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Laminar natural convection in a trapezoidal porous vertical cavity has been investigated in this work. It is 
assumed that the porous enclosure is filled up with a permeable material subject to hydrodynamic and thermal 
anisotropy, the flow being governed by the Darcy law as applicable to a non-isotropic medium. It is further 
assumed that (i) there is heating at the left vertical wall and cooling at the right wall of the enclosure and (ii) the 
flow domain is subject to the presence of heat source or heat sink. The partial differential equations governing the 
resulting free convection have been solved numerically in the non-dimensional forms. There arises a number of 
parameters relating to buoyancy, internal heating, cavity aspect ratio and inclination of the upper surface to the 
horizontal. The influence of these parameters has been illustrated and analyzed through contours of streamlines 
and isotherms. We have also discussed the role of internal heating as well as anisotropy on the heat transfer 
characteristics. 
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1. Introduction 
 
 The anisotropy features in the theoretical analysis of flow and heat transfer in porous media of finite 
or infinite extent have received considerable attention in the literature on porous media flows. In particular, a 
large number of researchers have focused their attention on investigating natural convection in 
incompressible viscous fluids within the confines of finite permeable enclosures because of a wide range of 
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real life applications in engineering and industries. For instance, the applications such as storage of energy, 
storage of nuclear waste material, production of geothermal energy from reservoirs, oil extractions, thermal 
insulation, heating or cooling of buildings, to name a few, all require deep mathematical analysis of the 
momentum and energy transport equations governing free convective flows in a variety of geometrical 
configurations and subject to a range of physical conditions. 
 In the investigations of two-dimensional natural convective flows in finite enclosures in a variety of 
geometrical shapes such as squares, rectangles, trapezoids, triangles, filled with anisotropic porous material, 
the orientation of the principal axes is known to play a pivotal role, for example,  in assessing maximum or 
minimum  heat transfer rates. In a number of studies relating to natural convection in finite permeable 
enclosures, one of the principal axes is assumed to be either in the direction of gravity or some specific 
direction (i.e., oblique principal axes) depending upon the nature of applications. There is another key feature  
worth mentioning with regard to the type of anisotropy. A close look at the literature apparently reveals that 
three types of anisotropic features have generally been accounted for while discussing free convective flow: 
(i) anisotropy due to permeability variations only; (ii) anisotropy due to changes in thermal diffusivity only 
and (iii) anisotropy due to variations in both quantities. The effect of one or more of such features of 
anisotropy has been amply exhibited on isotherms, streamlines and a few important quantities of engineering 
interest, e.g., skin friction and heat transfer coefficients at a bounding surface for a variety of thermal 
conditions at the enclosure walls, namely, isothermal, adiabatic and constant heat flux in a large number of 
investigations in literature. Both Darcy as well as non-Darcy models for flows in a porous medium were 
employed in such studies.  On the other hand, a number of investigations on stability analyses relating to the 
onset of convection in porous media of finite thickness or finite lateral extent have also considered various 
anisotropic features. For references on all aforementioned aspects of anisotropic properties in free convective 
flows, one may refer to works reported in [1–16].  
 In the study of buoyancy dominated convective flows of viscous incompressible fluids occupying 
finite or semi-infinite porous regions, there is yet another key aspect which has drawn the attention of 
researchers in recent years. This relates to the effect of internal heat generation due to the presence of heat 
sources or sinks in the flow domain. A number of studies in the literature [17–23] have been reported dealing 
with this particular feature. The present paper is devoted to studying numerically free convection in a vertical 
non-rectangular anisotropic region in the shape of a trapezoid, with a sloping upper boundary. It is assumed 
that the region has the presence of sources/sinks. We are thus extending an earlier work [15] with an aim to 
analyze the effect of internal heat source/sink. The effect of each of a number of governing non-dimensional 
parameters, namely, the Rayleigh number, internal heat source/sink parameter, aspect ratio and inclination 
angle of upper surface, assuming the remaining parameters to be fixed, has been exhibited on isotherms and 
streamlines of the flow. We have also computed and analyzed the average Nusselt number at a bounding 
surface by fixing the Rayleigh number, inclination angle and the aspect ratio while varying others including 
the thermal diffusivity parameter. 
 
2. Mathematical formulation 
 
 We consider natural convection in a non-rectangular cavity, in the shape of a finite trapezoid, whose 
side walls are vertical. The basic dimensions of the cavity are L  (width) and H  (height). We assume that, 
with respect to a two-dimensional coordinate system Oxy , the y -axis is along the left vertical wall while the 

x -axis is normal to it into the fluid, as indicated in Fig.1. We further assume that (a) the cavity is filled up 
with a permeable material subject to hydrodynamic and thermal anisotropy, and saturated with an 
incompressible viscous fluid, (b) the side walls are kept at uniform but different temperatures 1T  and 2T , 

respectively, (  1 2T T ), (c) the lower horizontal and upper slanted surfaces are adiabatic, and (d) the flow 
domain is subject to the presence of heat generating or absorbing sources or sinks. The temperature gradient 
arising due to differential in side surface temperatures leads to free convection currents within the cavity 
space. Further, the Boussinesq approximation, widely used in the literature for natural convective flows in 
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both bounded and unbounded domains, will be employed allowing the density   of the fluid to be expressed 

as     0 11 T T       , where   is the coefficient of thermal expansion and T  is the fluid temperature.  

 

 
Fig.1. Physical configuration. 

 
 In view of the above geometrical and physical considerations, and assuming the flow in the porous 
enclosure to be modeled by the Darcy law for a non-isotropic medium, the partial differential equations 
governing such a free convective flow are a modified version of an earlier study [15], and are given by    
 
  0 V , (2.1) 
 
     xyK p g 0    V j ,  (2.2) 

 

      xyT T QT     V          (2.3) 

 
where V  is the flow velocity,   the viscosity, p  the pressure, g  the gravitational acceleration, Q  is the 
heat source/sink coefficient, and  
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 In Eq.(2.4), the tensorial quantities xyK  and xy  represent, respectively, anisotropy in permeability 

and thermal diffusivity, assuming the principal axes are along the coordinate axes.  
 We now introduce the following non-dimensional quantities 
 

     ,   / , /x y x H y H  ,             ,   / ,  /  y yu v Hu Hv    , 
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 The non-dimensional parameters occurring in the above equation are: permeability and thermal 
diffusivity ratios K ,  , the Darcy number Da, Rayleigh number Ra, aspect ratio Ar, heat source/sink 

parameter Q , and Rayleigh-Darcy number Λ .  

 Introducing the non-dimensional stream function Ψ  such that  Ψ /u y  ,  Ψ /v x  , the 
continuity equation is automatically satisfied. Furthermore, Eqs (2.2) and (2.3) assume the forms (neglecting 
the "tilde" on the quantities, for convenience) 
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 In a non-dimensional form, the boundary conditions are given by 
 
  Ψ 0  on all boundaries, 
 
       at  ,    and    at  , 1 2T 1 f x y 0 T 0 f x y 0    , 

        at   ,    and  ,  3 4
T

0 f x y 0 f x y 0
n


  


   (2.8) 

 
where the functions ,  ,    and  1 2 3 4f f f f  represent bounding surfaces of the non-rectangular domain (Fig.2), 

and n  is the normal to the boundary. 
 
3. Numerical solution 
 
 The numerical solution procedure of the boundary value problem described by Eqs (2.6)–(2.8) 
follows closely the method used in one of our earlier studies [15]. However, for the sake of completeness, 
some pertinent details are reproduced here. The solution is accomplished by an algebraic grid generation 
method combined with a suitable finite difference method [24–27]. For this, the physical trapezoidal domain 
of the problem is transformed to a unit square domain by the transformation 
 
    , ,       ( , )x y x y     (3.1) 
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where  ,   0 1   . It may be noted that one can express  and   explicitly in terms of 1f , 2f , 3f  and 4f , 
where these functions are given by 
 
         , ,   , Ar,   , ,   , tan  1 2 3 4f x y x f x y x f x y y f x y y x 1        . (3.2) 

 
 We shall first perform the numerical computation in the unit square domain. For this, we use the 
transformation  
 
      ,       x x x y y y                , (3.3) 

 
and re-express Eqs (2.6) and (2.7) in the forms 
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where  
 
     ( )1 1 3 4B a u a v b    ,        ( )2 2 4 5B a u a v b    ,     
 
and the functionals ,  , ,   ,  ,  1 4 1 4a a b b   are defined as  
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 In Eqs (3.6), s  stands for either K  or  . The boundary conditions applicable to the unit square 
domain are 
 
    on all boundaries,  0   
 
    at  ,  and    at  ,T 1 0 T 0 1           
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Fig.2. Physical and computational domains. 
 
 A solution of the regular boundary value problem described by Eqs (3.4), (3.5) and (3.7) can now be 
obtained by standard procedures [15]. The solution so obtained is valid in the unit square domain. It can then 
be transformed back to the physical domain using the functional relations between the physical and 
computational domain variables.    
Nusselt number: The rate of heat transfer is estimated from the Nusselt number Nu. The local Nusselt 
number Nu( ) y  at the left boundary is given by 
 

   Nu    
x 0

T
y

x 





. (3.8) 

 
 The overall Nusselt number Nu is then obtained by integrating Nu( ) y over the left vertical 
boundary.   
 
4. Discussion of numerical results 
 
 In this section, we shall analyze the effects of four governing parameters, namely, the internal heat 
generation parameter (Q), inclination angle ( ), Rayleigh number (Ra) and, finally, the aspect ratio (Ar) on 
the formation of streamlines and isotherms, through the set of Figs 3–10. However, we have assumed both 
the thermal diffusivity parameter   as well as the permeability parameter K to be constant (=0.5) in all 
computations relating to streamlines and isotherms.  
 Figures 3–5 have been included to showcase the effect of our lead parameter Q, keeping other 

parameters Ar (= 2),   (  )20  , and Ra (=100) fixed. Here we shall include both positive and negative values 
of Q to assess the impact of heat sources as well as sinks. In the next set of two Figs 6, 7, we shall exhibit the 
effect of the inclination angle from 0 to 30 degrees keeping Ar (= 2), Q (= 2), and Ra (= 100) fixed. In Fig.8, 
we have demonstrated how the change in the buoyancy parameter Ra causes streamlines and isotherms to 

change when Ar (= 2),   (  )20  , and Q (= 2) are kept fixed. In the last set of Figs 9 and 10, we shall 
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analyze the effect of the aspect ratio when Ar varies from 1 to 4 while keeping Q (= 2),   (  )20  , and Ra (= 
100) constant. 
 Let us now discuss in detail the variations of the contours of streamlines and isotherms with changes 
in the aforementioned parameters. 
 The streamline contours (Fig.3), as Q increases from (–5) to (–1), show broadly similar patterns of 
distorted elliptic cells but with increasing boundary layer effects away from the left hot boundary. 
Apparently, the cells show movement towards the right boundary with an increase of Q from relatively large 
negative values. On the other hand, as Q increases from 0 to 5 (see Figs 4, 5), the streamline cells show (i) 
lesser boundary layer effects near all the boundaries of the enclosure except the right vertical boundary, and 
(ii) a change in orientation from nearly horizontal to vertical for the innermost contour  indicating a different 
circulation pattern. A further increase in the value of Q to 10 (Fig.5) brings about the most interesting 
features of the streamlines: formation of two distinct groups of contours, although nearly vertical now. In 
other words, there is a transition from a single cell formation to double cell formation in the streamlines for 
values of Q above 5 but less than 10. 
 As regards isotherms, the contours shown in the isotherms in Fig.3 correspond to the parameter Q 
varying from (–5) to (–1). One can observe that the dominance of boundary layer formation near the lower 
part of the left hot surface shifts a fair bit to the upper part of the right cold surface with this change in Q. In 
other words, with an increase of Q from high negative values to values close to zero, the region of 
dominance of heat transfer by conduction partly shifts to the colder region. Apart from this feature, the shape 
and orientation of the isotherm contours are broadly similar. 
 

 

 
 

Fig.3. Streamlines (left) and isotherms (right) for 20   , Ar = 2, 100  : Top: Q 5  , Bottom: Q 1  . 
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Fig.4. Streamlines (left) and isotherms (right) for 20   , Ar = 2, 100  : Top: Q 0 , Bottom: Q 1 . 
 

 
 

Fig.5. Streamlines (left) and isotherms (right) for 20   , Ar = 2, 100  : Top: Q  5, Bottom: Q 10 . 
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Fig.6. Streamlines (left) and isotherms (right) for Ar = 2, Q  2, 100  : Top:  0   , Bottom: 10   . 
 

 On the examination of the set of isotherms for lower positive values, Q = 1 and Q = 2, versus the set 
of isotherms for relatively higher values, Q = 5 and Q = 10, one can easily notice two distinct types of 
isotherm formations. In the first category (Figs 4 and 5) contour curves are all seen to start from the lower 
(adiabatic) boundary and then reach up to the upper (adiabatic) inclined boundary. However, in contrast, the 
pattern of isotherm contours in the latter category (see Fig.5) shows two types of formation: either starting 
from the upper surface and ending up on the same surface, or starting from the lower surface and ending up 
on the upper inclined surface. As regards the boundary layer formation, it is easily seen that the former 
category contours show boundary layer formation near both the hot and cold vertical side surfaces as against 
the latter category contours showing apparently the boundary layer formation near the cold plate only. 
 As regards the influence of the upper surface inclination on the fluid convection, the results for 
 0   can be used to measure how streamlines and isotherms deviate from their rectangular domain 
counterparts. However, a casual glance at Figs 6 and 7 appears to indicate that, overall, the effect of the 
inclination angle on streamlines and isotherms is not significant enough for the chosen set of values of other 
parameters Ra, Ar and Q. Streamlines are generally parallel to the boundaries of the enclosure except the 
ones (oblique but distorted ellipses) in the central region between the lower and upper surfaces, albeit closer 
to the cold right vertical surface. As a conjecture, it is possible that streamlines may show a fair deviation 
from those of the rectangular regions for some other set of values of Ra, Ar and Q. From Figs 6 and 7, one 

may observe that as    increases from 0 (rectangular region) to 30  (i.e., trapezoidal region), isotherms do 
show some distinct changes with regard to the boundary layer formation: while the boundary layer is 

conspicuous near the upper part of cold surface for  0  , the subsequent contours for higher values of   
clearly indicate conduction dominated regimes near both the hot and cold surfaces with an increase of the 
inclination angle. 
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Fig.7. Streamlines (left) and isotherms (right) for Ar = 2, Q  2, 100  : Top:  20   , Bottom: 30   . 
 
 From the contours of streamlines and isotherms shown in Fig.8, it is quite apparent that both 
streamlines and isotherms are sensitive to the buoyancy parameter. For instance, the streamline pattern for 

10   shows two distinct circulation patterns in the enclosure: one, closer to the hot wall and much less 
crowded, shows vertical closed loops, while the other, occupying 3/4th region of the enclosure, shows a 
sort of uniform pattern comprising nearly vertical curves. However, as   assumes relatively large values 
(greater than or equal to 100) we notice only one circulation pattern. Interestingly, as   assumes higher 
values, the boundary layer effects become quite visible on both the left and right surfaces. In the same 
vein, one can notice that contours of isotherms for relatively low values of   (= 10) are distinctly 
different to their counterparts for  100 . In the former, we notice that contours are broadly parallel to 
either the hot or cold vertical wall, except for the region close to the central part of the enclosure. On the 
other hand, isotherms for  100  can be seen to be nearly parallel to either the lower or upper inclined 
surface except when close to the hot or cold surface, which is quite in contrast to the isotherms shown for 
the  10   case.  
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Fig.8.  Streamlines (left) and isotherms (right) for 20   , Ar = 2, Q  2: Top: 10  , Middle: 100  , 

Bottom: 500  . 
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Fig.9. Streamlines (left) and isotherms (right) for  20   , 100  , Q  2: Top: Ar = 1, Bottom: Ar = 2. 
 

 

Fig.10. Streamlines (left) and isotherms (right) for  20   , 100  , Q  2: Top: Ar = 3, Bottom: Ar=4. 
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 The last set of Figs 9 and 10 shows how streamlines and isotherms respond to the variation in the 
aspect ratio Ar (  / )L H   from 1 to 4; this is achieved by keeping H  fixed but letting L  assume values 

from H  to 4H . The streamline contours indeed show marked variation as Ar changes from 1 through 4. It 
can be seen that the uniform circulation pattern, nearly horizontal (Fig.9, top), undergoes significant changes 
in both shape and orientation as Ar increases beyond unity. The boundary layer effects too are seen to be 
concentrating on the right (cold) wall with enhancement of Ar values. On the examination of contours of 
isotherms in these figures, one observes a sort of transition as Ar increases beyond the value of 2. This 
change is apparent from the isotherm in Fig.10 for Ar = 3 and  Ar = 4. Even the pattern of the boundary layer 
region which corresponds to the region dominated by conduction, in comparison to convection currents, can 
be seen to undergo changes. For instance, the convection currents dominate all over the flow domain except 
for a very thin layer close to the cold wall, for higher values of Ar.   
 Besides assessing the effect of governing parameters on isotherms and streamlines above, we have 
also computed values of the average Nusselt number on the warmer wall (see Tab.1) for two values of   
assuming    and Ar to be fixed. In these tables, we have shown variation of the average Nusselt number 
with  , K,   and Q. In short, the effects of these parameters on avNu  can be summarized as follows: 
 As the parameter Q increases from negative to positive values, the heat transfer rate at the wall 
undergoes a mild decrease. This indicates that less heat is transferred from the wall to the fluid in the 
presence of heat sinks. Physically, the opposite happens in the case of heat sources. This physical fact is 
clearly borne out by the values of the Nusselt number in Tab.1. The anisotropic effects of permeability and 
thermal diffusivity also have decreasing influence on the heat transfer; however, the transfer rates are much 
more pronounced for these processes. Finally, the heat transfer rate on the heated wall of the trapezoidal 
cavity is higher than that of a the rectangular one.  
 

Table 1. Average Nusselt number for Ar = 1, Λ  =500. 
 

  K α Q Nuav 

0 0.5 0.5 -0.5 22.7018 
0 0.5 0.5 0.0 22.4618 
0 0.5 0.5 0.5 22.2189 
0 0.5 1.5 -0.5 12.0823 
0 0.5 1.5 0.0 12.0167 
0 0.5 1.5 0.5 11.9507 
0 1.5 0.5 -0.5 12.6709 
0 1.5 0.5 0.0 12.4311 
0 1.5 0.5 0.5 12.1864 
0 1.5 1.5 -0.5 06.6985 
0 1.5 1.5 0.0 06.6287 
0 1.5 1.5 0.5 06.5581 
10 0.5 0.5 -0.5 25.2008 
10 0.5 0.5 0.0 24.9690 
10 0.5 0.5 0.5 24.7344 
10 0.5 1.5 -0.5 13.4243 
10 0.5 1.5 0.0 13.3608 
10 0.5 1.5 0.5 13.2970 
10 1.5 0.5 -0.5 13.9202 
10 1.5 0.5 0.0 13.6877 
10 1.5 0.5 0.5 13.4503 
10 1.5 1.5 -0.5 07.3601 
10 1.5 1.5 0.0 07.2925 
10 1.5 1.5 0.5 07.2243 
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Nomenclature 
 

 Ar  aspect ratio /L H  
 Da  Darcy number 
  1 4f f   functions for boundary surfaces 

 g   gravitational acceleration 

 H   cavity height (rectangular part) 
 K   permeability ratio /x yK K  

  ,  x yK K   components of xyK  

 xyK   permeability matrix 

 L   cavity width 
 Nu  Nusselt number 
 p   pressure 

 Q   heat source/sink 

 Ra  Rayleigh number 
 T   fluid temperature 
 , 1 2T T   side wall temperatures 

 , u v   velocity components 

 V   vector velocity of fluid 
 , x y   rectangular Cartesian coordinates 

    thermal diffusivity ratio /x y   

 ,  x y    components of xy  

 xy   thermal diffusivity matrix 

     coefficient of thermal expansion 

 Λ   (Da)(Ra) 
    fluid viscosity 

 , 0    fluid densities 

    inclination angle 
 ,     transformed coordinates 

 Ψ   stream function 
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