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The effect of Coriolis force on the Soret driven ferrothermohaline convection in a densely packed porous 
medium has been studied. A linear stability analysis is carried out using normal mode technique. It is found that 
stationary convection is favorable for the Darcy model, therefore oscillatory instability is studied. A small thermal 
perturbation is applied to the basic state and linear stability analysis is used for which the normal mode technique is 
applied. It is found that the presence of a porous medium favours the onset of convection. The porous medium is 
assumed to be variable and the effect of the permeable parameter is to destabilize the system. The present work 
has been carried out both for oscillatory as well as stationary instabilities. The results are depicted graphically.  
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1. Introduction 
 
      A ferrofluid (compound of Latin ferrum, meaning iron, and fluid) is a liquid which becomes strongly 
magnetized in the presence of a magnetic field. A ferrofluid is a combination of microscopic magnetic 
particles suspended in a liquid, usually a solvent or water. Ferrofluids are used in loudspeakers to cool the 
voice coil and reside in the air gap between the voice coil and the speaker’s magnet. 
       Ferrofluids are colloidal liquids made of nanoscale ferromagnetic, or ferromagnetic, particles 
suspended in a carrier fluid-usually an organic solvent or water. Each tiny particle is thoroughly coated with 
a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous 
colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The 
magnetic attraction of nanoparticles is weak enough so the surfactant’s van der Waals repulsion is sufficient 
to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the 
absence of an externally applied field and thus are often classified as “superparamagnets” rather than 
ferromagnets. 
      The difference between ferrofluids and magnetorheological fluids (MR fluids) is the size of the 
particles. The particles in a ferrofluid primarily consist of nanoparticles which are suspended by Brownian 
motion and generally will not settle under normal conditions. MR fluid particles primarily consist of 
micrometer-scale particles which are too heavy for Brownian motion to keep them suspended, and thus will 
settle over time because of the inherent density difference between the particle and its carrier fluid. These 
two fluids have very different applications as a result. 
      In ferrofluids, magnetic and liquid states coexist. On the surface, they are deceptively simple 
systems: a homogeneous phase comprised of three constituents, namely the magnetic particles, surfactant, 
and the liquid carrier. However, a complex chemistry and a balance of inter-particle forces determine the 
colloidal stability. The magnetic particles must be in the range of 10nm. The surfactant tails should be long 
enough to prevent particle agglomeration. Ferrofluids synthesized about 30 years ago are still stable. 
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      Initially, Finlayson [1] studied the convective instability of a single component ferrofluid layer 
heated from below in the presence of a vertical uniform magnetic field and explained the concept of thermo 
mechanical interaction in a ferrofluid. Das Gupta and Gupta [2] showed the stabilizing effect of rotation on 
setting up of convective instability in ferrofluids. The stability of the magnetic fluid penetration through a 
porous medium in a high uniform magnetic field oblique to the interface is studied by Zahn and Rosensweig 
[3]. The effect of the magnetic field along the vertical axis on thermoconvective instability in a 
ferromagnetic fluid saturating a rotating porous medium with the Darcy model was studied by Sekar et al. 
[4]. The same effect for a Brinkman model was also studied by Sekar et al. [5]. The effects of rotation and 
anisotropy of a porous medium on ferroconvection was analyzed by Vaidyanathan et al. [6]. This was 
extended to a study on the effect of rotation on ferrothermohaline convection saturating a porous medium by 
Sekar et al. [7]. The effect of rotation on ferrothermohaline convection was analyzed and linear theory was 
used by Sekar et al. [8]. Soret-driven thermosolutal convection was studied by Hurle et al. [9]. Soret-driven 
convection in ferrofluids using a non-linear analysis was analyzed by Ryskin et al. [10].  
      Soret-driven ferro thermohaline convection was studied by Vaidyanathan et al. [11]. Shevtsova et al. 
[12] carried out a study on the onset of convection in Soret driven instability. The effect of Coriolis force on 
a Soret driven ferrothermohaline convective system was studied by Sekar et al. [13]. Following this, the 
same analysis in a medium of sparse particle suspension was analyzed by Vaidyanathan et al. [14]. The 
effect of rotation on double diffusive convection in a magnetized ferrofluid with an internal angular 
momentum was studied by Sunil et al. [15]. The effect of Coriolis force on thermal convection in a couple 
stress fluid saturated rotating rigid porous layer was studied by Shivakumara et al. [16]. Paras Ram et al. [17-
18] discussed the ferrofluid flow with magnetic field dependent viscosity due to a rotating disk with and 
without a porous medium. More recently, the presence and absence of an anisotropy porous medium on 
Soret driven ferrothermohaline convection have been investigated by Sekar et al. [19-21] using Brinkman 
and Darcy models. Also, with and without magnetic field dependent (MFD) viscosity on Soret driven 
ferrothermohaline convection in an anisotropic porous medium was studied by Sekar and Raju [22-23].The 
effect of temperature dependent viscosity and Coriolis force on Soret driven ferrothermohaline convection in 
a porous medium and anisotropy effect was studied by Sekar et al. [24-25]. Most recently, the presence and 
absence of Coriolis force on Soret driven ferrothermohaline convection saturating a densely packed 
anisotropic porous medium was studied by Sekar et al. [26-27]. 
      In the present investigation, the convection of Soret-driven ferro thermohaline instability of multi-
component fluid layer heated from below and salted from above in a densely packed porous medium with 
Coriolis force is analysed. Linear stability analysis is used. The conditions for the onset of stationary and 
oscillatory instabilities are obtained. 
 
2. Formulation of problem 
 
       A horizontal layer of an incompressible Boussinesq ferromagnetic fluid of thickness ‘d’ saturating a 
densely packed porous medium with Coriolis force in the presence of a transverse applied magnetic field 
heated from below and salted from above is considered. The temperature and salinity at the bottom and top 
surfaces z = ±d/2 are T0 ± ∆T/2 and S0 ± ∆S/2, respectively. Both the boundaries are taken to be free and 
perfect conductors of heat and solute. The Soret effect on the temperature gradient is considered. Further, the 
whole system is assumed to rotate with a uniform constant angular velocity ( , , )0 0   and the vertical 
direction is taken as the z axis. The mathematical equations governing the above investigation are as follows: 
 The continuity equation for an incompressible fluid is 
 
             . 0 q .                                                                                                                           (2.1) 
 

 The corresponding momentum equation is  
 

       .
2o

o o
D

p 2
Dt 2 k

 
            

q
g HB q r q  .  (2.2)  
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 The temperature equation for an incompressible ferrofluid is 
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. . 2
o V H o o 1

V H V H
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M M H
H

T
.                   (2.3)

 
 
 The mass flux equation is given by 
  

  
2 2

s T

DS
K S S T

Dt
                                                                                                          (2.4) 

 
where      ,, , , , , , , , , , , , , , ,, , , , , ,, and  o V H 1 S TCu v w g 0 0 g k K K 0 0 St p T S     q H B M  are the 

fluid density, velocity, acceleration due to gravity, permeability of the porous medium, time, pressure, 
coefficient of viscosity, magnetic field, magnetic induction, heat capacity at constant volume and magnetic 
field, temperature, magnetization, thermal conductivity, salinity, concentration diffusivity, angular velocity, 
Soret coefficient and viscous dissipation factor containing second-order terms in velocity, respectively. 
 Maxwell’s equations are 
 
            . ,0 0   B H .                                                                                  (2.5) 
 
 Further, B, M and H are related by 
          
   0  B M H .                                                                                                           (2.6)  

 
 Using Maxwell’s equation for non-conducting fluids, one can assume that the magnetization is 
aligned with the magnetic field and depends on the magnitude of the magnetic field, temperature and 
salinity, so that  
 

 
 

 , ,M H T S
H


Η

Μ .                                                                                                       (2.7) 

 
 The magnetic equation of state is linearized about the magnetic field H0, the average temperature T0 
and the average salinity S0 and so

  

       0 0 0 2 0M M H H K T T K S S                                                                      (2.8) 
 
where   ,

/
0 0

        is the susceptibility,   ,
/

0 0
         is the pyromagnetic coefficient and 

  ,
/

0 02 S
S      is the salinity magnetic coefficient. 

 The density equation of state for a Boussinesq two-component fluid is  
 

     0 t 0 s 01 T T S S                                                                     (2.9) 

 
where t  is the thermal expansion coefficient and s  is the solute analog of t . 
 The basic state is assumed to be the quiescent state and taking the components of the magnetization -

and magnetic field in the basic state to be  , , 00 0 M z    and  , , ,00 0 H z    
the basic state quantities 

obtained are 
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 (2.10) 

 

where t  and S  are non-negative constants and ( , , )0 0 1

k is the unit vector along the vertical direction. 

 
3. Linear stability analysis 
 
 The basic state is disturbed by a small thermal perturbation. Consider a perturbed state such that
   '  , ( ) , ( ) , ( ) , ( ) , ( ) b b b b bz pp p z TT zT z z            Hq q H H M M M  where 

, p , , , and ' T    Hq M  are perturbed variables which are assumed to be small. The perturbed state 

temperature and solute are 0 tT T z T      and 0 sS S z S     . Let the components of the perturbed 

magnetization and the magnetic field be   , ,1 2 0 3M M M z M  
 

and   , , ,1 2 0 3H H H z H    

respectively. 
 

  
 ,0

i i i
0

M
H M 1 H i 1 2

H

 
      

 
,                                                           (3.1) 

 

    3 3 3 2 TH M 1 H KT K S S KT            .                                          (3.2) 
 
Let  , ,1 2 3B B B  denote the components of B. 

 Using Eq.(2.6), one gets the result  i 0 i iM HB      and Eqs (3.1) and (3.2) give 

  

   ,0
i 0 i

0

M
1 i 1 2

H
B H

 
    

 
,                                (3.3) 

  

  
 3 0 3 2 0 0B 1 H KT K S S KT M H              .                                 (3.4) 

 
 When the first equation of Eq.(2.5) is used in Eq.(2.1) and the resulting equation is linearized with Bi 
(i=1, 2, 3) given by Eq.(3.3) and Eq.(3.4), we obtain the following components 

 

             
  1

0 0 0 0 0
Hu p

M H 2 v u
t x z k

  
         

  
,                                        (3.5)    

           

  
  2

0 0 0 0 0
Hv p

M H 2 u v
t y z k

  
         

  
,                                        (3.6)            
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  (3.7) 

 
 Differentiating Eqs (3.5)-(3.7) with respect to x, y and z respectively and adding them the following 
equation is obtained upon using Eq.(2.1) 
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where H  has the components  , , .1 2 3H H H    From the second equation of (2.5),   H  where   is a 

scalar potential. Elimination of p from Eqs (3.7) and (3.8) then gives 
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 (3.9) 

 

where  and 
2 2 2

2 2 2
1 12 2 2x y z

  
     

  
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 We now proceed to a normal mode analysis of the above stability problem. Let us take 
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 (3.10) 

 

with the wave number 2 2 2
0 x yk k k  . 

 The vertical component of the momentum equation can be calculated as 
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  (3.11) 
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where   is the z- component of vorticity given by 
v u

x y
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 The modified Fourier heat conduction equation is 
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where   ,0 0 V H 0 0C C KH    . 

 
 The salinity equation is 
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(3.14) 

 
 Using the analysis similar to Finlayson (1970), one gets  
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(3.15) 

 
 The non-dimensional numbers can be written using 
 

  

  //

, ,

/
* *

,

, , , , ,

, , , , , .

1 21 2
11

2 2
0 V H t 0 V H t

1 2 2
s s

0 2
0 V H s 0

1 K aRK aRt wd z
t w z

C d dd K C d

K aR d k
a k d D S S k

C dz d

    




                           

   
                 

 
 Then Eqs (3.11) – (3.15) become 
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where the non-dimensional parameters used are 
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          (3.21) 

 

where SR  is the salinity Rayleigh number, R is the thermal Rayleigh number, Pr  is the Prandtl number and 
other parameters represent  non-dimensional parameters used appropriately.   
 
4. Analysis of solution at free boundaries 
 
 The boundary conditions on velocity, temperature and salinity are 
 

  * ** * * * * at * / .2w D w T D S D 0 z 1 2                                             (4.1) 
 
 The exact solutions satisfying Eq. (4.1) are  
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t t t
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F
D Fe z e z

  

 

     

     


 (4.2) 

 
where , , andA B C F  are constants. These functions substituted in the set of Eqs (3.16) – (3.20) give the 

following four linear homogeneous algebraic equations in , , and .A B C F  Removing the asterisks for our 
convenience, we get 
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  For the existence of non-trivial eigen functions, the determinant of the coefficients of A, B, C and F 
in Eqs (4.3) – (4.6) must vanish. Following the techniques and analysis of Sekar et al. (2007), Eqs (4.3)-(4.6) 
leads to  
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5. Stationary convection 
 
       For obtaining stationary instability, the time-independent term Y=0. Equation (4.7) helps one to 
obtain eigen value Rsc for which a solution exists 
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where      
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 For very large M1, one gets the results for the magnetic mechanism and the critical thermo magnetic 
Rayleigh number for stationary mode is obtained using 
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6. Oscillatory convection  
 

    The conditions for the onset of oscillatory stabilities are obtained as follows. Taking 1i    and 

,2
1 0   following the analysis and techniques of Sekar et al. (2007), the critical Rayleigh number for 

oscillatory mode has been calculated using 
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7. Method of solution 
 
       The Soret-driven thermoconvective instability of a ferromagnetic fluid heated from below and salted 
from above rotating in a densely packed porous medium has been analyzed using the Darcy model. The 
perturbation method is applied and a normal mode analysis is adopted. In the perturbation method, due to the 
application of a magnetic field, the system is perturbed from the basic state (quiescent state). Accordingly the 
governing and other equations are modified. Linear stability analysis is considered. Then normal mode 
analysis is taken. Non-dimensional analysis is carried out and the exact solutions satisfying the appropriate 
boundary conditions are taken yielding algebraic equations. For getting a non-trivial solution for the system 
of linear homogeneous equations, the coefficients of the dynamic variables are equated to zero and on 
simplification, the expression for Rsc is obtained. Varying the values of the parameters in the allowable range 
and getting the corresponding Rsc values, we get the stability pattern. 
 
8. Results and discussions 
 
 Before discussing the significant results of the convective system, we turn our attention to the 
possible range of values of various parameters arising in the study. The Prandtl number Pr is assumed to be 
0.01. The Taylor number Ta is assumed to vary from 10 to 108. The Soret parameter ST is assumed to take 
values from -0.002 to 0.002, the salinity Rayleigh number Ra takes values -100, 0, 100, 400 and 600. The 
non-buoyancy magnetization parameter M3 is allowed to take values from 5 to 25. The values of the ratio of  
mass transport to heat transport   is assumed to be 0.03, 0.05, 0.07, 0.09 and 0.11. The buoyancy 
magnetization parameter M1 is assumed to be 1000. For these fluids, M2 will have a negligible value and 
hence is taken as zero. M6 is taken to be 0.1 and M4 is the effect on magnetization due to salinity. This is 
allowed to vary from 0.1 to 0.5 taking values less than the non-buoyancy magnetization parameter M3. M5 
represents the ratio of the salinity effect on the magnetic field and pyromagnetic coefficient. This is varied 
between 0.1 and 0.5. The permeability of the porous medium k is assumed to take the values from 0.001, 
0.003, 0.005, 0.007 and 0.009 (Darcy number). 
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Fig.1. Variation of Nsc versus M3 for different   with St = -0.002, RS = 100, k = 0.001 and Ta= 105. 

 
 Figure 1 illustrates the variation of the thermal Rayleigh number Nsc versus the non-buoyancy 
magnetization parameter M3 for Ta=105. When the values of the ratio of  mass transport to heat transport   is 
varied from 0.03 to 0.11, it is seen that, when M3 increases from 5 to 25, Nsc decreases indicating the onset of 
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instability. This is because high magnetization tends to release large energy to the system causing instability 
to set in earlier. Also, as the ratio of mass transport to heat transport    increases from 0.03 to 0.11, there is a 
fall in the values of Nsc. Thus larger values of   lead to destabilization of the system. The magnetization of 
the fluid is found to destabilize the system through oscillatory mode, which was discussed by Sekar et al. 
(2007). 
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Fig.2. Variation of Nsc versus k for different Ta  with St = -0.002, RS = -500, .0 03   and M3= 5. 

 
 Figure 2 shows the variation of the thermal Rayleigh number Nsc versus the permeability of the 
porous medium k. It has been observed that as the Taylor number Ta is increased from 103 to 106, it is clear 
that as the permeability k increases from 0.001 to 0.009, the thermal Rayleigh number Nsc values tend to 
decrease for small values of Ta, whereas for higher values of Ta, Nsc decreases for lower values of k, and 
then increases for higher values of k.       
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Fig.3. Variation of Nsc versus k for different Ta  with St = -0.002, RS = -500, .0 03   and M3= 5. 
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 Figure 3 represents the variation of the thermal Rayleigh number Nsc versus permeability of the 
porous medium k. It has been observed that as the Taylor number Ta is increased from 106 to 108, it is clear 
that as the permeability k increases from 0.001 to 0.009, the thermal Rayleigh number Nsc values increases. 
Therefore rotation leads to stability of the system. 
 

0.02 0.04 0.06 0.08 0.10 0.12
0

500000

1000000

1500000

2000000  T
a
 = 103

 T
a
 = 104

 T
a
 = 105

 T
a
 = 106

 T
a
 = 107

 T
a
 = 108N

S
C


 

 
Fig.4. Variation of Nsc versus   for different Ta  with St = -0.002, RS = -500, k = 0.001, and M3= 5. 

 
 Figure 4 gives the variation of the thermal Rayleigh number Nsc versus the ratio of mass transport to 
heat transport   (varied from 0.03 to 0.11). It has been observed that as the Taylor number Ta is increased 
from 103 to 108, there is a notable variation in rotation. As the Taylor number Ta increases, the critical 
thermal Rayleigh number Nsc increases. Therefore, the effect of the Taylor number leads to stability of the 
system. It is clear that as the ratio of the mass transport to heat transport   increases from 0.03 to 0.11, the 
critical thermal Rayleigh number Nsc is almost constant and the system is in equilibrium state due to rotation.  
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Fig.5. Variation of Rsc versus St for different Ta  with RS = -500, k = 0.001, .0 03   and M3= 5. 
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 Figure 5 indicates the variation of Rsc versus St for different values of Ta. The figure shows a 
stabilizing behavior which is not much pronounced. The stabilization is minimal when the Taylor number Ta 
assumes values from 103 to 106, and then it increases phenomenally. This is indicated by an increase in Rsc 
values.  
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Fig.6. Variation of Rsc versus RS for different Ta  with St = -0.002, k = 0.001, .0 03   and M3= 5. 
 
 Figure 6 is a plot of the variation of Rsc versus RS for different values of Ta. This figure shows that as 
Ta increases, there is an increase in the values of the critical magnetic Rayleigh number Rsc. Therefore the 
Taylor number leads to stability of the system. 
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Fig.7. Variation of Rsc versus Log Ta  for different M3 with RS = 100, k = 0.001, .0 03   and St = -0.002. 
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 Figure 7 analyzes the variation of the critical magnetic Rayleigh number Rsc versus Log Ta  for 

various values of the non-buoyancy magnetization parameter M3.  When Log Ta  increases from 3 to 5, 
stabilization is not much pronounced. But when it takes values from 6 to 8, the increase in Rsc values is 
maximum.  
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Fig.8. Variation of Rsc versus k for different Ta  with St = -0.002, RS = 100, .0 03   and M3= 5. 

 
 Figure 8 represents the variation of the critical magnetic Rayleigh number Rsc versus permeability of 
the porous medium k through stationary instability. It has been observed that as the Taylor number Ta is 
increased from 10 to 103, there is no notable variation. The effect the Taylor number Ta is negligible. For 
different Ta, no appreciable changes in the curves are noticed. It is clear that as the permeability k increases 
from 0.001 to 0.009, the critical magnetic Rayleigh number Rsc values tend to decrease leading to 
destabilization. This is due to the fact that an increase in the pore size makes the flow of the fluid easier 
causing instability to set in earlier.        
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Fig.9. Variation of Rsc versus k for different Ta  with St = -0.002, RS = 100, .0 03   and M3= 5. 
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 Figure 9 gives the variation of the critical magnetic Rayleigh number Rsc versus permeability of the 
porous medium k. It has been observed that as the Taylor number Ta is increased from 104 to 108, the critical 
magnetic Rayleigh number Rsc values tend to decrease leading to destabilization. But it is clear that as the 
permeability k increases from 0.001 to 0.009, the critical magnetic Rayleigh number Rsc values tend to 
increase leading to stabilization.  
 
6. Conclusions 
 
 The linear stability of thermohaline convection in a ferrofluid layer heated from below and salted 
from above saturating a densely packed porous medium subject to a transverse uniform magnetic field has 
been considered with the effect of rotation. In this investigation, the effect of various parameters such as 
permeability of the porous medium, non – buoyancy magnetization, buoyancy magnetization, Prandtl 
number, ratio of mass transport to heat transport, Rayleigh number, Taylor number and salinity Rayleigh 
number on the onset of convection has been calculated. The thermal critical magnetic Rayleigh numbers for 
the onset of instability are also determined numerically for sufficiently large values of the buoyancy 
magnetization parameter M1 and results are depicted graphically. If Roc > Rsc, then the system stabilizes 
through stationary mode. If Roc < Rsc, then the system stabilizes through oscillatory mode, where Roc and Rsc 
are the critical thermal Rayleigh numbers for the oscillatory and stationary convection system. 
      In conclusion,  Figs 1 to 4 illustrate the critical thermal Rayleigh number Nsc  versus M3, k, and   for 
different values of   and Ta. But Figs 5 to 9 indicate the critical magnetic Rayleigh number Rsc versus St, RS, 
LogTa,  and k for different values of M3 and Ta. For the oscillatory convection, the Taylor number Ta has a 

stabilizing effect on various values of k and   which are studied in Figs 2 – 4. But for various values of M3, 
the convective system has a destabilizing effect which is analyzed in Fig.1. For stationary convection, the 
Taylor number Ta has a stabilizing effect for various values of St and RS which are studied in Figs 5 – 6. But 
for various values of k, the convective system has a destabilizing effect which is analyzed in Figs 8 – 9. 
Figure 7 shows a stabilizing effect for Log Ta and a destabilizing effect for M3, which are not much 
pronounced. Thus, rotation tends to stabilize the system. 
     Furthermore, the principle of exchange of instability is applied to find out the mode of attaining 

instability. It is found that the system stabilizes through stationary mode for values of Ta 310  and for 
oscillatory mode instability is favored for Ta> 103. Thus convection is favoured in a ferromagnetic fluid by 
means of spatial variation in magnetization, which is induced when the magnetization of the ferrofluid 
depends on temperature and salinity.  
 
Nomenclature 
 
 B  magnetic induction  
 Cv,H  effective heat capacity at constant volume and magnetic field (kJ/m3K)  
 D/Dt   convective derivative s-1  / / .D Dt t    q  

 d  thickness of the fluid layer m  
 g  gravitational acceleration (0, 0, -g) ms-2  
 H  magnetic field amp/m  
 K  mass diffusivity 

 K 
 pyromagnetic coefficient ,( M/ )

0 0H TT       

 K1  thermal diffusivity W/mK 

 K2 
 salinity magnetic coefficient ,( M/ )

0 0H TS      

 Ks  concentration diffusivity W/mkg 
 k   permeability of the porous medium  
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 0k   resultant wave number  2 2
0 x yk k k  m-1 

 kx, ky   wave number in the x and y direction m-1  
 M  magnetization Ampm-1  
 M0  mean value of the magnetization at H = H0 and T = T0  
 p  hydrodynamic pressure (N/m2) 
 q  velocity of the ferrofluid (u, v, w) ms-1 
 S  solute concentration kg 
 ST  Soret coefficient  
 T  temperature K 
 Ta  Taylor number  
 t  time s 
 t    coefficient of thermal expansion K-1 

 s    analogous solvent coefficient of expansion K-1 

 t   uniform temperature gradient Km-1 

 s   uniform concentration gradient kgm-1 

    perturbation in temperature (K) 
    dynamic viscosity kgm-1s-2 

 0   magnetic permeability of vacuum 

    density of the fluid kgm-3 

 0   mean density of the clean fluid kgm-3 

    growth rate s-1 
    viscous dissipation factor containing second order terms in velocity 

    magnetic scalar potential Amp 

    magnetic susceptibility ,( M / )
0 0H TH      

    angular velocity 
    vector different operator  ( / ) ( / ) ( / )x y z        i j k  
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