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An unsteady magnetohydromagnetic natural convection on the Couette flow of electrically conducting water 
at 40C (Pr = 11.40)  in a rotating system has been considered. A Finite Element Method (FEM) was employed to 
find the numerical solutions of the dimensionless governing coupled boundary layer partial differential equations. 
The primary velocity, secondary velocity and temperature of water at 4oC as well as shear stresses and rate of 
heat transfer have been obtained for both ramped temperature and isothermal plates. The results are independent 
of the mesh (grid) size and the present numerical solutions through the Finite Element Method (FEM) are in good 
agreement with the existing analytical solutions by the Laplace Transform Technique (LTT). These are shown in 
tabular and graphical forms. 
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1. Introduction 
 
 The effects of 4oC on the natural convective heat transfer and temperature distribution with initial 
temperatures at 4oC and 8oC were reported by Forbes and Cooper [1] who cooled water from the top with 
either a rigid boundary condition at constant temperature or a free water-air surface with a  constant 
convective heat transfer coefficient. We known that for a fluid like water or air at ordinary temperature and 
atmospheric pressure the variation   of the density with the variation T   of the temperature is given by 
 

  T     (1.1) 
 

where    .
14 o2 07 10 C

         at       o20 C .  

                                                            
* To whom correspondence should be addressed 
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 However, for temperature variations of magnitude ±4°C away from 4°C, the variations in the density 
are very closely given by  
 

   2
T      (1.2) 

 

where    .
26 o8 0 10 C

   . 
 

 From the above it is apparent that for low temperature variations, natural convection in water near 
4°C would be different from that at 20°C [2]. Bejan and Lankford [3] investigated natural convection in a 
vertical enclosure filled with water near 4oC. Khan and Gorla [4] studied non similar solutions of mixed 
convection of water at 4°C on a vertical surface with a prescribed  heat flux in a porous medium by an 
implicit finite difference method (IFDM). Khan and Gorla [5] investigated the numerical solutions of mixed 
convection, both free and forced convection of water at 4°C along a plate or wedge in a porous medium with 
the influence of variable surface temperature. Gorla and Stratman [6] studied an axisymmetric natural 
convection boundary layer flow of water at 4°C past slender bodies. Guedda et al. [7] studied an analytical 
solutions of MHD mixed convection on a vertical flat plate embedded in a porous medium saturated with 
water at 4°C. Michalis et al. [8] found the numerical solutions of an MHD free convective flow of water near 
4°C past a straight up moving plate with constant suction. Sharma et al. [9] studied the mixed convection 
steady flow of water 4°C along a moving non-isothermal vertical plate with the influence of  a magnetic 
field. Ramesh et al. [10] presented  numerical solutions for a steady two-dimensional boundary layer flow of 
a viscous dusty fluid over a stretching sheet with the bottom surface of the sheet heated by convection from a 
hot fluid. The effect of the convective boundary condition on a boundary layer stagnation-point flow of a 
Williamson nanofluid on a linear stretching/shrinking sheet was studied by Gorla and Gireesha [11]. 
Darvishi et al. [12] studied the effects of transient thermal performance of a rectangular porous fin in the 
presence of radiation by considering natural convection heat transfer using Darcy’s model to formulate the 
heat transfer equation. Gireesha et al. [13] investigated the effects of Hall current, thermal radiation and non-
uniform heat source/sink on hydromagnetic heat transfer in a dusty viscous fluid on a continuously stretching 
non-isothermal surface, with linear variation of surface temperature or heat flux. Mukhopadhyay and Gorla 
[14] presented an analysis to describe the boundary layer flow and heat transfer towards a porous exponential 
stretching sheet by considering velocity and thermal slips boundary conditions. Siddiqa et al. [15] studied the 
conjugate natural convection flow over a finite vertical surface with radiation by considering Rosseland 
diffusion approximation. A boundary layer analysis was presented by Singh and Gorla [16] for the combined 
effects of viscous dissipation, Joule heating, transpiration, heat source, thermal diffusion and Hall current on 
the hydromagnetic free convection and mass transfer flow of a homogeneous, incompressible fluid past an 
infinite vertical porous plate. The boundary layer flow of a viscous incompressible fluid due to a porous 
vertical stretching surface with a power-law stretching velocity in a thermally stratified medium was 
presented numerically by Mukhopadhyay et al. [17]. Bakier and Gorla [18] dealt with the thermophoresis 
particle deposition and thermal radiation effects on heat and mass transfer flow characteristics in a viscous 
fluid over a semi-infinite vertical porous plate. The influence of radiation and buoyancy on heat and mass 
transfer characteristics of continuous surfaces having a prescribed variable surface temperature and stretched 
with rapidly decreasing power law velocities was studied by Mohammadein et al. [19]. 
 The Couette flow in fluid dynamics refers to the laminar flow of a viscous fluid in the space between 
two parallel plates, one of which moves relative to the other. This flow is driven by virtue of a viscous drag 
force acting on the fluid and the applied pressure gradient is parallel to the plates. Such flow was named in 
honor of Maurice Marie Alfred Couette. He was a professor of physics, French University of Angers, in the 
late 19th century.  Shear – driven fluid motion is explained in undergraduate physics and engineering courses 
using Coutte flow. Couette motion finds applications in power generators, pumps, petroleum industry, 
polymer technology, purification of crude oil and fluid droplets sprays. This flow was analyzed by Kearsley 
et al. [20] and Singh [21]. Das et al. [22] studied the magnetic field impact on an unsteady MHD free 
convection Couette flow between the infinite horizontal parallel plates with the presence of a rotating system 
by the Laplace transform technique. Singh et al. [23] studied the influence of a rotating system on Couette 
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flow through a porous medium. Recently, Seth et al. [24-25] studied the hydromagnetic free convection 
Couette flow between two vertical plates. Job and Gunakala [26] studied the unsteady MHD natural 
convection effects in Couette flow between permeable plates. Rao et al. [27] considered the effects of a 
chemical reaction with heat absorption on an unsteady MHD free convective fluid flow past a semi-infinite 
perpendicular plate embedded in a porous medium. Rao et al. [28] investigated the combined effects of heat 
and mass transfer on an unsteady MHD flow past a vertical oscillatory plate using the finite element method. 
Rao et al. [29] demonstrated a transient flow past an impulsively started infinite flat porous plate in a rotating 
fluid in the presence of a magnetic field with Hall current using the finite element technique. The influence 
of viscous dissipation on a free convective flow past a semi-infinite vertical plate in the presence of Soret 
and magnetic field was studied by Sheri and Srinivasa [30]. Sheri and Srinivasa [31] studied the effect of 
viscous dissipation on a transient free convection flow past an infinite vertical plate through a porous 
medium in the presence of a magnetic field using the finite element technique. Sivaiah and Srinivasa [32] 
studied the effects of Hall current and heat source on an MHD heat and mass transfer free convective flow in 
the presence of viscous dissipation by applying the finite element technique. Srinivasa [33] studied the 
combined effects of thermal-diffusion and diffusion-thermo on an unsteady free convection fluid flow past 
an infinite vertical porous plate in the presence of a magnetic field and chemical reaction using the finite 
element technique. Raju et al. [34] obtained numerical results for the effects of thermal radiation and heat 
source on an unsteady free convective flow past an infinite vertical plate with a transverse magnetic field in 
the presence of thermal-diffusion and diffusion-thermo. The combined effects of heat and mass transfer on 
an unsteady MHD natural convective flow past an infinite vertical plate embedded in a porous medium in the 
presence of thermal radiation and Hall current was investigated by Murthy et al. [35]. Rao et al. [36] 
obtained numerical results for non-linear partial differential equations of a free convective 
magnetohydrodynamic flow past a semi-infinite moving vertical plate with the effects of thermal radiation 
and viscous dissipation using the finite element technique. 

 In the present paper, the unsteady hydromagnetic free convection Couette flow of water at 4oC, 
viscous incompressible and electrically conducting fluid in a rotating system is considered. A Finite Element 
Method is employed to find numerical solutions for the non-dimensional governing coupled PDEs with 
suitable boundary conditions. The primary, secondary velocity and temperature of water at 4oC as well as 
shear stresses and rate of heat transfer have to be obtained for both ramped temperature and isothermal 
plates. The results are shown in graphical and tabular forms. The present numerical solutions are in good 
agreement with the  analytical studies by Das et al. [22]. 

 
2. Formulation of the problem 
 
 Consider the unsteady heat transfer flow of a viscous incompressible electrically conducting fluid 
between two infinite parallel plates when the fluid and the plates spin or rotate in unison with uniform 
angular velocity   about an axis normal to the plates.  
 

 
Fig.1. Geomety of the problem. 
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 Let d  be the distance between the two plates, where d  is small in comparison with the 
characteristic length of the plates. The upper plate moves with a uniform velocity U in its own plane in the 
x - direction, where the x - axis is taken along the lower stationary plate. The z - axis is taken normal to 
the x - axis and the y - axis is taken normal to the x z   plane, lying in the plane of the lower plate, and it is 
assumed that the flow is fully developed. Further, there is no applied pressure gradient as the flow is due to 
the motion of the upper plate. Also, assume that initially,  i.e., at time ,t 0   both the fluid and plates of the 

channel are at rest and maintained at a uniform temperature dT  . At time t 0  , the plates start moving in the 

z  - direction with uniform velocity U  in the yx  plane. The temperature of the plate is raised or lowered to 

( )d w d 0T T T t t      when 00 t t  , and maintained uniform temperature wT   when 0t t   ( 0t  is 

characteristic time). Since the plates are infinitely long along the x  and y  directions, all physical quantities 

will be functions of z  and t   only. Denoting the velocity components u  and w  along the x  and y
directions, respectively, the Navier-Stokes equations of motion in a rotating frame of reference are 
 

   
22
o

d2

B uu u
2 w g T T

t z

              
 

, (2.1)       

 

  
22
o

2

B ww w
2 u

t z

         
 

,               (2.2) 

 

  
2

2
p

T k T

t c z

  


  
. (2.3) 

 

 The boundary conditions for the primary and secondary velocity and temperature are  
 

  :t 0  , du w 0 T T           for     z 0  , (2.4) 
 

  :t 0   u w 0        at     z 0  , (2.5) 
 

  ( )d w d 0T T T T t t            at     z 0       for     00 t t  , (2.6) 
 

  :0t t  wT T      at    z 0  , (2.7) 
 

  :t 0  , , du U w 0 T T           at    z d  . (2.8) 
 

 We introduce the following non-dimensional quantities into Eqs (2.1)-(2.3) and (2.4)-(2.8)  
 

  

 

, , , , , ,

, Gr , Pr , .

2 2
2d 0

2
w d

22 2
pw d2

o

T T B du w z t
u w t M

U U d T Td

cg d T Td d
t

U k

      
       

  

  
    

  

 (2.9) 

 

 We obtain the non-dimensional governing equations 
 

  Gr
2

2 2
2

u u
2 w M u

t

 
     

 
, (2.10) 
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2

2 2
2

w w
2 u M w

t

 
   

 
, (2.11) 

 

  
Pr

2

2

1

t

  


 
. (2.12)     

    
 The non-dimensional initial and boundary conditions are 
 

  :t 0  ,u w 0 0         for     0 , (2.13) 
 

  :t 0   ,u 0 w 0      at    0  , (2.14) 
 

  0 t 1   : t      at    0  , (2.15) 
 

  :t 1  1      at    0  , (2.16) 
 

  :t 0  , ,u 1 w 0 0        at   1  . (2.17) 
 

3. Numerical solution by FEM and study of grid independence 
 

3.1. Finite Element Method (FEM) 
 

 The finite element method (FEM) is an efficient numerical and computational method for solving a 
variety of engineering and real world problems, such as solid mechanics [37], stress analysis [38], heat 
transfer with fluids [39], aerospace [40], aircraft wing structures [41], structural engineering [42], 
biomaterials [43], chemical processing [44], rigid body dynamics [45], electrical analysis [46-48] and other 
areas. It is recognized by many researchers, developers and users as one of the most powerful numerical 
analysis tools ever devised to analyze complex problems of engineering. The complexity of the method, its 
simplicity, accuracy and computability all make it a widely used tool in modelling and design process [49]. 
The code or programming of the Finite element Method is less complicated than many of the spreadsheet and 
word processing packages found on modern microcomputers. The primary feature of FEM ([50], [51] and 
[52]) is its ability to describe the geometry of the problem being analyzed with great flexibility. This is 
because discretization of the domain of the problem is performed using highly flexible elements or uniform 
or non-uniform patches. The steps in the finite element analysis are as follows. 
 

Step 1: Discretization of the Domain: The basic concept of the FEM is to divide the domain or region of 
the problem into small connected patches, called finite elements. A collection of elements is called a finite 
element mesh. These finite elements are connected in a non overlapping manner, such that they completely 
cover the entire space of the problem. 
 

Step 2: Generation of Element Equations: 
 

i) A typical element is isolated from the mesh and the variational formulation of the given problem is 
constructed over the typical element. 

ii) Over an element, an approximate solution of the variational problem is supposed, and by substituting this 
in the system, the element equations are generated. 

iii) The element matrix, which is also known as the stiffness matrix, is constructed by using the element 
interpolation functions. 

 

Step 3: Assembly of Element Equations: The algebraic equations so obtained are assembled by imposing 
the inter element continuity conditions. This yields a large number of algebraic equations known as the 
global finite element model, which governs the whole domain. 
 

Step 4: Imposition of Boundary Conditions: The physical boundary conditions defined in Eq.(2.12) are 
imposed on the assembled equations. 
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Step 5: Solution of Assembled Equations: The assembled equations so obtained can be solved by any of 
the numerical techniques, namely, the Gauss elimination method, LU decomposition method, and the final 
matrix equation can be solved by a direct or indirect (iterative) method. For computational purposes, the 
coordinate ‘ ’ is varied from 0  to max  = 1, i.e., external to the momentum and energy boundary layers. The 
whole domain is divided into a set of 100  line segments of equal width . ,0 1  each element being two-nodded. 
 

Variational formulation: The variational formulation associated with Eqs (2.9)-(2.11) over a typical two-
nodded linear element  ,e e 1   is given by 
 

  Gr
e 1

e

2
2 2

1 2

u u
w 2 w M u d 0

t





                      
 ,

  

(3.1) 

 

  
e 1

e

2
2 2

2 2

u w
w 2 u M w d 0

t





                    
 , (3.2) 

 

  
Pr

e 1

e

2

3 2

1
w d 0

t





                  


 

(3.3) 

 

where ,1w 2w  and 3w  are arbitrary test functions and may be viewed as the variation in ,u  w and   
respectively. After reducing the order of integration and non-linearity, we arrive at the following system of 
equations  

  
    
     

 
Gr

e 1e 1

ee

21
1 1

1
2

1 1

wu u
w 2 w w ut d w 0

M w u w

 



                                     

 , (3.4) 

 

  

       

  ,

e 1

e

e 1

e

2 22
2 2 2

2

ww w
w 2 w u M w w d

t

w
w 0













                      

  
     


, (3.5) 

 

   
Pr Pr

e 1e 1

ee

3 3
3

w w1
w d 0

t

 



                                     
 .

 

(3.6) 

 

Finite Element formulation 
 

 The finite element model may be obtained from Eqs (3.4)-(3.6) by substituting finite element 
approximations of the form 
 

  ,
2

e e
j j

j 1

u u


         ,
2

e e
j j

j 1

w w


        
2

e e
j j

j 1

    , (3.7) 

with ( , ),e
1 2 3 jw w w i 1 2     where ,e

ju e
jw  and e

j  are the primary velocity, secondary velocity and 

temperature, respectively,  at the thj  node of typical the  element  ,e e 1   and e
i  2 ,1i  are the shape 

functions for this element  ,e e 1   and are taken as 
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  e e 1
1

e 1 e





  
 

 
      and      ,e e

2
e 1 e

 
 

  
     e e 1    . (3.8) 

 

 The finite element model of the equations for the  element thus formed is given by  
 

  

 
 
 

 
 
 

e e11 12 13 11 12 13

21 22 23 e 21 22 23 e

31 32 33 31 32 33e e

u u bK K K M M M

K K K w M M M w

K K K M M M

                                   
                                    
                                          

 
 
 

1e
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3e

b

b

 
 
 
 
 
  

 (3.9) 

 

where  ,mn mnK M   
     and                , , , , and , , ,e e e e e e meu w u w b m n 1 2 3      are the set of 

matrices of order 2 2  and 2 1 ,  respectively, and / (dash) indicates 
d

dt
. These matrices are defined as 

follows 
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 In a one-dimensional space, a linear element, quadratic element, or element of higher order can be 
taken. The entire flow domain is divided into 10000 quadratic elements of equal size. Each element is three-
noded, and therefore the whole domain contains 20001 nodes. At each node, four functions are to be 
evaluated; hence, after assembly of the element equations, we obtain a system of 80004 equations which are 
nonlinear. Therefore, an iterative scheme must be utilized in the solution. After imposing the boundary 
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conditions, a system of equations was obtained which is solved by the Gauss elimination method while 
maintaining an accuracy of 0.00001. A convergence criterion based on the relative difference between the 
current and previous iterations is employed. When these differences satisfy the desired accuracy, the solution 
is assumed to have been converged and the iterative process is terminated. The Gaussian quadrature is 
implemented for solving the integrations. The code of the algorithm was executed in MATLAB. Excellent 
convergence was achieved for all the results. 
 

Table 1. The numerical values of u, w and θ for variation of mesh sizes. 
 

t=1.0 

Mesh (Grid) Size  = 0.01 Mesh (Grid) Size   = 0.001 Mesh (Grid) Size  = 0.0001 

u w θ u w θ u w θ 

0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 
0.002721 0.254924 0.783725 0.002721 0.254924 0.783725 0.002721 0.254924 0.783725 
0.006558 0.140878 0.583748 0.006558 0.140878 0.583748 0.006558 0.140878 0.583748 
0.012921 0.074854 0.412568 0.012921 0.074854 0.412568 0.012921 0.074854 0.412568 
0.023358 0.043369 0.275754 0.023358 0.043369 0.275754 0.023358 0.043369 0.275754 
0.039376 0.025887 0.173348 0.039376 0.025887 0.173348 0.039376 0.025887 0.173348 
0.062678 0.014994 0.102910 0.062678 0.014994 0.102910 0.062678 0.014994 0.102910 
0.096254 0.008123 0.057220 0.096254 0.008123 0.057220 0.096254 0.008123 0.057220 
0.155346 0.004184 0.029246 0.155346 0.004184 0.029246 0.155346 0.004184 0.029246 
0.326681 0.001787 0.012100 0.326681 0.001787 0.012100 0.326681 0.001787 0.012100 
1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 

 

3.2. Study of grid independence 
 

 In general, to study the grid independency/dependency, the mesh size was varied in order to check 
the solution at different mesh (grid) sizes . We show the numerical values of  primary velocity (u), secondary 
velocity (w) and temperature (θ) for different values of mesh (grid) size at time t = 1.0 in Tab.1. From this 
table, we observed that there is no variation in the values of primary velocity (u), secondary velocity (w) and 
temperature (θ) for different values of mesh (grid) size at time t = 1.0. Hence, we conclude that the results 
are independent of the mesh (grid) size and the present numerical solutions are in excellent agreement with 
the existing analytical solutions, shown in Tab.2. Therefore, the Finite Element Method (FEM) is suitable to 
solve this type of models.  
 

4. Skin friction, rate of heat and mass transfer 
 

 For practical engineering applications and the design of chemical engineering systems, quantities of 
interest include the following: the local skin-friction and the local Nusselt number which are useful to 
compute the shear stress and rate of heat transfer near the wall.  
 The skin-friction or the shear stress at the lower plate and upper plate due to primary velocity in non 
dimensional forms are given by 
 

  x0
0

u



 
    

       and       x1
1

u



 
    

. (4.1) 

 

 The skin-friction or the shear stress at the lower plate and upper plate due to secondary velocity in 
non dimensional forms are given by 
 

  y0
0

w



 
    

       and        y1
1

w



 
    

. (4.2) 

 

 The rate of heat transfer at the lower hot plate and upper hot plate in non-dimensional forms are 
given by 
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    Nuo
0

 
   

     and       Nu1
1

 
   

. (4.3) 

 
5. Results and discussions 
 
 The Finite Element Method was employed to solve Eqs (2.10) to (2.12) with suitable conditions. We 

study the effects of the Grashof number for heat transfer  Gr , magnetic field  2M , rotation  2  and Prandtl 

number  Pr  on the fluid velocity and temperature. These are displayed graphically against channel width 

variable   in Figs 2 to 11 for various values of the Grashof number for heat transfer, magnetic field parameter, 
rotation parameter, Prandtl number and time. Figures 2 and 3 illustrate the influence of the Grashof number on the 
primary and secondary velocities  u  and  w  of fluid respectively for both ramped temperature and isothermal 

temperature. The Grashof number for heat transfer is the relative effect of the thermal buoyancy force to the 
viscous hydrodynamic force in the boundary layer. As expected, it is observed that the primary velocity as well as 
secondary velocity  u  and  w  of the fluid increases due to the enhancement of the thermal buoyancy force for 

both ramped and isothermal temperature, clearly shown in Figs 2 - 3 
 

 

Fig.2. Influence of ‘Gr’ on Primary velocity profiles. Fig.3. Influence of ‘Gr’ on Secondary velocity profiles. 
 
 Figures 4 and 5 demonstrate the influence of the magnetic field parameter on the primary and 
secondary velocities  u  and  w  of  the fluid respectively for both ramped temperature and isothermal plate. 

It is observed that the primary velocity and secondary velocity of the fluid  decreases in the entire region with 
increasing values of the magnetic field parameter for both ramped and isothermal plates. Figures 6 and shows 
the effect of rotation parameter on the primary and secondary velocities  u  and  w  of the fluid respectively 

for both ramped temperature and isothermal conditions. The primary velocity decreases in the entire region as 
the rotation parameter increases while secondary velocity increases in most of the region near the stationary 
plate. Figures 8 and 9 show the effect of the Prandtl number on the primary and secondary velocities  u  and 

 w  of the fluid respectively for both ramped temperature and isothermal conditions. Both velocities decrease 

in the entire region between the two plates with increasing values of the Prandtl number. Figure 10 illustrates 
the influence of the Prandtl number on the temperature field. The temperature of the fluid decreases in the 
entire region with increasing values of the Prandtl number. Figure 11 depicts the influence of time on the  
temperature field. The temperature of the fluid increases with increasing values of the time. 
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Fig.4. Influence of ‘M 2’ on primary velocity profiles.        Fig.5. Influence of ‘M 2’ on secondary velocity profiles. 
 

 

Fig.6. Influence of ‘Ω 2’ on primary velocity profiles.         Fig.7. Influence of ‘Ω 2’ on secondary velocity profiles. 
 

 

Fig.8. Influence of ‘Pr’ on primary velocity profiles.    Fig.9. Influence of ‘Pr’ on secondary velocity profiles. 
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Fig.10. Influence of ‘Pr’ on temperature profiles.          Fig.11. Influence of ‘t’ on temperature profiles. 

 

Fig.12.   Shear stress at the stationary plate with 
various values of ‘Ω 2’ against the values 
of ‘M 2’ due to primary velocity. 

Fig.13.   Shear stress at moving plate with various 
values of ‘Ω 2’ against the values of ‘M 2’ 
due to primary velocity.  

 

Fig.14.  Shear stress at the stationary plate with 
various values of Ω2 against the values of 
M2 due to secondary velocity profiles.  

Fig.15.   Shear stress at the moving plate with 
various values of Ω2 against the values of 
M2 due to secondary velocity profiles. 
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 Figures 12 and 13 show the shear stress at the stationary plate  0x  and moving plate  1x  with 

various values of ‘Ω 2’ against the values of ‘M 2’ due to primary velocity for both ramped temperature and 
isothermal plates. 

0x  decreases with increasing values of ‘Ω 2’ and ‘M 2’ and 
1x  increases with increasing 

values of ‘Ω 2’ while decreases with increasing values of ‘M 2’ for both ramped temperature and isothermal 

plates. Figures 14 and 15 show the shear stress at the stationary plate  0y  and moving plate  1y  with 

various values of ‘Ω 2’ against the values of ‘M 2’ due to the secondary velocity for both ramped temperature 
and isothermal conditions. 

0y  increases with increasing values of ‘Ω 2’ and decreases with increasing values 

of ‘M 2’ and 
1y  increases with increasing values of ‘M 2’ and decreases with increasing values  of ‘Ω 2’ for 

both ramped temperature and isothermal conditions. Figures 16 and 17 show the shear stress at the stationary 

plate  0x  and moving plate  1x  with various values of ‘Pr’ against the values of ‘Gr’ due to the primary 

velocity for both ramped temperature and isothermal conditions. 
0x  increases with increasing values of ‘Gr’ 

and decreases with increasing values of ‘Pr’ and 
1x  increases with increasing values of ‘Pr’ and for higher 

values of ‘Gr’. It decreases for small values of ‘Gr’ for both ramped temperature and isothermal conditions. 

 
Fig.16.   Shear stress at the stationary plate with 

various values of ‘Pr’ against the values of 
‘Gr’ due to primary velocity profiles.  

Fig.17.   Shear stress at the moving plate with 
various values of ‘Pr’ against the values 
of ‘Gr’ due to primary velocity profiles. 

 

 
Fig.18.   Shear stress at the stationary plate with 

various values of ‘Pr’ against the values 
of ‘Gr’ due to secondary velocity profiles. 

Fig.19.   Shear stress at the moving plate with 
various values of ‘Pr’ against the values 
of ‘Gr’ due to secondary velocity profiles. 
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Fig.20. Rate of heat transfer at the stationary plate 
with various values of ‘Pr’ against the 
values of time ‘t’. 

Fig.21. Rate of heat transfer at the moving plate 
with various values of ‘Pr’ against the 
values of time ‘t. 

 

 Figures 18 and 19 show the shear stress at the stationary plate  0y  and moving plate  1y  with 

various values of ‘Pr’ against the values of ‘Gr’ due to the secondary velocity for both ramped temperature 
and isothermal conditions. 

0y  increases with increasing values of ‘Gr’ and decreases with increasing values  

of ‘Pr’. 
1y  increases with increasing values of ‘Pr’ and decreases with increasing values of ‘Gr’ for both 

ramped temperature and isothermal conditions. Figures 20 and 21, show the rate of heat transfer coefficients 
Nu0 and Nu1 with the effect of Pr and time t near the stationary and moving plate respectively. Nu0  and Nu1  

increase with increasing values of time t and Pr. Table 2 shows a comparison of skin friction results due to 
primary and secondary velocity near the stationary plate with the effect of magnetic parameter and the 

absence of Grashof number with 2 15   at time t = 0.001. The skin friction coefficient 
0x  decreases and 

0y  increases with increasing values of the magnetic parameter. The present results are in excellent 

agreement with the analytical solution.  
 

Table 2. Comparison of skin friction results with existing results ( 2 15  at time t = 0.001). 
 

M 2 LTT ( by Das et al. [22]) FEM (present results) 

0x  -
0y  

0x  -
0y  

5 0.213420 0.544380 0.2123922 0.5473171 

10 0.178385 0.303637 0.1701235 0.3157638 

15 0.132724 0.177382 0.1351722 0.1781934 

20 0.095962 0.108245 0.0961279 0.1097895 

 
6. Conclusions 
 
 A FEM was employed to find the numerical solutions of the dimensionless governing coupled partial 
differential equations with suitable boundary conditions for the primary, secondary velocity and temperature 
of water at 4oC as well as shear stresses and rate of heat transfer for ramped temperature and isothermal 
plates, in both cases the following conclusions are drawn from the above study 
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1. The primary velocity of the  fluid increases with the increase of ‘Gr’ and decreases with the increase of 
‘M2’, ‘Ω 2’ and ‘Pr’.  

2. The secondary velocity of the fluid increases with the increase of ‘Gr’ and decreases with the increase 
of ‘M 2’ and ‘Pr’. .  

3. The temperature of the  fluid increases with an increase of time and decreases with increasing values of 
‘Pr’. 

4. Shear stress at the stationary plate due to primary velocity increases with increasing values of ‘Gr’ and 
decreases with  increasing values of ‘Ω 2’, ‘Pr’ and M 2’.  

5. Shear stress at the moving plate due to primary velocity increases with increasing values of ‘Gr’, ‘Pr’, 
‘Ω 2’ while decreases with increasing values of ‘M 2’.  

6. Shear stress at the stationary plate due to secondary velocity increases with increasing values of ‘Gr’ 
and      ‘Ω 2’ and decreases with increasing values of ‘Pr’ and ‘M 2’.  

7. Shear stress at the moving plate due to secondary velocity increases with increasing values of ‘M 2’ and  
decreases with increasing values of ‘Pr’, ‘Ω 2’ and ‘M 2’.  

8. At the stationary plate and moving plate the rate of heat transfer increases with increasing values of ‘Pr’ 
and time ‘t’. 

 
Nomenclature 
 
 0B  – external magnetic field 
 d – distance between the two plates  m  

 Gr – Grashof number for heat transfer 

 g – acceleration due to gravity  2m s  

 2M  – dimensionless magnetic field parameter 
 Nu0  – Nusselt number at the stationary plate 

 Nu1  – Nusselt number at the moving plate 

 Pr – Prandtl number 
 T   – temperature of the fluid  K  

 wT  – temperature of the fluid at the lower plate  K  

 dT   – temperature of the fluid at the upper plate  K   

 t – dimensionless time ( s ) 
 t  – dimensional time ( s ) 

 U – uniform velocity at the moving plate  1m s  

 u – dimensionless primary velocity along the x-axis  1m s  

 u   – velocity of the fluid in the x  - direction  1m s  

 w – dimensionless secondary velocity along the y-axis  1m s  

 w   – velocity of the fluid in the y  direction  1m s  

 x  – co-ordinate axis along the lower stationary plate (m) 
 y  – co-ordinate axis normal to the x z  plane 
 z  – co-ordinate axis normal to the x -axis 

   – volumetric coefficient of thermal expansion  1K  

   – dimensionless displacement  m  

   – dimensionless temperature  K  

   – thermal conductivity of the fluid  1 1W m K   
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   – kinematic viscosity  2 1m s  

   – density of the fluid  3Kg m  

   – electric conductivity  1S m  

 
0x  – shear stress at the stationary plate due to primary velocity  2N m  

 
1x  – shear stress at the moving plate due to primary velocity  2N m  

 
0y  – shear stress at the stationary plate due to secondary velocity  2N m  

 
1y  – shear stress at the moving plate due to secondary velocity  2N m  

   – angular velocity  1m s  

 2  – dimensionless rotation parameter 
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