fraction field, temperature distribution 

and stresses are of the form  , ,f z s  and to obtain the function  , ,f r z t , the inversion of the Hankel 

transform is of the form 
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 The inversion formula for the Laplace transforms is given as 
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where c  is an arbitrary constant greater than all real parts of the singularities of  , , .f r z t  

 
6. Numerical results and discussion 
 
 The values of micropolar parameters for numerical computations are given by Eringen [25] 
 

  . ,     . ,    .10 2 10 2 10 29 4 10 Nm 4 0 10 Nm K 1 0 10 Nm          , 

 

  . ,   . ,  . ,3 3 19 2 91 74 10 Kgm j 0 2 10 m 0 779 10 N           

 
 Following Dhaliwal and Singh [26], we take the values of thermal parameters as 
 

  * *. ,     . ,   .3 1 1 6 1 1 1 5 1
1 tC 1 04 10 JKg K K 1 7 10 Jm s K 2 33 10 K             , 

 

  . ,  . , . / ,13 13 10 2
0 16 131 10 sec 8 765 10 sec m 1 13849 10 N m          

 

  . .3
0T 0 298 10 K   

 
 The values of void parameters are taken as 
 

  . ,   . / ,   . / ,9 10 2 10 2
1 13 688 10 N b 1 138494 10 N m 1 1475 10 N m         

 

  . ,   . / .19 2 1 2
01 1753 10 m 0 0787 10 N sec m         

 
 The variations of displacements, microrotation, volume fraction field, temperature distribution and 
stresses with distance r  in the case of a micropolar thermoelastic porous medium (MTPM), micropolar 
thermoelastic medium (MTM) and micropolar porous medium (MPM) are shown in Figs 1-8, respectively. 
In all these figures, a solid line (——), a small dash line (- - - - -) and a dash line with centred symbol 
(     )      are used for MTPM, MPM and MTM, respectively. 
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Fig.1. Variations of displacement of ru . 
 
Figure 1 depicts that the value of ru  initially decreases for .1 r 1 8   and then oscillates for 

.1 8 r 8   with large amplitude for MTPM, MTM and MPM. For MTM, ru  has a maximum value at the 
beginning and a minimum value for . .3 4 r 7 4   in comparison with MTPM and MPM. The oscillation 
behavior is not uniform for the three cases.   
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Fig.2. Variations of normal displacement zu . 
 

Figure 2 shows that the value of zu  which initially increases for .1 r 1 8   and then oscillates for 

the whole range with large amplitude for MTPM and MPM. The value of zu  for MTM decreases for 
.1 r 1 7  , increases for . .1 7 r 2 8   and then rapidly decreases for .2 8 r 8  . The variation and 

behavior for MTPM and MPM are similar with a slightly different magnitude. The values of normal 
displacement for MTPM and MPM are small compared to MTM for .1 r 5 6   and the values approach 
zero. 
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Fig.3. Variations of the microrotation vector  . 
 

In Fig.3, the value of   for MTPM initially decreases for .1 r 1 4   and oscillates for .1 4 r 8  , 
whereas for MPM, its value initially increases for .1 r 1 3  , sharply decreases for .1 3 r 2   and then 
oscillates for .2 r 8   For the range 1 r 8  , the behavior of   for MTPM and MTM is similar and 
opposite for MPM.  
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Fig.4. Variations of volume fraction field * . 
 

Figure 4 shows that the value of *  sharply decreases for .1 r 1 6   and then oscillates with 
increasing in amplitude about the origin for MTPM, whereas for MPM, its value decreases for .1 r 1 6  , 
oscillates for . .1 6 r 5 4   with a large amplitude and further oscillates with a constant amplitude 

. .5 4 r 8   
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Fig.5. Variations of temperature distribution T . 
 

Figure 5 represents that the value of T  initially decreases and then oscillates with a large amplitude 
for the whole range for MTPM. For MTM, its value initially increases for .1 r 1 6  , sharply decreases for 

. .1 6 r 2 5   and then oscillates for .2 5 r 8   with different amplitude. The value is large for MTM for 

. . , . .1 2 r 2 2 4 4 r 5 4     and .7 6 r 8   and small for . . ,  . .2 2 r 4 4 5 4 r 6 4     and . . .6 8 r 7 6   
 

1 2 3 4 5 6 7 8
-6

-5

-4

-3

-2

-1

0

1

Distance r

N
or

m
al

 F
or

ce
 S

tr
es

s 
t zz

 

 

MTPM

MTM

MPM

 
 

Fig.6. Variations of normal force stress zzt . 
 

Figure 6 shows that the value of zzt  initially decreases for MTPM for .1 r 1 6   and then oscillates 

about the origin with a large amplitude. The value of zzt  increases in the beginning for . ,1 r 1 7   decreases 

for . .1 7 r 2 6   and then oscillates for .2 6 r 8   with r  for MTM and MPM. The behavior of zzt  for 

MTPM is opposite to MTM and MPM for . .1 r 6 6   The variation in zzt  is oscillatory for MTPM, MTM 
and MPM. 
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Fig.7. Variation of tangential force stress zrt . 
 

Figure 7 shows that for MTPM, the value of zrt  increases initially for .1 r 1 4   and then oscillates 

with r . The value of zrt  starts with a sharp decrease for MPM as compared to MTM for .1 r 1 7   and 

oscillates about the origin for .1 7 r 8  . The value of zrt  for MTPM and MTM is similar near the 
application of the source and the value is also the same away from the source for the three cases. 
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Fig.8. Variations of tangential couple stress zm  . 
 

Figure 8 shows that the value of zm   initially decreases for .1 r 1 4  , sharply increases for 

.1 4 r 2   and then oscillates for 2 r 8   for MTPM, MTM and MPM. The variation and behavior of zm   
is uniformly oscillatory for the three cases for the whole range. The values for MTPM, MTM and MPM 
approach zero. 
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7. Conclusions 
 

The present investigation is concerned with the eigen value approach for a micropolar porous 
thermoelastic circular plate due to the application of thermo mechanical source. From the figures, it is 
observed that all the physical quantities have non zero value in considered domain and approache the 
boundary surface away from the sources. The appreciable effects of the porosity and thermoelasticity are 
observed on displacements, microrotation, volume fraction field, temperature distribution and stresses. The 
variation pattern of displacements for MTPM and MPM are the same. The variations patterns are also similar 
for normal and tangential stresses for MTM and MPM. However, a similar behavior is also observed for 
tangential couple stress for MTPM, MTM and MPM. The behavior of temperature distribution gets 
oscillatory due to the porosity effect. Due to the thermal effect, the values of the volume fraction field are 
initially decreased but afterwards its they increase and oscillate. 
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Nomenclature 
 

 C    specific heat at constant strain 
 j   micro inertia 

 1K    coefficient of thermal conductivity 

 ijm    couple stress tensor 

 T   change in temperature of the medium at any time 
 ijt    stress tensor 

 u   displacement vector 
 t    coefficient of linear thermal expansion 

 
, , ,

and

,1 1 0b m  


   elastic constants due to the presence of voids 

 ij    Kroneckor delta  

 , , , , ,K        micropolar constants 

     density 

 ,0 1     thermal relaxation times 

     microrotation vector 

     change in volume fraction field 

 2    Laplacian operator 
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