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We study the boundary layer characteristics of heat and mass transfer flow past a vertical wedge in the 
presence of thermal radiation. The surface temperature and the species concentration are assumed to be 
oscillating in the magnitude but not in the direction of oncoming flow velocity. The governing equations have 
been solved by two distinct methods, namely, the straightforward finite difference method for the entire 
frequency range, and the series solution for the low frequency range and the asymptotic series expansion method 
for the high frequency range. Numerical solutions have been presented in terms of the amplitudes and phase 
angles of the skin friction, the rate of heat transfer and the mass transfer with the variations of Richardson’s 
number, the Prandtl number, the conduction–radiation parameter, the surface temperature parameter and the 
Schmidt number. Furthermore, the effects of these parameters are examined in terms of the transient skin friction, 
heat transfer and mass transfer. 
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1. Introduction 
 
 The combined effect of both free and forced convection is known as mixed convection and has been 
the focus of research because of its various applications in thermal engineering and science, such as, compact 
heat exchangers, boilers, atmospheric boundary layer flows, solar energy systems and cooling of electronic 
devices. The effect of mixed convection must be considered in a mathematical model when the forced and 
the free convection effects are of comparable magnitude in a system. In other words, mixed convection takes 
place when the influence of buoyancy forces on a forced flow or vice versa is significant. There are 
numerous studies on mixed convection boundary layer flow subject to different circumstances such as 
vertical/inclined/horizontal plate or wedge surfaces in a fluid.  
 Due to the occurrence in many interesting and important fluid-mechanical problems, oscillating flow 
and heat transfer under the influence of free-stream oscillation have been the important topic of research, for 
example, the accelerating and decelerating phases of missile flight, the intermittent flow in an engine during 
unstable combustion, heat transfer process frequently experienced in liquid rocket and turbo-jet engines and 
thermal failure of the resonance tube heating in which the effect of heat generation appears to be significant. 
Lighthill [1] first initiated the investigation of how a boundary layer responds to fluctuations of the external 
velocity about a steady mean. 
 Sing et al. [2] studied the unsteady boundary layer characteristics of the mixed convection flow over 
a vertical wedge with constant suction or injection. Yih [3] and Watanabe [4] focused on the forced 
convection boundary-layer flow over a wedge taking into account the effect of uniform suction and blowing. 
Kafoussias and Nanousis [5] numerically investigated the behavior of a laminar boundary layer flow over a 
wedge with suction/injection. Devi and Kandasamy [6] presented the influences of thermal stratification as 
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well as mass transfer over a porous wedge. Gersten [7] theoretically investigated the time-mean heat transfer 
in a wedge-type flow with small amplitude oscillation and found that that the time-mean heat-transfer rate is 
smaller than that without oscillation. Kumari and Gorla [8] carried out a boundary layer analysis considering 
the combined convection along a vertical non-isothermal wedge situated in a fluid-saturated porous medium. 
Hossain et al. [9] studied the effect of forced flow of an incompressible fluid past a horizontal wedge subject 
to heat flux boundary condition. Kumari et al. [10] examined the magnetohydrodynamic mixed convection 
flow over a vertical porous wedge. On the contrary, Kandasamy et al. [11] investigated the effects of 
variable viscosity and thermophoresis of an electrically conducting fluid for mixed convective heat and mass 
transfer past a porous wedge in the presence of chemical reaction.  
 It is worthwhile to note that thermal radiation could be a controlling factor in many technological 
problems, for example, liquid metal fluids, cooling of nuclear reactors, power generation systems and high 
temperature plasmas. Uddin et al. [12] investigated the effects of thermal radiation and heat 
generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge. Yih [13] studied the 
influence of radiation on a mixed convection flow about an isothermal wedge kept in a saturated porous 
medium. Al-Odat et al. [14] examined the mixed convection flow from an isothermal wedge in the presence 
of thermal radiation. Chamkha et al. [15] numerically observed the hydromagnetic forced convective 
boundary-layer flow considering the effects of heat-generation or absorption and thermal radiation over a 
non-isothermal wedge. Elbashabeshy and Dimian [16] studied the effect of radiation on the behavior of the 
flow and heat transfer over a wedge.  
 Now there are many transport processes which frequently occur both in nature and in industries with 
the combined heat and mass transfer. As a result, heat and mass transfer problems in the presence of thermal 
radiation have attracted attention due to many practical applications such as drying, distribution of 
temperature and moisture over agricultural fields and groves of fruit trees, damage of crops due to freezing, 
evaporation at the surface of water body, energy transfer in a wet cooling tower and flow in a desert cooler. 
However previous studies have simplified the radiation term by assuming changes in the Prandtl number. In 
this study, we investigate the unsteady laminar boundary layer mixed convective heat and mass transfer of a 
viscous incompressible fluid past a vertical wedge in the presence of thermal radiation. The nonlinear effect 
of temperature on radiation might be captured from this analysis. The influences of Richardson’s number, Ri, 
which is introduced to measure the effect of mixed convection, the Prandtl number, Pr, the conduction–
radiation parameter, Rd, the surface temperature parameter Δ and the Schmidt number, Sc on the amplitudes 
and phase angles of skin-friction, heat transfer and mass transfer have been presented. In addition, the 
variations of the transient skin-friction, heat transfer and mass transfer are observed for different values of Pr 
and Rd.   
 
2. Mathematical formulation 
 
 A two-dimensional, unsteady, laminar mixed convection boundary layer flow of a viscous 
incompressible fluid past a wedge taking into account thermal radiation is considered. The physical 
configuration and coordinate system of the problem is shown in Fig.1. The surface temperature of the wedge 
is assumed to be oscillating with small amplitude about a constant mean temperature.  
 Under the usual Boussinesq approximation, the conservation equations for the unsteady, laminar, 
two dimensional boundary layer flow problem can be written as 
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 In the above equations, x and y are the coordinates parallel with and perpendicular to the wedge 
surface, u and   the velocity components in the x- and y-directions, respectively, ν is the coefficient of 
viscosity, g is the acceleration due to gravity, βT and βC are the coefficient of volumetric expansion for 
temperature and concentration, respectively, α is the thermal diffusivity, α  is the thermal diffusivity and D is 
the molecular diffusivity of the species. Furthermore, T and T∞   are the temperature of the fluid in the 
boundary layer and the ambient fluid, respectively, while C and C∞ are the species concentration and the 
ambient concentration.  
 The boundary conditions are 
 

     , ,i t i t
w wu 0 T T T T 1 e C C C C 1 e 
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 , , ,u U x t T T C C        as     y → ∞.                                                      (2.6) 

 
 Here Tw is the mean surface temperature with Tw > T∞ and Cw is the mean surface concentration with 
Cw  > C∞. The free-stream velocity U (x, t) is taken as 
 

   , 1 2 i t
0U x t U x 1 e     (2.7) 

 
where U0, ε are constant and ω is the frequency. 
 

 
 

Fig.1. Flow configuration and coordinate system. 
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 In Eq.(2.3), the quantity rq  is the radiative heat-flux in the y-direction. We assume that the fluid is 
gray and optically thick as if it could only absorb and emit radiation. Under consideration of an optically 
thick boundary layer, the radiative heat-flux term may be simplified using the Rosseland diffusion 
approximation and is defined as 
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r
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 (2.8) 

 
where k* is the mean absorption coefficient and σ is the Stefan–Boltzman constant.  
 Now we define the stream function, ψ, as  
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which satisfies the continuity Eq.(2.1). 
 From the boundary conditions (2.5), the functions ψ, T and C may be considered in the following 
forms 
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where ε << 1 is a constant, ψs, Ts and Cs are steady components and ψ1, T1 and C1 are time-dependent 
components. 
 Substituting (2.7)–(2.10) into (2.2)–(2.4) and equating the coefficients of ε0, one obtains 
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 To render the above equations in an dimensionless form, the following functions and variables are 
introduced  
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 Using Eqs (2.14) in Eqs (2.11)–(2.13), we obtain  
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subject to the boundary conditions 
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 Again substituting the expressions (2.7)–(2.10) into Eqs (2.2)–(2.4) and equating the coefficients of 
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 To non-dimensionalize Eqs (2.20)–(2.22), we define the following functions  
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 Using Eqs (2.14) and (2.25) in Eqs (2.20)–(2.22), we obtain 
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 is the global 
Grashof number where GrT  is the Grashof number for thermal diffusion and GrC is the Grashof number for 
mass diffusion, Rex = U0x

3/2/ν  is the Reynolds number, Ri = Grx/Rex
2 is Richardson’s number, Pr = ν/α is the 

Prandtl number, Sc = ν/D is the Schmidt number. Moreover,  3
d sR 4 T a     is the Planck constant or 

the conduction radiation parameter and /wT T 1   is the surface temperature parameter. 
 The corresponding boundary conditions become  
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 Once the solutions of Eqs (2.15)-(2.19) and (2.26)-(2.30) are known, we can easily determine the 
values of the physical quantities, namely, the skin friction, the rate of heat transfer and the mass transfer at 
the surface of the wedge. These are important not only from a physical point of view but also experimental 
point of view. In this study, the results are discussed in terms of the amplitudes of the skin friction, the heat 
transfer rate and the mass transfer rate using the relations 
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velocity, concentration and temperature at the surface. Also, the phase angles of the skin friction, the heat 
transfer rate and the mass transfer rate are expressed by  
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3. Methods of solution 
 
 The set of Eqs (2.15) to (2.19) represents the steady state mean flow and temperature fields. We 
solve these equations by employing the straightforward finite difference method for different values of the 
physical parameters Pr, Sc, Ri, Rd and Δ. The resulting solutions are then applied in finding the solutions of 
Eqs (2.26) to (2.30) that provide the oscillating parts of the flow and the temperature fields. With the aim of 
validating the numerical solutions, Eqs (2.26) to (2.30) are also solved by the extended series expansion 
method for small ξ and the asymptotic method for large ξ. The solutions are discussed in the subsequent parts 
in details. 
 
3.1. Series solutions for small ξ 
 
 With the purpose of obtaining the effect of mixed convection flow near the leading edge, the result 
based on the finite number of terms in the series is only valid in a very small range of frequencies. Thus near 
the leading edge, or equivalently for small ξ, we expand the functions F, Θ and Φ in powers of ξ as given 
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 Substituting Eq.(2.31) into Eqs (2.26)–(2.28), and then equating the terms of like powers of (2iξ) to 
zero, the following groups of ordinary differential equations are obtained 
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4
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For m = 1 
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For m ≥ 2 
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 (3.8) 
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               
 

 (3.10) 

 
 The corresponding boundary conditions are 
 

           , , . for , , ,m m m m 0 0F 0 F 0 0 0 0 0 1 0 1 m 0 1 2             (3.11) 

 

       /( Pr) , , , for , , ,1 2
0 m m mF 1 F 0 0 0 m 0 1 2               (3.12) 
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 Here primes denote derivative with respect to η. Since Eqs (3.2)-(3.10) are linear and coupled, we 
solve these using the implicit Runge–Kutta–Butcher [17] initial value solver together with Nachtsheim–
Swigert [18] iteration up to O(ξ10). 
 
3.2. Asymptotic solutions for large ξ 
 
 We now concentrate on the solutions of Eqs (2.26)–(2.28) as ξ tends to infinity. Under this 
circumstance, the boundary layer characteristics may vary within a limited region adjacent to the surface. 
Accordingly, we seek series solutions using the following transformations 
 

       , , , , , , ( , ) ( , ), .1 2 1 2F G Y Y Y Y                    (3.13) 

 
 We thus obtain 
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 (3.16) 

 
 For small values of η, we expand the solutions of Eqs (2.15)–(2.17) in the power series 
 

,2 3 4 5
2 3 4 5f a a a a          (3.17) 

 

,2 3 4 5
0 1 2 3 4 5b b b b b b             (3.18) 

 

.2 3 4 5
0 1 2 3 4 5c c c c c c             (3.19) 

 
 Using Eqs (3.17)–(3.19) in Eqs (2.15)–(2.19) yields 
 

     , , , .2 0 1
1

a f 0 b 0 b 0
2

          , ,.....0 1c 0 c 0     (3.20) 
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 Now, the solutions of Eqs (3.14)–(3.16) can be obtained in the following forms 
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and           , .m 2
m

m 0

Y N Y






     (3.21) 

  
 Substituting Eqs (3.21) into Eqs (3.14)–(3.16), and equating the like powers of ξ, we obtain 
 

  

     

,
Pr

,
Pr

Ri Ri ,
Pr

Ri Ri ,
PrPr

0 0

1 1

2 2 0 0

22
3 3 0 0 0 1 1

i
E E i

1

i
E E 0

1

i
E E 1 1 w L w N

1

ai
E E Y E 6YE 4E 1 w L w N

4 11

   


  


      


          


 

 

 

     

Pr
,

Pr

Pr
,

Pr

3
d 0 0

3 2
d 1 1 d 1 0 0

4 i
1 R 1 L L 0

3 1

4 i
1 R 1 L L 4 R 1 b YL 2L

3 1

       
 

            
 


 

 

     
     

Pr

Pr

,

3 2
d 2 2 d 1 1 1

2 2
d 2 1 0 0 0

4 i
1 R 1 L L 4 R 1 b YL 2L

3 1

4 R 1 1 b b Y L 4YL 2L

              
 

            
 

 

  

     
     

     

    

Pr

Pr

×

Pr

Pr

3 2
d 3 3 d 1 2 2

2 2
d 2 1 1 1 1

2 3 3 2
d 3 1 2 1 0 0 0

2
2 0 1 0 0

4 i
1 R 1 L L 4 R 1 b YL 2L

3 1

4 R 1 1 b b Y L 4YL 2L

4
R 3 1 b 6 1 b b b Y L 6Y L 6YL

3

a Y L b YE 2E
4 1

              
 

             

             
 

   


 
 

and 



Conjugate heat and mass transfer on fluctuating ... 549 
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 The associated boundary conditions are 
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 Solving the above equations, we can find the expressions for F″(ξ, 0), Θ′(ξ, 0) and Φ′(ξ, 0) as 
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4. Results and discussion 
 
 In this study, we have analyzed the problem of an unsteady laminar mixed convection boundary 
layer flow of viscous incompressible fluid near a vertical wedge surface. The governing equations have been 
solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency 
range, and the extended series solution for the low frequency range and the asymptotic series expansion 
method for the high frequency range. It is worth mentioning that the effect of the constant coefficients (1 + 
Pr)1/4, (1 + Pr)−1/4  and (1 + Pr)−1/4 within the definitions of the skin friction, heat transfer and mass transfer 
(Eqs (3.22)-(3.24)), respectively, has not been included into the results.  
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Fig.1. (a) Amplitude and (b) phase angle of skin friction for different values of Ri while Pr = 0.72, w = 0.5, 

Sc = 0.22, Rd = 0.5, Δ = 0.1.  
 
 With the aim of validating the numerical solutions, a comparison of the amplitudes and phase angles 
of skin friction obtained by the numerical solutions for all ξ and the series solutions for small and large ξ are 
shown in Fig.1. It is obvious from the figures that the solutions are in excellent agreement. Besides Fig.1 
depicts the effects of varying the effects of Richardson’s number, Ri, on the amplitudes and phase angles of 
the skin friction. It is seen that the amplitudes of skin friction are higher for increased Richardson’s number, 
Ri, while the phase angles are lower. As the Richardson’s number, Ri, increases, mixed convection of flow, 
heat transfer and mass transfer increases. Accordingly, the amplitudes of skin friction are higher for higher 
Ri. But the rate of change of skin friction from the leading edge to the downstream region is higher for lower 
Ri so that the phase angles of skin friction are higher for lower Ri. 

           
              

Fig.2.  (a) Amplitude and (b) phase angle of heat transfer for different values of Ri while Pr = 0.72, w = 0.5, 
Sc = 0.22, Rd = 0.5, Δ = 0.1.  
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 The effects of varying the Richardson’s number, Ri, on (a) amplitudes and (b) phase angles of heat 
transfer are shown in Fig.2. With an increase of Ri, the amplitudes of heat transfer are higher near the 
leading edge while the reverse case is observed in the downstream region. On the other hand, for smaller Ri 
the phase angles are higher near the leading edge and then they become lower in the downstream region.  
         

         
         
Fig.3.  (a) Amplitude and (b) phase angle of mass transfer for different values of Ri while Pr = 0.72,           

w = 0.5, Sc = 0.22, Rd = 0.5, Δ = 0.1.  
 
 Figure 3 exhibits the effects of varying the Richardson’s number, Ri, on the amplitudes and phase 
angles of mass transfer. The amplitudes of mass transfer are higher near the leading edge with an increase of 
Ri, while the reverse case is observed in the downstream region. Nevertheless for smaller Ri the phase angles 
are higher. Finally, the amplitudes and phase angles tend to an asymptotic value for all Ri.          
 

            
 
Fig.4.  (a) Amplitude and (b) phase angle of skin friction for different values of Pr while Ri = 2.0, w = 0.5,  

Sc = 0.22, Rd = 0.5, Δ = 0.5.  
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 The influences of the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction are 
illustrated in Fig.4. From this figure and Tab.1, it is observed that when the Prandtl number is increased, the 
amplitudes and phase angles of skin friction increase. This is for the reason that the Prandtl number becomes 
high owing to either increase of the kinematic viscosity or decrease of the thermal diffusivity of the fluid, 
and the increase of the skin friction is the result of this change of the fluid property.  
 
Table1. Amplitude and phase angle of skin friction for different Pr while Ri = 2.0. 
 

 Au u 

 All ξ Small & Large ξ All ξ Small and Large ξ 
                                              Pr = 0.05 
0.01 24.21504 24.39176s 0.03090 0.03135s 

0.10 7.65732 7.71290s 0.34034 0.31396s 

0.50 3.42191 3.44411s 1.70988 1.61944s 

1.00 2.41451 2.42084s 3.49818 3.63779s 

2.00 1.70030 1.41458s 7.55133 9.56755s 

3.00 1.39702 1.34327l 12.28315 10.68621l 

4.00 1.24198 1.22190l 17.20686 16.68792l 

6.00 1.12263 1.11855l 24.95134 24.36954l 

8.00 1.08296 1.07706l 29.14756 28.87964l 

10.00 1.05770 1.05622l 31.82646 31.80292l 

                                              Pr = 0.72 
0.01 25.73804 24.23397s 0.03861 0.04543s 

0.10 8.13899 7.66298s 0.40594 0.45460s 

0.50 3.63751 3.42219s 2.02972 2.30713s 

1.00 2.56769 2.41203s 4.15585 4.81258s 

2.00 1.81466 1.48212s 8.97085 11.80142s 

3.00 1.50619 1.46646l 14.41984 13.10832l 

4.00 1.35994 1.34785l 19.67463 18.90033l 
6.00 1.25663 1.24767l 26.80379 26.14150l 

8.00 1.21358 1.20768l 30.45161 30.32083l 

10.00 1.18805 1.18762l 33.10317 33.00724l 

                                              Pr = 7.0 
0.01 35.19503 32.39354s 0.04477 0.00830s 

0.10 11.12919 10.24231s 0.45215 0.08319s 

0.50 4.96918 4.56520s 2.26401 0.44264s 

1.00 3.49952 3.19606s 4.73482 1.04939s 

2.00 2.47273 2.88774s 10.73652 13.31676s 

3.00 2.08757 2.07070l 17.39014 16.22144l 

4.00 1.93413 1.92644l 22.84133 21.65324l 

6.00 1.82116 1.80549l 28.73856 28.27460l 

8.00 1.76074 1.75736l 32.23035 32.02920l 

10.00 1.73675 1.73323l 34.59221 34.42276l 

 
Notes: Here and hereafter, s and l represent the solutions due to series solution for small ξ and asymptotic solution for 
large ξ , respectively. 
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Fig.5.  (a) Amplitude and (b) phase angle of heat transfer for different values of Pr while Ri = 2.0, w = 0.5, 

Sc = 0.22, Rd = 0.5, Δ = 0.5.  
 

               
 
Fig.6.  (a) Amplitude and (b) phase angle of mass transfer for different values of Pr while Ri = 2.0, w = 0.5, 

Sc = 0.22, Rd = 0.5, Δ = 0.5.  
 
 Figure 5 presents a comparison between the numerical solutions for all ξ and the series solutions for 
small and large ξ in terms of the amplitudes and phase angles of heat transfer. Evidently, the solutions 
obtained by the numerical solutions provide a good agreement with the series solutions. Also the effects of 
the Prandtl number on the heat transfer are comprehensible from Fig.5. It is found that the increment of the 
Prandtl number causes an increase of the amplitudes and phase angles of heat transfer near the leading edge. 
Since the Prandtl number increases due to either an increase of the kinematic viscosity or a decrease of the 
thermal diffusivity of the fluid, hence heat is accumulated near the leading edge that results in the increase of 
the amplitudes and phase angles of heat transfer.    
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 Figure 6 illustrates the effects of changing the Prandtl number, Pr, on the amplitudes and phase 
angles of mass transfer. It is seen from the figure that the amplitudes of mass transfer reduce and the phase 
angles of mass transfer raise with increasing the Prandtl number, Pr. This is due to the fact that the Prandtl 
number becomes high in consequence of either an increase of the kinematic viscosity or decrease of the 
thermal diffusivity of the fluid, and the increase of the skin friction is the result of this change in the fluid 
property. 
 

              
 
Fig.7.  (a) Amplitude and (b) phase angle of skin friction for different values of Sc while Pr = 0.72, Ri = 2.0, 

w = 0.5, Rd = 0.5, Δ = 0.5.  
 

             
 
Fig.8.  (a) Amplitude and (b) phase angle of heat transfer for different values of Sc while Pr = 0.72, Ri = 

2.0, w = 0.5, Rd = 0.5, Δ = 0.5.  
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Fig.9.  (a) Amplitude and (b) phase angle of mass transfer for different values of Sc while Pr = 0.72, Ri = 
2.0, w = 0.5, Rd = 0.5, Δ = 0.5.  

 
 The Schmidt number effects on the amplitudes and phase angles of skin friction, heat transfer and 
species mass transfer are presented in Figs 7–9. These figures show that the amplitudes of skin friction 
increase but the phase angles decrease with small values of Sc. This is due to the fact that the Schmidt 
number becomes high owing to either an increase of the kinematic viscosity or a decrease of the mass 
diffusivity of the fluid, and the increase of the skin friction is the result of this change in the fluid property. 
The changing of Sc has no strong effect on the amplitudes and phase angles of heat transfer although it has a 
strong effect on the amplitudes and phase angles of species mass transfer. As the value of Sc increases, the 
amplitudes and phase angles of mass transfer increase. This is because the Schmidt number, Sc, indicates the 
physical properties of the diffusing species. 
 

              
 
Fig10.  (a) Amplitude and (b) phase angle of skin friction for different values of Rd while Pr = 0.72, Ri = 2.0, 

w = 0.5, Sc = 0.22, Δ = 0.5.  
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Fig.11.  (a) Amplitude and (b) phase angle of heat transfer for different values of Rd while Pr = 0.72, Ri = 

2.0, w = 0.5, Sc = 0.22, Δ = 0.5.  
 
 The effects of varying the conduction–radiation parameter Rd  on the amplitudes and phase angles of 
skin friction, heat transfer and mass transfer are shown in Figs 10-12. While Rd increases, the amplitudes of 
skin friction increase, but the phase angles decrease. It should be noted that the change of the amplitudes and 
phase angles is more profound when radiation dominates heat conduction (i.e., Rd is large). It is obvious that 
an increase in the radiation parameter Rd results in decreasing amplitudes but in increasing phase angles of 
heat transfer within the boundary layer. This is because the small Rd values correspond to an increased 
dominance of conduction over radiation. Moreover the changing of Rd has no strong effect on the amplitudes 
and phase angles of species mass transfer although it has a strong effect on the amplitudes and phase angles 
of heat transfer. As the value of Rd increases, the amplitudes of mass transfer increase but the phase angles 
decrease.  
 

                
 

Fig.12.  (a) Amplitude and (b) phase angle of mass transfer for different values of Rd while Pr = 0.72,        
Ri = 2.0, w = 0.5, Sc = 0.22, Δ = 0.5.  
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Fig.13.  (a) Amplitude and (b) phase angle of skin friction for different values of Δ while Pr = 0.72,          
Ri = 2.0, w = 0.5, Sc = 0.22, Rd = 0.5.        

 

              
 
Fig.14.  (a) Amplitude and (b) phase angle of heat transfer for different values of Δ while Pr = 0.72,          

Ri = 2.0, w = 0.5, Sc = 0.22, Rd = 0.5.  
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Fig.15.  (a) Amplitude and (b) phase angle of mass transfer for different values of Δ while Pr = 0.72,         

Ri = 2.0, w = 0.5, Sc = 0.22, Rd = 0.5.  
 
 Figures 13-15 depict the influences of changing the surface temperature parameter Δ on the 
amplitudes and phase angles of skin friction, heat transfer and mass transfer. The figures indicate that 
the amplitudes of skin friction and mass transfer increase but the phase angles decrease with increasing 
values of the surface temperature parameter Δ. However it is seen from Fig.15 that the amplitudes of the 
rate of heat transfer decrease but the phase angles increase when the surface temperature parameter 
increases.  
 
4.1.  Effects of different physical parameters on transient skin friction, heat transfer and mass 

transfer 
 
 In this section, the effects of the physical parameter are discussed in terms of the transient skin 
friction, heat transfer and mass transfer which are determined using the following relations 
 

 coss u uA t        , (4.1) 

 

 coss q qq q A t      , (4.2) 

 

 coss m mm m A t       (4.3) 

 
where      , ands s sf 0 q 0 m 0         are, respectively, the steady-state skin friction, heat 

transfer and mass transfer.    
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Fig.16. Numerical values of transient skin friction for different values of ξ against ωt while Ri = 2.0, w = 0.5, 

Rd = 0.5, Δ = 0.5, Sc = 0.22, Pr = 0.05 and Pr = 0.72. 
 

             
 
Fig.17. Numerical values of transient heat transfer for different values of ξ against ωt while Ri = 2.0, w = 0.5, 

Rd = 0.5, Δ = 0.5, Sc = 0.22, Pr = 0.05 and Pr = 0.72. 
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Fig.18. Numerical values of transient mass transfer for different values of ξ against ωt while Ri = 2.0, w = 

0.5, Rd = 0.5, Δ = 0.5, Sc = 0.22, Pr = 0.05 and Pr = 0.72. 
       
 The effects of varying the Prandtl number, Pr, on the transient skin friction, heat transfer and mass 
transfer are shown in Figs 16, 17 and 18, respectively, for Pr = 0.05 and Pr = 0.72. Results suggest that the 
amplitudes of oscillation of the transient skin friction, τ, and heat transfer, q, increase but that of mass 
transfer, m, decrease with an increase of the Prandtl number, Pr. The amplitudes of oscillation die down 
slowly from the leading edge to the downstream region, that is, with increasing ξ. However, this change in 
amplitudes oscillation is accelerated for higher values of the Prandtl number. 
 

             
 
Fig.19. Numerical values of transient skin friction for different values of ξ against ωt while Pr = 0.72, Ri = 

2.0, w = 0.5, Δ = 0.5, Sc = 0.22, Rd = 0.0 and Rd = 0.5. 
 



562  M.N.Firoza, N.C.Roy and Md.A.Hossain 

              
 
Fig.20. Numerical values of transient heat transfer for different values of ξ against ωt while Pr = 0.72, Ri = 

2.0, w = 0.5, Δ = 0.5, Sc = 0.22, Rd = 0.0 and Rd = 0.5. 
 

              
 
Fig.21. Numerical values of transient mass transfer for different values of ξ against ωt while Pr = 0.72, Ri = 

2.0, w = 0.5, Δ = 0.5, Sc = 0.22, Rd = 0.0 and Rd = 0.5. 
 
 In Figs 19-21, numerical values of the transient skin-friction coefficient, heat transfer coefficient and 
transient mass transfer coefficient have been presented, respectively, against ωt, taking Pr = 0.72, Ri = 2.0, w 
= 0.5, Δ = 0.5, Sc = 0.22, Rd = 0.0 and Rd = 0.5. From these figures it is seen that the amplitudes of 
oscillation of the transient skin-friction increase but these of transient heat transfer decrease when Rd 
increases. On the other hand, the amplitudes of oscillation of the transient mass transfer display a small 
increment for increasing the values of Rd. This may be explained by noting that an increase in Rd means an 
increase in internal heat due to radiation in the boundary layer, which leads to an increase in the momentum 
boundary layer thickness while the thermal boundary layer thickness is reduced. This consequently causes an 
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increase in the transient skin-friction τ, the transient mass transfer m and a decrease in the transient heat 
transfer q. 
 
5. Conclusions 
 
 The mixed convection boundary layer flow of a viscous incompressible fluid past a vertical wedge 
has been investigated taking into account the effect of thermal radiation. The skin friction, heat transfer and 
mass transfer are found to increase with an increase of the Richardson number. The higher Prandtl number 
enhances the skin friction and the heat transfer but reduces the mass transfer. Also, the conduction-radiation 
parameter and the surface temperature parameter significantly diminish the rate of heat transfer while their 
effects on the skin friction and mass transfer are rather weak. However, mass transfer is strongly dependent 
on the Schmidt number. For higher Prandtl number the amplitudes of oscillation of transient skin friction and 
heat transfer increase but these of mass transfer decrease. In addition, an increase in the conduction–radiation 
parameter causes an increase in the transient skin-friction and mass transfer but a decrease in the transient 
heat transfer. 
 
Nomenclature 
 
 C   species concentration 
 D  mass diffusivity 
 F  dimensionless velocity 
 f  dimensionless stream function 
 GrC  Grashof number for mass diffusion 
 Grx  Grashof number 
 g  acceleration due to gravity 
 k  thermal conductivity 
 k*  Stefan–Boltzman constant 
 m  transient mass transfer 
 Pr  Prandtl number =    

 q  transient heat transfer 
 rq   radiative heat-flux in the y-direction 

 Rd  conduction–radiation parameter 

 Rex  Reynolds number = 3 2
0U x   

 Ri  Richardson’s number = Gr Re 2
x x  

 Sc  Schmidt number = D  

 T   temperature of the fluid 
 t  time 
 U0  free stream velocity 
 u, v  fluid velocities in the x- and y- direction respectively 
 w  combined buoyancy parameter = Gr GrC x  

 x, y  coordinates parallel with and perpendicular to the wedge surface   
 α  thermal diffusivity 
 β  coefficient of volumetric expansion 
 ∆  surface temperature parameter 
 η  similarity variable 
 θ, Θ  temperature function 
 ν  kinematic viscosity 
 ξ  similarity variable 
 ρ  fluid density 
 σs  scattering coefficient 
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  τ  transient skin friction 
 ψ  stream function 
 φ, Φ  species concentration function 
 ω  amplitude of oscillation 
 
Subscripts 
 
 C  based on species concentration level 
 s  refers to the steady state 
 T  based on temperature level 
 w  refers to the wall 
 ∞  ambient condition 
 
Superscript 
 
 ʹ  differentiation with respect to Y or   
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