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The present investigation is concerned with one dimensional problem in a homogeneous, isotropic
thermoelastic medium with double porosity structure in the presence of Hall currents subjected to
thermomechanical sources. A state space approach has been applied to investigate the problem. As an application
of the approach, normal force and thermal source have been taken to illustrate the utility of the approach. The
expressions for the components of normal stress, equilibrated stress and the temperature change are obtained in
the frequency domain and computed numerically. A numerical simulation is prepared for these quantities. The
effect of the Hartmann number is depicted graphically on the resulting quantities for a specific model. Some
particular cases of interest are also deduced from the present investigation.
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1. Introduction

Porous media theories play an important role in many branches of engineering including the
materials science, petroleum industry, chemical engineering, biomechanics and other fields of engineering.
The representation of a fluid saturated porous medium as a single phase material has been virtually
discarded. The material with pore spaces such as concrete can be treated easily because all concrete
ingredients have the same motion if the concrete body is deformed. However, the situation is more
complicated if the pores are filled with liquid and in that case the solid and liquid phases have different
motions. Due to these different motions, different material properties and the complicated geometry of pore
structures, the mechanical behavior of a fluid saturated porous thermoelastic medium becomes very difficult.
So researchers have tried to overcome this difficulty and we can find many studies on porous media in the
literature. A brief historical background of these theories is given by de Boer [1, 2].

The double porosity model represents a new possibility for the study of important problems
concerning the civil engineering. It is well-known that, under super- saturation conditions due to water of
other fluid effects, the so called neutral pressures generate unbearable stress states on the solid matrix and on
the fracture faces, with severe (sometimes disastrous) instability effects like landslides, rock fall or soil
fluidization (a typical phenomenon connected with propagation of seismic waves). In such a context, it
seems possible, acting suitably on the boundary pressure state, to regulate the internal pressures in order to
deactivate the noxious effects related to neutral pressures.
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Wilson and Aifanits [3] presented the theory of consolidation with the double porosity. Khaled et al.
[4] employed a finite element method to consider the numerical solutions of the differential equation of the
theory of consolidation with double porosity developed by Aifantis [3]. Wilson and Aifantis [5] discussed
the propagation of acoustics waves in a fluid saturated porous medium. Various authors discussed different
problems in double porous media [6]-[14]. Svanadze [15]-[19] investigated some problems on elastic solids,
viscoelastic solids and thermoelastic solids with double porosity. Scarpetta et al. [20, 21] proved the
uniqueness theorems in the theory of thermoelasticity for solids with double porosity and also obtained the
fundamental solutions in the theory of thermoelasticity for solids with double porosity.

In recent years the state space description of linear systems has been used extensively in various
areas of engineering, such as the analysis of control systems. The state space approach offers an attractive
way to avoid the difficulties of the traditional linear model approach. The state —space representation is a
mathematical model of a physical system as a set of input, output and state variables related by first-order
differential equations. To abstract away from the number of inputs, outputs and states, the variables are
expressed as vectors. If the dynamical system is linear and time invariant, the differential and algebraic
equations may be written in a matrix form. The state-space representation provides a convenient and
compact way to model and analyze systems with multiple inputs and outputs.

Bahar and Hetnarski [22]-[26] investigated a good number of problems in thermoelasticity by using
the state space approach. Also Ezzat et al. [27], Maghraby et al.[28], Youssef and Al-Lehaibi [29], Othman
[30], Elisbai and Youseff [31] and Sherief and El-Sayed [32] investigated different types of problems in
different media by using the state space approach.

The foundations of magnetoelasticity were presented by Knopoff [33] and Chadwick [34] and
developed by Kaliski and Petykiewicz [35]. Attention is paid to the interaction between the magnetic field
and strain field in a thermoelastic solid due to its many applications in the fields of geophysics, plasma
physics and related topics.

When the magnetic field is very strong, the conductivity will be a tensor and the effect of Hall
current cannot be neglected. The conductivity normal to the magnetic field is reduced due to the free
spiraling of electrons and ions about the magnetic lines of force before suffering collisions and a current is
induced in a direction normal to both the electric and magnetic fields. This phenomenon is called the Hall
effect. Authors such as Sarkar and Lahiri [36], Salem [37], Zakaria [38]-[40], Attia [41] have considered the
effect of Hall currents for two dimensional problems in micropolar thermoelasticity.

In the present paper, we formulate the state space approach to the boundary value problem for a
thermoelastic material with double porosity structure in the presence of Hall current subjected to
thermomechanical sources. The expressions for normal stress, equilibrated stresses and temperature
distribution are obtained in closed form, computed numerically and represented graphically for normal force
and thermal source.

2 Basic equations

Following lesan and Quintanilla [42], the field equations and the constitutive relations for a
homogeneous thermoelastic material with double porosity structure, when the Hall current is taken into
account, can be written as:

Eequation of motion

pAw; +(h+pw)u; ; +bo, +dy; —BT,; + F; = pii; (2.1)

jii i
equilibrated stress equations of motion

oAQ +b Ay —bu, , —o,9—azy+v,T = K0, (2.2)

bIA(eryA\p—du” —o30—0Ly +Y,T =K,y , (2.3)
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equation of heat conduction
BToés + v/ Tyb+v:Tpy +pC'T =KVT, (2.4)

constitutive relations

t; =he,.; +2ue; +bd;0+dd,;y —B3,;T, (2.5)
c;=ap; +by; , (2.6)
Ci=bo,;+yv, (2.7)

where F; =p¢e;,.J ;H, is the Lorentz force.
The generalized Ohm’s law including Hall current is

i
J;, =0, [E,. + Wy H, —js,-j,J jH,J (2.8)

e

where o, (z nee2 t,/ me) is the electrical conductivity; p, is the magnetic permeability; e is the charge of an

electron; n, is the number density of electrons; #, is the electron collision time; m, is the electron mass; E;
is the intensity tensor of the electric field; A and p are Lame’s constants; p is the mass density;

B=(3k+2u)(xt ; o, is the coefficient of linear thermal expansion; C" is the specific heat at constant

strain; u; is the displacement components; #; is the stress tensor; &, is the permutation symbol; 1, is the

ijr
magnetic permeability; J, is the conduction current density; k;and k, are coefficients of equilibrated
inertia; v; is the volume fraction field corresponding to pores and v, is the volume fraction field
corresponding to fissures; ¢ and y are the volume fraction fields corresponding to v; and v,, respectively;
o, is the equilibrated stress corresponding to v;; C; is the equilibrated stress corresponding to v,, K is the
coefficient of thermal conductivity and b,d,b;,y,y;,y, are constitutive coefficients; 8,-j is the Kronecker’s
delta; 7' is the temperature change measured form the absolute temperature 7;(7), #0), a superposed dot
represents differentiation with respect to time variable z.

2 2 2
ML UL IS N
5x1 8}62 aX3 6x1 8x2 8x3

are the gradient and Laplacian operators, respectively.
3. Formulation and solution of the problem

We consider a homogeneous, isotropic, perfectly conducting thermoelastic solid with double
porosity occupying the region 0<x<o. For a one dimensional problem, we take

u(x,1),0(x;,1),w(x;,1),T(x;,2). A uniform very strong magnetic field of strength H, is assumed to be
applied in the positive y —direction and we also assume that £ =0 . Under these assumptions, the generalized
Ohm’s law gives J; =J, =0 everywhere in the medium.

The current density components J; is given by
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7, :M(%j 3.1)
I+m” \ ot

where m=w,t, is the Hall parameter and o, =ep,H, / m, is the electron frequency.
Let us introduce the following non-dimensional variables

2472
® ® Lj coupH,
xp=—tx, wp =—tu,  t; =——, M=202070 o,
¢ ¢ BT, PO
(3.2)
ko, ko, T ¢ ¢
¢'= ¢, y="—~, T'=—, o} =|—|o;, C(i=|—"—|G
o 7 Ty o, o,
A+2 C*c2
where ¢ = Eo ;= P~ €I and M is the Hartmann number or magnetic parameter.

p
Making use of dimensionless quantities given in Eqgs (3.2) in Egs (2.1)-(2.4), (dropping primes for
convenience), and assuming the time harmonic solution of the resulting equations, we obtain after some
simplifications

7y =N1L7+N2$,1+N3\|_/,1+N47_",1a (3.3)
Vo =N9L7,1+N10$+N11\T’+szfa (3.5)
7_:11 =N1317,1+N14$+N15\T’+N16f (3.6)
where
-5 5
sz_im( MZ)_(Dz’ Ny=-8;, N;=-8,, Ny=3;, M1=—5, M2=—6a
I1+m Oy dy
5, — o’ S -5 -8 S
M= 03’ M=, M;="20 M =210 M7_812, My =213
dy dy 84 d;; d;; 811
8, — -8 S S S
M9=&a My = L M= 1z, M12=i, M;=— L, Myy=— !
8, 9y ) ) 329 820
d/6
S0=—-» Niz=05, Niyy=08y, Nis=05, Njg=1I, (3.7
M M, +M M M.+M M M,+M
Mys=1-M,M,, Ns=-—1 7+ 2. N, =20 st 3. N, =2 9t ‘-

M15 M15 M15
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M M M
15
ba do BT, o
Njy=MgNg+M, SIZ%a 622%’ F :_0’ 4= 3, >
pCik,0, pCik,0, pC; Crk;
b b o o v, T b
d5 = 21 » Og=—, &= 125 68:—32’ 59:J, Sy = 21 )
Crk; ay ko, ko, oy Cik,
Y dk; o3 o,
811 = 2= > 813 =T 5> 814 = >
12 k, ik; k2°312 k20312
v2Tok; _ BCi _ v104C7 _ ¥20,C;
5= , 055 = , 0;7= 3> 85 = 3
ak; Ko, Kk, Kk;o,

4. State -space formulation

Choosing as state variables the displacement # , volume fraction ¢ and \ , temperature change T in
the x- direction, then the equations can be written in the matrix form as

—dVE;’(”) = A(0)V (x,0) (4.1)

and the values of A(w),V (x,®) are given in Appendix I.
The formal solution of the system (4.1) can be written in the form

V(x,0) =exp|:A(oa)x:|V(0,oo) . 4.2)

The value of V(0,®) is given in Appendix I.
We shall use the well-known Cayley-Hamilton theorem to find the form of the matrix exp[A(w)x].
The characteristics equation of the matrix 4(w) can be written as

A+ DA + DA+ DM+ D, =0 (4.3)
where
Dy =-N;—=Nsg—N;;—=N;s —N;Ns —N3Ny—N,Ny3,

Dy =N/Ng+N/N;;+NNjg+NgN;j+NgN;s—N;Njyg—NgNyy+N;Njg +
—N)N;5s —=Ny;N;Ng+N3;NgNg + N;NsN;j+ NyNsNyg —N3NsNjg+ N;NgNjg +
—N;NgN;3 =NyNsN;y+NyNgN;3 = NyNgN;s = N3N ;Nj3 + NyN Ny,
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D3 ==NgN;Nis+N;NigNjs =NiNgNjj+ NiN;Njg =Ny NgNyg + NyNgNpy = Ny NjNyg +
+NNjpNjs + NgNjpNis —=NyNjpNyy = NgNjgNys + NgNjNyy + NyN;NoNjg = N3sNgNoN g +
—N,NgNgN;s5+N3NgNgNy+ NyNsNgN;s =Ny N;NgNjy =NyNsNNig + N3NsNjgNjg +
+N,NsNpNys =NyN; NNy + NyNgNjNys = N3NsNipNpy + N3NgNppNys = N3NgNjgNys +
~NyNsNjgNys + NyNsNyNpy =Ny NNy Njs + NyN;NjgNps,
D;=N;Ng(N;Njs—NppNis)+ NN, (NjpNyy = NigNyg) + NiNg(NjgNys =N Npy)  (4.4)

Equation (4.3) is biquadrate in 22, yields four roots: A;,A,,Az,A,.
Now the Taylor series expansion for the matrix exponential in Eq.(4.2) is given by

exp[A((o)szio [A(:#]" . 4.5)

Using the Cayley-Hamilton theorem, this infinite series can be truncated as
eXp|:A((D)X:|=a()I+CIIA+azA2 +a3A3 (4.6)
where a,,a;,a,,a; are parameters depending on x and ®.
According to the Cayley-Hamilton theorem the characteristic roots —A;,—A,,—A;,—A, of the matrix
A must satisfy Eq.(4.6). Therefore, we get
exp[-A,x]=ayl —a;), +ah —azh,’,
exp[~hox]=ayl —ah, +ahy’ —azh,’, (4.7)
exp[-Asx]=apl —ah; + a2K32 —a3k33 ,
exp[—Mx] =apl —ah, +ah,’ —azh,’ .

Solving the above system of equations, we obtain the value of parameters a,,a;,a,,a; and these

values are given in Appendix .
Therefore, we have

exp[ 4(0)x | = L(x,0) (4.8)
where L(x,w) is a §x & matrix with the components
liy=ag+a;Ny, Iy =asR;, iz =a3Ry, 1y =a3Rs, Ly =a;Rs, [y =ay+a;Ng,

s =a;N;, Ly =a;Ng, I5; = a3Ry, I;=a;Nyg, I53= a9 +a;Nyy, sy =a;Nps, Ly = a3Ry;5,
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ly=a;Nyy, lz=a;Nis, ly=ag+a,Nig, Ry =N,Ng+N3;Njy+ NNy, (4.9)
R2:N2N7+N3N11+N4N15, R3=N2N8+N3N12+N4N16,
Rs=N;Ns, Ry=N;Ng, R;3=N/Nj.
Rewriting Eq.(4.2) with the aid of Eq.(4.8) yields
V(x,m)=L(x,0)V(0,m). (4.10)

Therefore, we obtain

= (4.11)

N <€l Sl =
S
=
S
S
o
bt
o
K

5. Boundary conditions

A homogeneous isotropic thermoelastic solid with double porosity structure occupying the region
0<x<ow is considered. The bounding plane x=0 1is subjected to normal force and thermal source.
Mathematically these can be written as

() t;, =—Fexp[—iot], (5.1)
(i) o, =—F, exp[—iot], (5.2)
(i) ¢, =—Fexpl-iot], (5.3)
(iv) T = Fyexp[—ior] (5.4)

where Fjand F, are the magnitude of the force and constant temperature applied on the boundary,
respectively.
Substituting the values of u,¢,y,7,¢;;,6; and {; from Eqgs (2.1), (2.2), (2.3), (4.10) in to Eqs (5.1)-

(5.4) and with the aid of Eqgs (3.1) and (3.7), after some lengthy calculations, we obtain the normal stress,
equilibrated stresses and temperature change as

r r r,) .
=S, —L+8,-2+8,-2+58 e ot 5.5
11 (lr T 31" 4Fj (5.5)
r r I, r
o, =|S;—L+S —2+85,-3+8, 2 |e, 5.6
1 [5 6T v T 8rj (5.6)

r r I, r
=|Sg—L+S,-2+85, =2+8,,—L |, 5.7
Ql ( 9 T 10 T 11 r 12 r ( )
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r r r r :
T=\1,~L+1,-2+1,-3+1,,—% ™. 5.8
[411" 2 Tl (5.8)
The values of S;,5,,............, 5, are given in Appendix II.

6. Particular cases
Case 6.1: If F, =0 in Eqgs (5.5)-(5.8), we obtain the corresponding expressions for normal force.
Case 6.2: If F; =0 in Eqgs (5.5)-(5.8), we get the corresponding expressions for thermal source.

7. Numerical results and discussion

The material chosen for the purpose of numerical computation is copper, whose physical data is
given by Sherief and Saleh [43] as

A=7.76x10"" Nm™, ¢ =3.83Ix10°m’s K", n=3.86x10"" Nm™,
k=386x10°Ns"'K™!, w=1x10""s"!, T,=0293x10°K,
o, =1.78x10° K™, t=0.1s, p=8.954x10°Kgm™ .

Following Khalili [44], the double porous parameters are taken as

o, =24x10" Nm™, o;=2.5x10""Nm™, a=13x10°N, y=1.Ix10"N,

v, =016x10° Nm™, b,=0.12x10° N, d=0.Ix10""Nm™,
v,=0219x10° Nm™, k;=0.1456x 107> Nm>s®, b=0.9x10"" Nm™ ,

o; =23x10" Nm™,  k,=0.1546 x 107> Nm™s* .

Following Zakaria [40], the electric constants are taken as

oy =9.36x10° Col’ / Clcm.s |

H,=10%Col / cm. s.

The software MATLAB has been used to determine the values of normal stress, equilibrated stresses
and temperature change. Figures 1-4 and Figs 5-8 depict the variations of normal stress, equilibrated stresses
and temperature distribution with the Hartmann number (M) with respect to distance x for normal force and
thermal source, respectively. In all the figures, the solid line corresponds to the value of M =0, small
dashed line corresponds to the value of M =1 and big dashed line corresponds to the value of M =1.5.
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Normal Force

Figure 1 shows the variation of normal stress ¢;; with respect to distance x. The variation is similar

for all values of the Hartmann number. It is noticed that with the increase in the value of M, the value of
normal stress also increases.
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Fig.1. Variation of normal stress ¢;; w.r.t. x. Fig.2. Variation of equilibrated stress ¢; w.r.t x.

Figures 2 and 3 depict the variations of equilibrated stresses ¢; and t; with respect to distance x,
respectively. For M =0, the value of 6; and 1, increases for 0 <x <2, again decreases for 2<x <4 and then

again increases for 4 <x <6 and further decreases away from the source. For M =1 and 1.5, a similar behavior
is noticed near the application of the source whereas on opposite behavior is noticed away from the source.

Figure 4 represents the variation of temperature change 7" with respect to distance x. It is found that
the behavior is similar for M =0 and / while it becomes reverse for M =1.5.
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Fig.3. Variation of equilibrated stress {; w.r.t. x. Fig.4. Variation of temperature change 7' w.r.t x.
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Thermal Source

Figure 5 depicts the variation of normal stress #;; with respect to distance x. The variation is similar
for all the three cases under consideration (M =0,1,1.5). It is noticed that with the increase in the value of
M, the value of normal stress also increases.

Normal stress ( t;; )
|
Equilibrated stress ( o, )

0 1 2 3 4 5 6 7 8
Distance (x) Distance (x)
Fig.5. Variation of normal stress #;; w.r.t. x. Fig.6. Variation of equilibrated stress ¢; w.r.tx.

Figures 6 and 7 show the variation of equilibrated stresses ¢; and t; with respect to distance x,

respectively. The variation is of oscillatory nature for M =0 while the same behavior is noticed for
M =1and 1.5, i.e., monotonically increasing and decreasing.
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Fig.7. Variation of equilibrated stress {; w.r.t. x. Fig.8. Variation of temperature change 7 w.r.t x.
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Figure 8 represents the variation of temperature change 7 with respect to distance x. It is noticed that
with the increase in the value of M, the value of temperature change decreases.

8 Conclusion

The behaviour of normal stress, equilibrated stresses and temperature distribution in an isotropic
homogeneous thermoelastic material with double porosity structure under the effect of Hall currents has been
investigated for the normal force and thermal source by using the state space approach. It is observed that
with the increase in the value of the Hartmann number, normal stress also increases. The behavior of
equilibrated stresses is oscillatory in nature for M =0 where for M =1 and 1.5, the behavior is same near

the application of the source while a reverse behavior is observed away from the source. For normal force,
the behavior of temperature change is similar for M= 0 and I, whereas an opposite behavior is observed for

M =1.5 while in the case of thermal source, the value of temperature changes decreases with the increase in
value of the Hartmann number.

Nomenclature

b,d,b;,y,v;,Y, - constitutive coefficients

*

C - specific heat at constant strain
E; - intensity tensor of the electric field
e — charge of an electron
J, — conduction current density
K - coefficient of thermal conductivity
m, — electron mass
n, — number density of electrons
T=T -T, - small temperature increment
t, — electron collision time
t; — stress tensor
u; — displacement components
a, - coefficient of linear thermal expansion
d; — Kronecker’s delta
€j, — permutation symbol
¢; — equilibrated stress corresponding to v,
K; , k, — coefficients of equilibrated inertia
A, u — Lame’s constants
p, — magnetic permeability
v, — volume fraction field corresponding to pores
v, — volume fraction field corresponding to fissures
p - mass density
o, - electrical conductivity
c; — equilibrated stress corresponding to v,
¢ - volume fraction field corresponding to v,

y - volume fraction field corresponding to v,
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