
 
 

Int. J. of Applied Mechanics and Engineering, 2017, vol.22, No.1, pp.35-47 
DOI: 10.1515/ijame-2017-0003 

 
 

OBLIQUE WATER WAVE DIFFRACTION BY A STEP 
 

P. DOLAI 
Department of Mathematics 

Prasannadeb Women's College 
Jalpaiguri-735101, West Bengal, INDIA 

E-mail: dolaiprity68@gmail.com 
 
 

This paper is concerned with the problem of diffraction of an obliquely incident surface water wave train on 
an obstacle in the form of a finite step. Havelock expansions of water wave potentials are used in the 
mathematical analysis to obtain the physical parameters reflection and transmission coefficients in terms of 
integrals. Appropriate multi-term Galerkin approximations involving ultraspherical Gegenbauer polynomials are 
utilized to obtain a very accurate numerical estimate for reflection and transmission coefficients which are 
depicted graphically. From these figures various interesting results are discussed. 
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1. Introduction 
  
 Mathematical study of water wave diffraction problems involving fixed vertical thin barriers of 
various configurations was initiated long back using a variety of mathematical methods (cf. Dean [1], Ursell 
[2], Evans [3], Porter [4], Mandal and Dolai [5], etc.). The problems of water wave scattering by an irregular 
bottom have received some considerable interest in the literature on linearised theory of water waves due to 
their importance in finding the effects of naturally occurring bottom obstacles such as sand ripples on the 
wave motion (cf. Roseau [6], Kreisel [7], Fitz Gerald [8], Hamilton [9], Newman [10], Miles [11], Mandal 
and Gayen [12], Dolai and Dolai [13]). 
 Problems involving the propagation of water waves in a fluid of variable depth can be divided into 
three categories: ‘beach’ problems, where the depth tends to zero, ‘obstacle’ problems, where the depth is a 
constant except for variations extending over a finite interval in space, and ‘changing-depth’ problems, 
where the depth changes from one limiting value to a second limiting value. There have been many 
investigations of the beach and obstacle problems (cf. Stoker [14], Wehausen and Laitone [15]), but 
comparatively few studies have been made on the ‘changing depth’ case (cf. Bartholomeusz [16], Evans and 
McIver [17], Newman [10]). The importance of wave propagation in the case of changing depth is obvious in 
many coastal situations such as the passage of waves over a continental shelf. As an idealization of such a 
problem, we consider here the case of wave propagation over a finite step, from one constant finite depth to 
another. 

In the present paper we consider the problem of diffraction of an obliquely incident surface wave 
train on an obstacle in the form of a finite step, from one constant finite depth to another. By a suitable 
application of Havelock’s expansions of water wave potentials, we obtain the reflection and transmission 
coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultraspherical 
Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for reflection and 
transmission coefficients which are depicted graphically. From these figures various interesting results are 
discussed. 
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2. Formulation of the problem 
  
 We consider the motion in an inviscid, homogeneous, incompressible liquid which is supposed to be 
confined between two vertical planes perpendicular to the edges of the step. Cartesian axes are chosen with 
the mean free surface, the ( , )x z  plane with the origin directly above the step, while the axis of  y  is directed 

down wards into the liquid. The shallower water is of depth 1h  above the horizontal shelf, the deeper water 

is of depth 2h . A simple sketch of the problem is given in Fig.1.  
 

 
 

Fig.1. Geometry of the problem. 
 
 A simple harmonic progressive oblique wave train originating at x  is incident on the step, and 
is partially reflected and partially transmitted. Assuming linear theory, the time harmonic progressive waves 

from negative infinity can be represented by the velocity potentials Re   inc , exp( )  x y i z i t    where 
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 0k  being the real positive root of 
 
   tanh 2k kh K , (2.2) 
 

with / , 2K g   sin , 0k   cos0k   ,   being the frequency of the incoming waves and g being the 
gravity. Due to the presence of the step, the oblique incident wave train is partially reflected by the step and 
partially transmitted through the gap. If the resulting motion is described by the velocity potential Re
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where  0  satisfies tanh ,  0 0 1h K    2 2 2
0      and , 1 1T R  are the unknown transmission and reflection 

coefficients to be determined. 
 
3. Method of solution 
 
 Since    ,  and ,x x y x y   are continuous across OC, we can write  
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       for 1x 0 x 0
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 A solution for  ,x y  satisfying Eqs (2.3), (2.4), (2.5) and (2.8) can be represented as  
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where , 2 2 2 2 2 2
n n n ns p k       , n  satisfy tan , n n 1 nh K 0 k     satisfy tann n 2k k h K 0  . 

 Using Eq.(3.3) in Eqs (3.1) and (3.2), we find 
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 The use of Havelock’s [18] inversion theorem in Eqs (3.4) produces 
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 Using Eqs (3.6), (3.7), (3.9) in Eq.(3.5) and from Eq.(3.8), we find 
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 It may be noted that the function  1F y  and the constant 1C are real. The integral Eq.(3.10) is to be 

solved by  N 1  multi-term Galerkin approximations of  1F y  in terms of ultraspherical Gegenbauer 

polynomials  / /1 6
2n 1C y h  by noting the behavior of   /~ ( ) 1 3

1 1F y h y   as  1y h 0   given by (cf. 

Kanoria et al. [19]) 
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 The unknown coefficients na ( , , , , )n 0 1 2 N   are obtained by solving the system of linear 
equations 
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 Once na  ( , , , , )n 0 1 2 N   are solved, the real constant 1C  can be determined from Eq.(3.11)  
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If a simple harmonic progressive oblique wave train originating at x  is incident on the step, 

and is partially reflected and partially transmitted, the time harmonic progressive waves from positive 

infinity can be represented by the velocity potentials Re   inc , exp( )  1x y i z i t    where 
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 If the resulting motion is described by the velocity potential Re   , exp( )1x y i z i t    , then 
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where 2 2 2
1 0 1k    and , 2 2T R  are the unknown transmission and reflection coefficients to be determined. 

 A solution for  ,x y  satisfying Eqs (3.19), (2.4), (2.5) and (3.20) can be represented as  
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 Use of Havelock’s [18] inversion theorem in Eq.(3.22) produces 
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 Using Eqs (3.24), (3.25), (3.27) in Eq.(3.23) and from Eq.(3.26), we find 
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 It may be noted that the function  2F y  and the constant 2C are real. The integral Eq.(3.28) is to be 

solved by  N 1  multi-term Galerkin approximations of  2F y  in terms of ultraspherical Gegenbauer 

polynomials  / /1 6
2n 1C y h  by noting the behavior of   /~ ( ) 1 3

2 1F y h y   as  1y h 0   given by (cf. 

Kanoria et al. [19]) 
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 The unknown coefficients '
na  ( , , , , )n 0 1 2 N   are obtained by solving the system of linear 

equations 
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 Once ' ( , , , , )na n 0 1 2 N   are solved, the real constant 2C  can be determined from Eq.(3.29)  
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4. Numerical results 
 
 Multi-term Galerkin approximations are used to obtain a numerical estimate for , | |1 1R T  and 

, | |2 2R T . In the numerical computations we take at most six terms to produce a fairly accurate numerical 

estimate for , | |1 1R T  and , | |2 2R T .  

 We display a representative set of numerical estimates for , | |1 1R T  and , | |2 2R T  in Tab.1 and 

Tab.2, taking N  0, 1, 2, 3, 4 and 5 in the  N 1 - term of Galerkin approximations and some particular 

values of the different parameters and the wave numbers.  
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Table 1 
 

 / . , . , 0
1 2 2h h 0 5 Kh 0 2 0     

  1R   2R   1T  2T  

0 0.236756     0.236756      1.126449     0.837985 
1 0.234018 0.234018 1.127218 0.838556 
2 0.233981 0.233981 1.127228 0.838564 
3 0.233979 0.233979 1.127229 0.838565 
4 0.233979 0.233979 1.127229 0.838564 
5 0.233979 0.233979 1.127229 0.838564 

 / . , . , 0
1 2 2h h 0 5 Kh 0 2 30     

  1R   2R   1T  2T  

0 0.201124     0.157099      1.094152     0.934879 
1 0.198444 0.154480 1.094762 0.935270 
2 0.198408 0.154444 1.094771 0.935275 
3 0.198406 0.154442 1.094771 0.935275 
4 0.198405 0.154442 1.094771 0.935275 
5 0.198405 0.154442 1.094771 0.935275 

 
Table 2 
 

 / . , . , 0
1 2 2h h 0 5 Kh 1 8 0     

  1R   2R   1T  2T  

0 0.259046     0.259046      0.934748     0.998018 
1 0.259317 0.259317 0.934678 0.997943 
2 0.259138 0.259138 0.934724 0.997992 
3 0.259127 0.259127 0.934727 0.997995 
4 0.259126 0.259126 0.934727 0.997996 
5 0.259126 0.259126 0.934727 0.997996 

 / . , . , 0
1 2 2h h 0 5 Kh 1 8 30     

  1R   2R   1T  2T  

0 0.217419     0.201057      0.923292     1.049337 
1 0.218222 0.201998 0.923122 1.049129 
2 0.218054 0.201835 0.923159 1.049165 
3 0.218040 0.201825 0.923161 1.049167 
4 0.218039 0.201824 0.923161 1.049167 
5 0.218039 0.201824 0.923161 1.049167 

 
It is observed from Tabs 1 and 2 that the computed results for , | |1 1R T  and , | |2 2R T  converge 

very rapidly with N , and for N 3  an accuracy of almost six decimal places is observed. It appears that the 
present numerical procedure for the numerical computations of reflection and transmission coefficients is 

quite efficient. We also note from these tables that for normal incidence of the wave train   00  , 

 ( , say)1 2R R R   and | | . 2
1 2T T 1 R  Similar observations were made by Newman (1965) for the 

infinite step problem.  
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Fig.2. Reflection and transmission coefficients for / . , 0

1 2h h 0 5 0   . 
 

The computed results for | |R  and , | |1 2T T  are plotted in Fig.2 against  2Kh for / . , .0
1 2h h 0 5 0    

It is observed that | |R  increases for some moderate values of  2Kh and then decreases as 2Kh  increases. On 

the other hand, 1T  decreases and 2T  increases as 2Kh  increases and .1 2T T 1 0   for some particular 

value of .2Kh 1 5 . Also, it is observed that R 0  and , 1 2T 1 T 1   as . 2Kh  These type of 

observations are quite plausible because for small 2Kh , waves penetrate on the step and for large 2Kh , 
waves are mainly confined at the free surface, so that waves are totally transmitted through the gap.  

 

 
Fig.3. Reflection and transmission coefficients for / . , 0

1 2h h 0 5 30   . 
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In Fig.3, the computed results for , | |1 2R R  and , | |1 2T T  are plotted against 2Kh  for 

/ . , 0
1 2h h 0 5 30   . It is observed that | | | |1 2R R  for all 2Kh . It is quite obvious because the reflection 

coefficient for penetration from the front side of the step will be greater than penetration from the back side 
of the step.  and | |1 2R R  first increases then decreases as 2Kh  increases and tending to zero as .2Kh   

Also, 1T  decreases and 2T  increases as 2Kh  increases and .1 2T T 1 0   for some particular value of 

.2Kh 1 0 . It is also observed that , 1 2T 1 T 1   as .2Kh   

 
4. Conclusion 
 
 The method of multi-term Galerkin approximations in terms of ultra spherical Gegenbauer 
polynomials has been utilized here to obtain very accurate numerical estimates for the reflection and 
transmission coefficients in the water wave scattering problem of an obliquely incident surface wave train on 
an obstacle in the form of a finite step. By choosing only five terms in the Galerkin approximations, we 
achieve accuracy almost to the sixth digit after the deumol point. In the numerical estimates for the reflection 
and transmission coefficients. The numerical results are illustrated in tables and figures. For normal 
incidence of the surface wave train, the results are compared with the known results available in the literature 
for similar problems and very good agreement is achieved. 
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Nomenclature 
 
 g  gravity 
 1h   depth of the upper step 

 2h   depth of the lower step 

 K  wave number 
 ,1 2R R   reflection coefficients  

 ,1 2T T   transmission coefficient 

 t  time 
 x   horizontal distance 
 y   vertical distance 
    wave frequency 
    velocity potential 
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