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This paper is concerned with the problem of diffraction of an obliquely incident surface water wave train on
an obstacle in the form of a finite step. Havelock expansions of water wave potentials are used in the
mathematical analysis to obtain the physical parameters reflection and transmission coefficients in terms of
integrals. Appropriate multi-term Galerkin approximations involving ultraspherical Gegenbauer polynomials are
utilized to obtain a very accurate numerical estimate for reflection and transmission coefficients which are
depicted graphically. From these figures various interesting results are discussed.
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1. Introduction

Mathematical study of water wave diffraction problems involving fixed vertical thin barriers of
various configurations was initiated long back using a variety of mathematical methods (cf. Dean [1], Ursell
[2], Evans [3], Porter [4], Mandal and Dolai [5], etc.). The problems of water wave scattering by an irregular
bottom have received some considerable interest in the literature on linearised theory of water waves due to
their importance in finding the effects of naturally occurring bottom obstacles such as sand ripples on the
wave motion (cf. Roseau [6], Kreisel [7], Fitz Gerald [8], Hamilton [9], Newman [10], Miles [11], Mandal
and Gayen [12], Dolai and Dolai [13]).

Problems involving the propagation of water waves in a fluid of variable depth can be divided into
three categories: ‘beach’ problems, where the depth tends to zero, ‘obstacle’ problems, where the depth is a
constant except for variations extending over a finite interval in space, and ‘changing-depth’ problems,
where the depth changes from one limiting value to a second limiting value. There have been many
investigations of the beach and obstacle problems (cf. Stoker [14], Wehausen and Laitone [15]), but
comparatively few studies have been made on the ‘changing depth’ case (cf. Bartholomeusz [16], Evans and
Mclver [17], Newman [10]). The importance of wave propagation in the case of changing depth is obvious in
many coastal situations such as the passage of waves over a continental shelf. As an idealization of such a
problem, we consider here the case of wave propagation over a finite step, from one constant finite depth to
another.

In the present paper we consider the problem of diffraction of an obliquely incident surface wave
train on an obstacle in the form of a finite step, from one constant finite depth to another. By a suitable
application of Havelock’s expansions of water wave potentials, we obtain the reflection and transmission
coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultraspherical
Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for reflection and
transmission coefficients which are depicted graphically. From these figures various interesting results are
discussed.
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2. Formulation of the problem

We consider the motion in an inviscid, homogeneous, incompressible liquid which is supposed to be
confined between two vertical planes perpendicular to the edges of the step. Cartesian axes are chosen with
the mean free surface, the (x,z) plane with the origin directly above the step, while the axis of y is directed

down wards into the liquid. The shallower water is of depth /; above the horizontal shelf, the deeper water
is of depth £, . A simple sketch of the problem is given in Fig.1.
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Fig.1. Geometry of the problem.

A simple harmonic progressive oblique wave train originating at x — —co is incident on the step, and
is partially reflected and partially transmitted. Assuming linear theory, the time harmonic progressive waves

inc

from negative infinity can be represented by the velocity potentials Re {(p_ (x, y)exp(iSz - icst)} where

_ coshk, (hy—)

i_nc X, exp(i , 2.1
® ( y) cosh kyh, p( p_x) @D
ky being the real positive root of
ktanhkh, =K , 2.2)

with K =c7 / g, 9=kysina, p=kycosa, o being the frequency of the incoming waves and g being the
gravity. Due to the presence of the step, the oblique incident wave train is partially reflected by the step and
partially transmitted through the gap. If the resulting motion is described by the velocity potential Re

{(p(x,y)exp(iSZ - icst)} , then @ satisfies

VZp-9%¢=0 in the fluid region, (2.3)
the free surface condition

K(p+@=0 on y=0, (2.4)

Oy

the bottom condition
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d
6_:0 on y=#h, x>0 and y=h,, x<0, 2.5)
v
the condition on the step
o
6_:0 on x=0-, yeL(h <y<h,), (2.6)
X
the edge condition
r1/3V(p isboundedas r—0, 2.7)
r is the distance from the edge, and the infinity condition
coshay (h; —
T, Mexp(iﬁx) as X — o
(r.7)—> coshoh; 2.8)
X, .
Aicd coshk, (hy —y)

cosh kyh, {eXp(i},Lx)+R1 eXp(—ip,x)} as x— —ow

where o, satisfies o, tanho,h; =K, B = ocg ~97 and T;,R; are the unknown transmission and reflection

coefficients to be determined.
3. Method of solution

Since ¢, (x,y)and @(x,y) are continuous across OC, we can write

.3
— =| — =f(y), say,for O0<y<h,
[ax x=0+ Ox x=0—

((P)x=0+=((P)x=0_ for O<y<h.

A solution for (p(x, y) satisfying Eqgs (2.3), (2.4), (2.5) and (2.8) can be represented as

! %ﬁwew(iw) * ZI:An cosa, (A —y)exp(=s,x), x=0,

coshky (h, — y)
coshkyh,

o(x,y)—>

where s =

Using Eq.(3.3) in Eqgs (3.1) and (3.2), we find

{exp(iwc) +R,; exp(—iwc)} + ZBn cosk, (h2 - y)exp(pnx), x<0
1

ol +97,p7 =k’ +97, o, satisfy o, tano, i, + K =0,k, satisfy k, tank, i, + K =0.

3.1)

(3.2)

(3.3)
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cosha, (; —
=iT— sAcosa , 0<y<h,,
f(y)=iBT, coshar Z /=) y<hy
(3.4)
coshky (i, —y) <
=iu(/-R)——————=+ B cosk, (h,—y), 0<y<h,,
and
hoy, (7 — > hk,(h, —
, 2% 7)) % (hy y)+ A,,cosocn(h[—y)=(1+R1,)—COS (% y)+
coshoh, - cosh kyh, 3.5)
+ZBn cosk,(h,—y), 0<y<h
1
The use of Havelock’s [18] inversion theorem in Eqs (3.4) produces
y
4o, cosha,h
BT, = 0 071 cos o, (h; — y)dy, 3.6
BT = snh 2o !f(y) o(hy = »)dy (3.6)
hy
4a.
—-s A = a cosa, (h;, —y)dy, 3.7
v = e s Iah {f(y) o(hy = y)dy (3.7)
4k, coshkyh "
n(1-R;)=—-" 0-2 cos ky (h, —y)dy, 3.8
(=) 2kyh, + sinh 2kgh, 7 ()eos ko (1 =)y ©:8)
0
4k,
B cosk h d 3.9
PuB, 2kh2+sm2kh2-[f n(hy = y)dy. (3.9)
Using Eqgs (3.6), (3.7), (3.9) in Eq.(3.5) and from Eq.(3.8), we find
Iy
coshk,(h, —y)
Fy(u)M,(yu)du=—"—L"2—2] 0<y<h, 3.10
_[ 1(“) 1()’ “) u cosh ky, y<m ( )
: hk,(h, —
[7(n)== o223) G.11)
) cosh kyh,
where

_—f(u)  4kycosh? kyh,
" I+R; p(2kyhy +sinh 2kyh, )’




Oblique water wave diffraction by a step 39

2kyh, +sinh 2k,h, )| io, cosho, (4, —y)cosho, (h, —u
M](y,u):ll( 02 02){ 0 0(1 )’) 0(1 )+

k, cosh? kyh, B(20,ph; +sinh 201k )

+i{o¢n cosa, (h; —y)cosa,, (h; —u) . k, cosk,(h, — y)cosk, (h, —u)H’

n s, (20u,h; +sin 20, h;) P, (2k,hy +sin 2k, h,)

_—i(I-R))

C]
I+ R,

(3.12)

It may be noted that the function F; ( y) and the constant C; are real. The integral Eq.(3.10) is to be

solved by (N +1) multi-term Galerkin approximations of F;(y) in terms of ultraspherical Gegenbauer

1/3

polynomials C3.? (y/h;) by noting the behavior of F,(y)~(h—»)"7 as y—>h 0 given by (cf.

Kanoria et al. [19])

N
F(y)=Ya,/,(y), 0<y<h (3.13)
n=0
where
J hy .
£ (v)= —Eexp(—Ky)Iexp(Kf)fn (1)dr,0<y<h,
with
: 27510(1/6)(2n)!
fn(y): ( )( ) 1/3 526(.)//]11)
wl(2n+1/3)h{"> (] =57
The unknown coefficients a, (n=0,1,2,---,N) are obtained by solving the system of linear
equations
N
YaR,, =d,, m=0,1,2,--,N (3.14)
n=0
where

nm

_ W (2kyh, +sinh 2kyh; ) |:4(_1)n+m i{ k, cos” k.h, Soners6 (kehz) Tamenss (kihz) N

k, cosh’ kyh, | p,(2k.hy +sin 2k, h,) (k.hy)"

o cos” o,k Jouins () omirss (0l N
s, (20.,h; +sin 2a,.h)) (o, )1/3

o cosh? ohy Ly, 176 (Oﬂohz )12m+1/6 (a0h1)
B(20ph; +sinh 2a,h, ) (aph;)"” ’
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_ 12m+1/6 (k0h2 )

d
( kol )1/6

m
Once a, (n=0,1,2,---,N) are solved, the real constant C; can be determined from Eq.(3.11)
N
C=>ad,. (3.15)
n=0

Then R; can be found using Eq.(3.12) and 7; can be found from Eqs (3.6) using (3.13) as

IZI_ZCI’ (3.16)
1+iC;
idcoshoyh <
1= 1/6 zan12n+1/6 (o) (3.17)
(o) n=0

where
Y ou(1+ R, )coshayh, (2kyh, + sinh 2k,h,)

Bk, cosh? kyhy (20yh; +sinh 200, )

If a simple harmonic progressive oblique wave train originating at x — +oo is incident on the step,
and is partially reflected and partially transmitted, the time harmonic progressive waves from positive

inc

infinity can be represented by the velocity potentials Re {(p N (x, y)exp(iS 12— ict)} where

_ coshay, (h; )

o (x,y)= exp(—if;x), (3.18)

cosh o/,
with 8; =a,sina, B; =a,cosa.
If the resulting motion is described by the velocity potential Re{(p(x, y)exp(iS Iz—icst)} , then ¢

satisfies
V2p—97¢=0 in the fluid region, (3.19)

and the conditions from Eqgs (2.4) to (2.7).
The behavior of (p(x, y) at infinity gives

1, MU 20) o i) a3 e
cosh kyh,
s (3.20)

h h, —
w{exp(—iﬁjthZ exp(iB;x)} as x— +o
coshoh;
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where p7 =k; —97 and T,,R, are the unknown transmission and reflection coefficients to be determined.
A solution for (p(x, y) satisfying Eqgs (3.19), (2.4), (2.5) and (3.20) can be represented as

wexp(_m,x) + ZD,, cosk, (h, —y)exp(p;,x), x<0,
cosh kyh, 1
o(5y) > o ) (3.21)
W{exp(_ig,x) + R, exp(if x)} + ZC" cosa,, (h; — y)exp(—s,;x), x>0

cosh o/, 7

where s, =+JoZ +97,p, =Jk2 +97 .
Using Eq.(3.21) in Eqs (3.1) and (3.2), we find

coshky(h, —y) <

=—iy,T. + ' D, cosk, (h, —y), 0< y<h,,
f(y) L] COShk0h2 lepn n n( 2 y) y=n;
(3.22)
coshoy, (h; —
=] R—— s,C,cosa, (b, —y), 0<y<h
BI( 2 ) COShOLOhI Zn n y) y=n
and
hky(hy — > hoy (h; —
r, 22002 7)) o (% y)+ZDncoskn(h2—y):(]+R2)COS % (s )
cosh kyh,, coshayh;,
© (3.23)
+> Cyeosa, (b —y),  0<y<h.
Use of Havelock’s [18] inversion theorem in Eq.(3.22) produces
tkycoshkyh, f
—ip Ty =—2 22 cos ky(hy — y)dy, 3.24
Wi =+ sinh 2k, [7(v)cos ky(h, = y)dy (3.24)
4o !
—s.C, = 1 cos o, (h, —y)dy, 3.25
WO = S+ sin 20 !f(y) o (hy = y)dy (3.25)
4o, coshayh :
B, (R, —1)= 0 01 cos o, (h, —y)dy, 3.26
1 (R =1) =5 P !f(y) o (hy = y)dy (3.26)
' 4k :
PuDy = ! [7(v)cos k, (hy = )y . (3.27)

2k, hy +sin 2k, by )



42 P.Dolai

Using Eqgs (3.24), (3.25), (3.27) in Eq.(3.23) and from Eq.(3.26), we find

hy

hoy,(h; —
J.Fz(u)Mz(y,u)duz%fxolhly), 0<y<h, (3.28)
0
h] _
IFz(y)—COSh%(h] y)dy=Cz (3.29)
) coshoh,

where

()= f(u) 4o, cosh? ayh,
2T 14 Ry By (20hy +sinh 200k )

_ Bs(2ayhy +sinh 2a,yh; )| ik, coshk, (hy — y)coshky (hy —u)

My (y,u)= .
2 () o, cosh? oy, w; (2kyh, +sinh 2kyh, )
(3.30)
+i o, cosa,(h; — y)cosa, (h; —u) N k, cosk,(h, — y)cosk,(h, —u)
- s, (20, h, +sin 20, ;) P, (2k, h, +sin 2k, hy) '
_iR, =)
R,+1

It may be noted that the function F,(y) and the constant C, are real. The integral Eq.(3.28) is to be

solved by (N +1 ) multi-term Galerkin approximations of F, ( y) in terms of ultraspherical Gegenbauer

-1/3

polynomials C3 (y/h;) by noting the behavior of F,(y)~ (k- ) as y—h;—0 given by (cf.

Kanoria et al. [19])

Fz(y)=ia;fn(y), 0<y<h (3.31)
where "
4 h R
fu()= —Eexp(—Ky) [ exp(Ke) £, (e)de0< y<hy,
with
},1(y)= 2757 (1/6)(2n)! I8 (1),

al(2n-+1/ 3)h{" (] =57 )1/3

The unknown coefficients a;l (n=0,1,2,---,N) are obtained by solving the system of linear
equations
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N
> a,R,, =d,, m=0,1,2,--,N (3.32)
n=0
where
_ B] (20{,0}11 +sinh20c0h1) 4(_1)n+m§: (Xr COSZ arhIZ J2n+]/6 ((X,.h]).]zm+1/6 (arh1)+
" oy COSh2 a0h12 (3.14) oy S;,(z(l,.]’llz +sin2ocrh12) (oc,hl)m
n k, cos’ k,hy Sont16 (kth )J2m+]/6 (krh2) n iky cosh’ koh; Doniiis (kohz )I2m+1/6 (kohz)
D, (2k, by +sin 2k, 1) (k,hy)" u; (2kgh, +sinh 2kyh, ) (ko )" ’

d = L6 (aohz) .
(0‘0 h, )]/6

Once a;1 (n=0,1,2,---,N) are solved, the real constant C, can be determined from Eq.(3.29)
N Al '
C;=Y a,d,. (3.33)
n=0

Then R, can be found using Eq.(3.30) and 7, can be found from Eq.(3.24) using (3.31) as

R, = 1-iCy , (3.34)
1+iC,

iBcoshkyh, < .
! 1(/)_6 2 Zan12n+1/6 (kohs) (3.35)
(kohz) n=0

T,
where

B koB; (1+ Ry)coshkyhy (201yh; +sinh 201k, )
w0 cosh? aghy (2kghy +sinh 2kghy)

4. Numerical results

Multi-term Galerkin approximations are used to obtain a numerical estimate for |R1

7| and

,| T, |. In the numerical computations we take at most six terms to produce a fairly accurate numerical
2 p p y

AT

We display a representative set of numerical estimates for |R1

R,
estimate for |R]|, |T; | and |R2

,|T;| and |R,|,|T,| in Tab.l and
Tab.2, taking N =0, 1, 2, 3, 4 and 5 in the (N + 1) - term of Galerkin approximations and some particular
values of the different parameters and the wave numbers.
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Table 1
hy /1 hy=0.5,Kh, =0.2,0.=0"
R |R:| A
0 0.236756 0.236756 1.126449 | 0.837985
1 0.234018 0.234018 1127218 | 0.838556
2 0.233981 0.233981 1.127228 | 0.838564
3 0.233979 0.233979 1.127229 | 0.838565
4 0.233979 0.233979 1.127229 | 0.838564
5 0.233979 0.233979 1127229 | 0.838564
hy | hy=0.5,Khy=0.2,0.= 30"
IRi| |R,| ul 72|
0 0.201124 0.157099 1.094152 | 0.934879
1 0.198444 0.154480 1.094762 | 0.935270
2 0.198408 0.154444 1.094771 | 0.935275
3 0.198406 0.154442 1.094771 | 0.935275
4 0.198405 0.154442 1.094771 | 0.935275
5 0.198405 0.154442 1.094771 | 0.935275
Table 2
hy/hy=0.5,Kh, =18,a.=0"
&) |R,| A
0 0.259046 0.259046 0.934748 | 0.998018
1 0.259317 0.259317 0.934678 | 0.997943
2 0.259138 0.259138 0.934724 | 0.997992
3 0.259127 0.259127 0.934727 | 0.997995
4 0.259126 0.259126 0.934727 | 0.997996
5 0.259126 0.259126 0.934727 | 0.997996
hy | hy =0.5,Kh, =1.8,00=30"
&) |R,| -
0 0.217419 0.201057 0.923292 | 1.049337
1 0.218222 0.201998 0.923122 | 1.049129
2 0.218054 0.201835 0.923159 | 1.049165
3 0.218040 0.201825 0.923161 | 1.049167
4 0.218039 0.201824 0.923161 | 1.049167
5 0.218039 0.201824 0.923161 | 1.049167

It is observed from Tabs 1 and 2 that the computed results for |R1

T;] and |R,

,| T, | converge

very rapidly with N, and for N >3 an accuracy of almost six decimal places is observed. It appears that the
present numerical procedure for the numerical computations of reflection and transmission coefficients is

quite efficient. We also note from these tables that for normal incidence of the wave train (oc=00),

[R,|=|R,| (=|R
infinite step problem.

,say) and |T1T 2|=I—|R|2 . Similar observations were made by Newman (1965) for the
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Fig.2. Reflection and transmission coefficients for %, / h, =0.5,00= 0" .

The computed results for | R| and |T,

,|T, | are plotted in Fig.2 against Kh, for h, / h, =0.5,0.= 0°.

It is observed that | R| increases for some moderate values of Kh, and then decreases as K/, increases. On

the other hand,

T1| decreases and |T 2| increases as Kh, increases and |T1|=|T 2|z1 .0 for some particular

value of Kh, ~1.5. Also, it is observed that |R|—>0 and |T1|—>1, T2|—>] as Kh, — oo. These type of

observations are quite plausible because for small Kh,, waves penetrate on the step and for large Kh,,

waves are mainly confined at the free surface, so that waves are totally transmitted through the gap.

1.5
(I SRy
05 T
_ I .
L
"o os 1 s
0 0= 1 -
Kh,

Fig.3. Reflection and transmission coefficients for &, / h, = 0.5,0.= 30" .
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In Fig.3, the computed results for |R1 ,|R,| and |T1|,|T2| are plotted against Kh, for

hylhy=0.5,0= 30° . It is observed that |R; [>| R, | for all Kh,. It is quite obvious because the reflection
coefficient for penetration from the front side of the step will be greater than penetration from the back side
of the step. |R]|and | R, | first increases then decreases as K#, increases and tending to zero as Kh, — .

Also,
Kh, = 1.0. 1t is also observed that |T]| —1,

T1| decreases and |T 2| increases as Kh, increases and |T1| =|T 2| ~ 1.0 for some particular value of

T2|—>] as Kh, — oo

4. Conclusion

The method of multi-term Galerkin approximations in terms of ultra spherical Gegenbauer
polynomials has been utilized here to obtain very accurate numerical estimates for the reflection and
transmission coefficients in the water wave scattering problem of an obliquely incident surface wave train on
an obstacle in the form of a finite step. By choosing only five terms in the Galerkin approximations, we
achieve accuracy almost to the sixth digit after the deumol point. In the numerical estimates for the reflection
and transmission coefficients. The numerical results are illustrated in tables and figures. For normal
incidence of the surface wave train, the results are compared with the known results available in the literature
for similar problems and very good agreement is achieved.
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Nomenclature
g —gravity

h; - depth of the upper step
h, —depth of the lower step

K —wave number
R;,R, —reflection coefficients

7;,T, - transmission coefficient
t —time
x —horizontal distance
y —vertical distance
o —wave frequency
¢ - velocity potential
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