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The fundamental equations of the two dimensional generalized thermoelasticity (L-S model) with one 
relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal 
mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting 
equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue 
approach. The field variables in the space time domain are obtained numerically. The results corresponding to the 
cases of conventional thermoelasticity CTE), extended thermoelasticity (ETE) and temperature rate dependent 
thermoelasticity (TRDTE) are compared by means of graphs. 
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1. Introduction 
 
 Most of the thermoelasticity and generalized thermoelasticity (coupled or uncoupled) problems have 
been solved by using potential functions. This method is not always suitable as discussed by Sherief [1] and 
Sherief and Anwar [2]. It may be summarized by (i) the boundary and initial conditions for physical 
problems are directly related to the physical quantities under consideration and not to the potential function 
and (ii) the solution of the physical problem in natural variables is convergent while other potential function 
representations are not always convergent. The alternative to the potential function approach are - (i) State-
Space approach: This method is essentially an expansion in a series in terms of the coefficient matrix of the 
field variables in ascending powers and applying the Caley-Hamilton theorem, which requires extensive 
algebra, and (ii) Eigenvalue approach: 
 In this method the basic equations are written in the form of a vector matrix differential equation 
which reduces it to an algebraic eigenvalue problem and the solutions for the field variables are achieved by 
determining the eigenvalues and the corresponding eigenvectors of the coefficient matrix. In the eigenvalue 
approach the physical quantities such as material constants are directly involved in the formulation of the 
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problem and as such the boundary and initial conditions can be applied directly. In this theory body forces 
and/or heat sources are also accommodated (Das and Lahiri [3], Bachher et al. [4], Kar and Kanoria [5]). 
 The classical theory of coupled and uncoupled thermoelasticity predicts two phenomena not 
compatible with physical observation. The heat conduction equation is of dissuasion type, which does not 
contain any elastic terms contrary to the fact that the elastic changes produce infinite speed of propagation of 
thermal waves. The equation of motion is of a hyperbolic type transmitting finite speed of elastic waves in 
the medium. To overcome these problems, Biot [6] introduced coupled thermoelasticity. In this theory, the 
governing equations are coupled, eliminating the paradox of the classical theory. To eliminate the second 
shortcoming, the theory of generalized thermoelasticity was developed. The generalized thermoelasticity 
theories admit so-called second sound effects, which predict a finite velocity of propagation of the heat flux. 
At present there are two different theories of generalized thermoelasticity: (i) Lord and Shulman (L-S theory) 
[7] for the special case of isotropic body, and (ii) Green and Lindsay (G-L theory) [8]. The L-S model itself 
is based on a modified Fourier’s law and the obtained wave-type heat conduction equation. The L-S model 
contains the heat flux vector and its time derivative. In this case a new constant arises that acts as a time 
relaxation parameter. This theory was extended by Dhaliwal and Sherief [9] to include the anisotropic case. 
The uniqueness of solution for this theory was proved under different conditions by Ignaczak [10, 11], by 
Sherief and Dhaliwal [12]  and by Sherief [13]. In the G-L theory there are two relaxation time parameters 
and they modify not only the heat conduction equation but also all the equations of the coupled theory 
without violating Fourier’s law. Both theories are structurally different and one cannot be obtained as a 
particular case of the other. 
 
2. Formulation of the problem 
 
 We consider a plane strain problem in a homogeneous infinite slab with thickness 2h. the origin is 
located at the middle of the slab, the y-axis along the length and the z-axis along the height of the slab. 

  

 
 

Fig.1. Orthotropic elastic slab. 
 

 The equations of motion and heat conduction equation in a non-rotating generalized thermoelastic 
medium are 
   
  ,ij j i  u , (2.1) 
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     , , ,ij ij e 0 0 ij i j i jk T c T T T u u           (2.2) 

 
where 
 

  ij ijkl kl ij ijA e 1 T
t

        
, (2.3) 

 

   , ,  , ,   , , , , , ij ijkl kl ij i j j i
1

A e u u i j k l 1 2 3
2

      . (2.4) 

 
 The usual summation convention holds in the analysis. The common notation is usual for special 
derivatives and a superposed dot for time derivatives. 
 Equation (2.1) can now be modified in a rotating medium as   
 

      ,  ij j i 2         uu u Ω Ω Ω . (2.5) 

 
 The displacement vector is measured from a steady state deformed position and the deformation is 
assumed to be small. The last two terms on the right hand side of Eqs (2.4) appear due to centripetal and 
Coriolis acceleration, respectively, in a rotating medium. 
 Since we consider an orthotropic elastic medium in two dimensions subject to the plane-strain 
parallel to the y-z plane, we assume 
 
           , , , , , , , , , , , ,1 2 3u y z t u 0 u y z t v y z t u y z t w y z t                               (2.6) 

 
where , u v  and w  are displacements in the , x y  and z  directions, respectively. 
 The corresponding stresses can now be obtained from Eq.(2.3) and are also available in Tauchert and 
Akoz [14] 
 

  ,xx 12 13 1
v w

A A 1 T
y z t

            
 (2.7) 

 

  ,yy 22 23 2
v w

A A 1 T
y z t

            
 (2.8) 

 

  ,zz 23 33 3
v w

A A 1 T
y z t

            
  (2.9) 

 
and 
 

  .yz 44
v w

A
z y

  
     

 (2.10) 

 
 Then the corresponding displacement equations of motion in a rotating medium follow from Eq.(2.5) 
in the form 
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    ,
2 2 2 2

2
22 44 23 44 22 2 2

v w w v
A A A A v 2 w 1 T

y z y ty z t

                             
   (2.11) 

 

   
2 2 2 2

2
44 33 23 44 32 2 2

w v v w
A A A A w 2 v 1 T

y z z ty z t

                             
   (2.12) 

 
where  , , .0 0 Ω  In a non-rotating medium 0  , Eqs (2.11) and (2.12) reduce to these of Das et al. 

[15]. 
 The temperature field  , ,T y z t  is assumed to satisfy the heat conduction Eq.(2.2) as proposed by 

Lord and Shulman [7], so that 
 

  ,
2 2 2 2

y z e 0 0 2 32 2 2 2

T T v w
k k c T T

t t y zy z t t

           
                           

  (2.13) 

 
 Equations (2.11)-(2.13) form a coupled system to represent coupled thermal, dilatational and shear 
waves in a rotating elastic medium. The thermal field effects the shear motion due to rotation. 
 
3. Formulation of vector-matrix differential equation 
 
 We apply the normal mode analysis defined by 
 

    * * * *, , , , , , , , .t iay
ij ijv w T y z t u v T e          (3.1) 

 
 Using the above transformation to Eqs (2.11) - (2.13), we get the following equations 
 

      
* *

* * ' * ,
2

2 2 2
22 2 44 23 442

d v dw
A a V 2 w ia T A A A ia 0

dzdz
               (3.2) 

 

      
* * *

* * ' ,
2

2 2 2
44 3 33 23 442

dT d w dv
A a w 2 v A A A ia 0

dz dzdz
              (3.3) 

 

   
* *

' * ' * '
2

2
y e z 2 0 0 32

d T dw
k a c T k ia T v T 0

dzdz
                                  (3.4) 

 
where 
 

         ' ' ' ',  ,      ,       ,2 2 3 2 e e 0 0 01 1 c c 1 T T 1                  (3.5)                     

 
Equations (3.2)-(3.4) can be written in the form of vector matrix differential equations as follows 
 

  
dV

AV
dz

    (3.6) 

 
where, 
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   ,  ,  ,  ,  ,  
T

v w T v w TV    . (3.7) 

 
 The primes denotes differentiation with respect to z, and the matrix A is given by 
 

   

          

           

41 42 43 45

51 52 54 56

61 63 65

0 0 0 1 0 0

0 0 0 0 1 0

A 0 0 0 0 0 1

v v v 0 v 0

v v 0 v 0 v

v 0 v 0 v 0


















 









                                                                                 (3.8) 

 
where 
 

  
   '

,  ,  ,  ,

2 2 2
22 23 442

41 42 43 45
44 44 44 44

A a ia A Aia2
v v v v

A A A A

    
       

 

  
    '

,  ,  ,  ,

2 2 2
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A a ia A A2
v v v v

A A A A

     
      (3.9) 

 

  
'' '

,  ,  
2

y e2 0 0 3
61 63 65

z z z

k a cia T T
v v v

k k k

    
              

 
4. Solution of the vector matrix differential equation 
 
 The characteristic equation of the matrix A  takes the form 
 

  

   


  

6 4 3
41 52 63 45 54 56 65 42 54 45 51

2
52 63 41 52 41 63 43 61 42 51 45 54 63 45 56 61

65 41 56 65 43 54 42 54 63 42 56 61 51 45 63 51 43 65

63 42 51 63 41 52 43 52 61 4

v v v v v v v v v v v

v v v v v v v v v v v v v v v v

v v v v v v v v v v v v v v v v v v

v v v v v v v v v v

          

       

      

     .1 52 63v v 0

 (4.1) 

 
 The roots of the characteristic Eq.(4.1) which are also eigenvalues of A are of the form  
 
  ,  ,  1 2 3         . (4.2) 
 

 The eigenvector  ,  ,  ,  ,  ,   
T

1 2 3 4 5 6X X X X X X X  corresponding to the eigenvalue   can be 

calculated as 
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 52 42 51v v v

 
 
 
 
 
 
 
 
 
 
  

.  (4.3) 

 
 From Eq.(4.3) the eigenvector X  corresponding to the eigenvalue i    can easily be calculated. 
We see the following notations 
 

  

     

     

, , , 

., , 

1 2 3

4 5 6

1 2 3

4 5 6

X X X X X X

X X X X X X

  

  

  

  

  (4.4) 

 
 Using the method as in Das et al. [15] the solution of Eq.(3.6) is 
 

  .i
6

z
i i

i 1

V a X e 



   (4.5) 

 
 The constants are to be determined from the boundary conditions. The displacement components, 
temperature and stresses can now be written as 
 

   * ,i
6

z2
i i 45 56 43 i 42 56 43 52

i 1

v a v v v v v v v e 



          (4.6) 

 

   * ,i
6

z3
i i 56 i 43 54 41 56 43 51
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           (4.7) 
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5. Boundary conditions 
 
 We assume that the surface of the slabs are stress-free 
 
i.e,   zz yz 0           at        z h  , (5.1) 

 
we further assume the temperature distribution over the upper and lower surface of the slab as follows 
 
   , ,  ;   0T y h t T y L  , 

 
   , ,T y h t 0  . (5.2) 

 
 From Dhaliwal and Singh [16], the following data (in SI unit) of Cobalt have been employed 
 

  . ;11
22A 3 071 10      . ;  11

23A 1 027 10      . ;  11
33A 3 581 10      . ;11

44A 1 510 10   
 

  ;h 1    . ;a 0 05    ;1     ;8836     . ;6
1 7 04 10      . ;6

2 7 04 10      . ;6
3 6 9 10    

   

  ;0T 298       ;ec 427       ;zk 69       
.yk 69
 

 
6. Concluding remarks 
 
1. Figure 2: The absolute value of V decreases as z increases. The nature of V is the same for three different 

cases CTE, ETE and TRDTE when .1 z 0 2   . V is maximum when z = 0.8 for the cases CTE and 
ETE. 

2. Figure 3: The absolute value of W is maximum for the case TRDTE for different values of z. The nature 
of displacement is almost the same with respect to wave propagation for the cases CTE and ETE. 

3. Figure 4: The temperature is maximum of the heated region and gradually decreases within the region 
.1 z 0 6   . The nature of temperature for the cases CTE, ETE and TRDTE is the same with respect to 

wave propagation. 
4. Figure 5: The nature of the graph for three different cases CTE, ETE and TRDTE is symmetric about  

y = 0. The absolute value of zz  gradually increases as z increases. It is extensive in nature. 

5. Figure 6: The absolute value of yz  gradually decreases as z increases. The nature of the graph is 

symmetric about y = 0. It is contractive in nature. 
6. Figure 7: For all values of time t, the absolute value of zz  gradually decreases as Ω increases for a fixed 

value of z = 0.5. For fixed rotation numerical values of zz  remains same for all time t. 

7. Figure 8: For fixed rotation, yz  gradually decreases as time t increases for a fixed value of z = 0.5. For a 

fixed time t, the nature of yz  is all most the same for different values of Ω. 
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Fig.2. Variation of V with respect to z, for a fixed value of t = 0.8. 
 

 
 

Fig.3. Variation of W with respect to z, for a fixed value of t = 0.8. 
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Fig.4. Variation of T with respect to z, for a fixed value of t = 0.8. 
 

 
Fig.5. Variation of zz  with respect to z, for a fixed value of t = 0.8.  
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Fig.6. Variation of yz  with respect to z, for a fixed value of t = 0.8.  

 
 

Fig.7. Variation of zz  with respect to   and t, for a fixed value of z = 0.5.  
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Fig.8. Variation of yz  with respect to   and t, for a fixed value of z = 0.5. 
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Nomenclature 
 
 ijklA   elastic tensor 

 a  wave number 
    ec   specific heat a constant strain  

  ije   strain tensors 

  ijk   thermal conductivity tensor 

  u   displacement vector 
 kl   thermal expansion tensor 

 ij  Kronecker delta 

     density 
     thermal relaxation time. 
 ij   stress tensors  

   rotation 
 ω   angular frequency 
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