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Investigation of an MHD convective flow of viscous, incompressible and electrically conducting fluid 
through a porous medium bounded by two infinite vertical parallel porous plates is carried out. Forchheimer-
Brinkman extended Darcy model is assumed to simulate momentum transfer within the porous medium. A 
magnetic field of uniform strength is applied normal to the plates. The analytical results are evaluated 
numerically and the presented graphically to discuss in detail the effects of different parameter entering into the 
problem. 
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1. Introduction 
 
 Flows through fluid saturated media are important in many scientific and engineering problems such 
as geothermal energy utilization, heat exchangers, nuclear reactor repositories and chemical engineering for 
filtration processes. Comprehensive reviews of porous media thermal/species convection have been 
presented by (Kaviany [1]; Pop and Ingham [2]; Ingham and Pop [3]; Vadasz [4]; Vafai [5]; Neild and Bejan 
[6]). For any application of porous media it is important to account for non-Darcian effects which can be 
divided into the inertial (Forchheimer) and boundary (Brinkman) effects. A generalized model for the fluid 
flow through a porous medium of variable porosity was developed to account for inertial effects, and 
boundary effects. These effects are incorporated by using the general flow model known as the Brinkman-
Forchheimer-extended Darcy model.  
 An analysis on the theoretical derivation of the Darcy and Forchheimer models was presented by 
Irmay [7]. Neale and Nader [8] showed that the Brinkman model considering continuity of the velocity and 
the shear stress at the interface gives the same results as obtained by using the Darcy model with Beavevs-
Joseph condition. Kavinay [9] and Nakayama et al. [10] obtained an analytical solution for a forced 
convection flow problem in a channel filled with a saturated Brinkman- Darcy porous medium. Flow through 
porous media, considering the Brinkman-Forchheimer extended Darcy model under different physical 
conditions has been studied by several authors [Cheng and Choudhary [11], Vafai and Kim [12], Nakayama 
et al. [13], Kladias and Prasad [14], Shenoy [15], Vafai and Kim [16], Whitakar [17], Nield et al. [18], 
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Kuznetsov and Austria [19], Nakayama [20], Leong and Jin [21], Singh and Takhar [22], Singh et al. [23], 
Pal and Mondal [24]]. 
 In recent years, considerable attention has been paid to the analysis of an MHD boundary layer flow 
and heat transfer of a Newtonian fluid from a vertical plate/channel immersed in a porous medium because 
of its wide spectrum of applications in engineering processes, especially in the enhanced recovery of 
petroleum resources, plasma studies, drying of porous solids, thermal insulation and MHD generators. An 
MHD natural convection flow bounded by parallel plates through porous media was investigated by Rapits et 
al. [25]. Attia and Kotb [26] analyzed a magnetohydrodynamic flow and heat transfer bounded by two 
parallel plates. Kim [27] investigated an unsteady MHD convective heat transfer from a semi-infinite vertical 
plate with inconstant suction through porous media. Attia [28] investigated the effects of variation in the 
physical variables on the MHD steady flow and heat transfer bounded by parallel plates through porous 
media. Ahmed [29] studied the effect of an MHD unsteady natural convective motion bounded by an infinite 
vertical porous media.  
 Radiation effects have important applications in the processes involving high temperatures and space 
technology. Recently, developments in hypersonic flights, space vehicles, gas turbines, nuclear power plants 
and gas cooled nuclear reactors have attracted researchers in. Radiative convective flows have important 
applications in environmental and industrial processes, e.g., space vehicle re-entry, astrophysical flows, 
evaporation from large open water reservoirs, fossil fuels and combustion. Radiative convective flows under 
different physical conditions have been studied by several authors [Das et al. [30], Bakier [31], Sanyal and 
Adhikari [32], Mebine [33], El-Hakim and Rashad [34], Muthucumarswamy and Kulandivel [35], Singh and 
Kumar [36], Singh and Garg [37]]. 
 The study of MHD fluid flows and heat transfer in the slip flow regime has important applications in 
engineering, for example, electric transformers, heating elements, transmission lines, refrigeration coils and 
power generators. An MHD unsteady flow of a polar fluid with variable permeability past an infinite 
horizontal plate in a slip-flow regime through porous media was presented by Khandelwal et al. [38]. 
Transient natural convection viscous incompressible flows with inconstant suction from a vertical plate in a 
slip flow regime were presented by Sharma and Chaudhary [39]. The effects of periodic heat and mass 
transfer on the unsteady natural stream with a mean velocity over which a velocity exponentially varying 
with time is superimposed was investigated by Sharma [40]. Choudhary and Jha [41] studied an MHD 
micropolar fluid flow from a vertical plate with chemical reaction in a slip-flow regime. Singh and Pathak 
[42] investigated an MHD oscillatory convective flow past a rotating vertical channel with slip conditions, 
thermal radiation and Hall current through porous media.  
 
2. Formulation of the problem  
 
 An unsteady convection flow of a viscous fluid bounded by two upright plates through porous media 

is considered. The coordinate axes *x - and *y are taken - along and perpendicular to one of the channel 
plate. Let d be the distance between the plates. Since the plates are of infinite extent, thus the flow variables 
depend only on y and t. Fluid characteristics, excluding density in the buoyancy force term, are assumed to 

be constant. Initially, temperatures of the plates and fluid are same as *
mT . When *t 0  the temperatures of 

the plates at *y 0  and y d   are instantaneously raised to 
*

hT  and 
*

cT  **
ch TT  , such that 

 * * * nt
h h cT T T T e     and which are thereafter maintained constant. A time dependent injection/suction 

velocity  * ** n t
0v v 1 e     is applied at the plate dy   and y 0   respectively.  

 Therefore, under such assumptions, equations governing the flow relevant to the problem may be 
written as 
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 The relevant boundary conditions are 
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 Rosseland’s approximation is used for the radiative heat flux which is given below 
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 The inertia coefficient term F  appearing in the model can be evaluated by the following formula 
(Alazmi et al. [43]; Ergun [45]) 
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 Now introducing the relation Eqs (2.5) and (2.7), into Eqs (2.2) and (2.3), we get 
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when 4R 0 , 
hT >

cT >
mT  while for 4R 0 , 

mT >
hT >

cT  and when 40 R 1  , the wall temperature 
hT  and 

cT  straddle the fluid temperature 
mT . 

 The dimensionless boundary conditions are 
 

  , ntu
u h 1 e

y


    


     at     y 0 , 

   (2.10) 
  ,u 0 0        at      y 1 .

  

 
 
3. Solution of the problem 
 
 To solve Eqs (2.8) and (2.9), we assumed 1  (Gebhart and Pera [45]; Singh et al. [23]) and the 
solutions to the equations are as follows 
                                                                     

  ( ) ( ) ( ) nt
0 1u y u y u y e  ,                   (3.1) 

     

  ( ) ( ) ( ) nt
0 1y y y e    . (3.2) 

 
 
 Now using the above Eqs (3.1) and (3.2), in Eqs (2.8) to (2.9), we obtain the subsequent equations 
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 The differential Eqs (3.3) and (3.4), are still coupled, so further we assume F 1  (Chamkha [46]) 
and the solutions to the equations are as follows                                                                     
 
  ( ) ( ) ( ),0 00 o1u y u y Fu y           ( ) ( ) ( )1 10 11u y u y Fu y  . (3.7) 
 
 Now using the above Eqs (3.7), in Eqs (3.3) to (3.4), we get the following equations 
 

  
2

00 00
1 oo 0 42

d u du
S E u R

dydy
      ,                                  (3.8) 

 

  
Gr

Da

2
201 01

1 o1 002

d u du
S E u u

dydy
    ,                        (3.9) 

 

  
2

10 10
2 10 1 002

d u du
S E u Su

dydy
      ,                              (3.10)                     

 

  
Gr

Da

2
11 11

2 11 01 00 102

d u du 2
S E u Su u u

dydy
      .

 
(3.11) 

 
 The corresponding boundary conditions (2.10), reduce to the following form 
 

  , , , , ,00 01 10 11
00 01 10 11 0 1

u u u u
u h u h u h u h 1 1

y y y y

   
       

   
    at    y 0 , 

   (3.12) 
  , , , , ,00 01 10 11 0 1u 0 u 0 u 0 u 0 0 0            at    y 1  
 

 The solutions to Eqs (3.5) and (3.6), satisfying boundary conditions (3.12) are 
 

  ,1 2n y n y
0 1 2 4F e F e R     (3.13) 

 

  4 5 32n y n y n yn y
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 Now using Eqs (3.13) and (3.14), in Eq.(3.2), we get ( )y . 
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The solutions to Eqs (3.8) to (3.11) satisfying the boundary conditions (3.12) are 
 

 5 6 1 2n y n y n y n y
00 5 6 9 10u F e F e B e B e    , (3.15) 
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 Now using Eqs (3.15) to (3.18) in Eq.(3.7), we get ( )0u y  and ( )1u y  respectively, which finally 
yields ( )u y  by Eq.(3.1). 
 
4. Results and discussion 
 
 In order to study the nature of velocity, temperature, and mass transfer, numerical calculations are 
carried out for distinct values of , ,Gr, , , Mand4 RR S N t Q  which are listed in figures and the results are 
reported graphically. 
 Figures 1 to 3 show the effects of time and the buoyancy force parameter on the fluid velocity. When 

4R 0  from Fig.1, it is noticed that near the heated plate  y 0  the velocity gets its maximum value and 

starts falling towards the cold plate  y 1  due to the negative value of the buoyancy force parameter, the 

temperature of both plates is greater than the fluid temperature. When 40 R 1   it is observed in Fig.2 that 

near the hot plate  y 0  the fluid velocity gets its maximum value and then drops all over the flow area. 

The reason is that the hot plate fluid is heated. When 4R 1  it is observed in Fig.3 that the temperature of 
the cooled plate is lower than the temperature of the fluid, thus near the cooled plate a reverse flow is 
occurring. The reason is that at the starting stage, the temperature of both the plates is greater than the fluid 
temperature. The figures it also show that the velocity enhances as the time increases and a steady state is 
obtained at .t 1  Figure 4 presents the influence of time and the suction/injection parameter on the velocity. 
It is noticed that the velocity diminishes with the growing value of the suction/injection parameter. The 
reason is that the suction/injection parameter enhances the drag force nearby the channel plates. From the 
figures it also follows that the velocity enhances as the time increases and the steady state is obtained at 

.t 1  Figure 5 illustrates the influence of time and the Grashof number on the velocity. It is found that the 
Grashof number has the leading effect on accelerating velocities. It is also observed that the velocity 
enhances as the time increases and the steady state is obtained at .t 1  The influence of the radiation 
parameter is shown in Fig.6. It is found that the fluid velocity gets its maximum value nearby the heated 
plate and then diminishes gradually towards the cooled plate. It is also noticed that the velocity enhances as 
the time increases and the steady state is obtained at .t 1  The influence of the Hartmann number on the 
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fluid velocity is presented in Fig.7. It is observed that the fluid velocity decelerates with the growing value of 
the Hartmann number the velocity enhances as the time increases and the steady state is obtained at .t 1  
 Figures 8 and 9 represent the influence of heat source /sink Q on the temperature. It can be noticed 
that the temperature diminishes with the growing value of the heat sink parameter and a similar trend is seen 
in the case of the heat source parameter. Figure 10 depicts the effect of the radiation parameter on the 
temperature. It is observed that the temperature profile drops with the growing value of the radiation 
parameter. Figures 11 to 13 show the effect of the buoyancy force parameter on the temperature. When 

,4R 0  the temperature diminishes with rising values of .4R  A similar behavior is noticed in the case of 

40 R 1   and .4R 0  The reason is that the temperature of the cooled plate is lower than the temperature 
of the heated plate and the temperature of the fluid is lower than the temperature of both plates.  
 

 
 

Fig.1. Velocity profiles for various values of the buoyancy force parameter (R4 < 0). 
 

 
 

Fig.2. Velocity profiles for various values of the buoyancy force parameter (R4 > 0). 
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Fig.3. Velocity profiles for various values of the buoyancy force parameter (R4 > 1). 
 

 
 

Fig.4. Velocity profiles for various values of the suction/injection parameter. 
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Fig.5. Velocity profiles for various values of the Grashof number. 
 

 
 

Fig.6. Velocity profiles for various values of the Hartmann number. 
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Fig.7. Velocity profiles for various values of the radiation parameter. 
 

 
 

Fig.8. Temperature profiles for various values of the heat source parameter N. 
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Fig.9. Temperature profiles for various values of the heat sink parameter. 
 

 
 

Fig.10. Temperature profiles for various values of the radiation parameter. 
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Fig.11. Temperature profiles for various values of the buoyancy force parameter (R4< 0). 
 

 
 

Fig.12. Temperature profiles for various values of the buoyancy force parameter (R4 > 0). 
 



Transient free convective radiative flow between vertical … 377 

 
 

Fig.13. Temperature profiles for various values of the buoyancy force parameter (R4 > 1). 
 
Nomenclature 
 
 0B   uniform magnetic field 

 PC   specific heat at constant pressure 

 Da  Darcy number 
 F  Forchheimer constant 
 Gr  Grashof number  
 g  acceleration due to gravity 
 d  distance between vertical walls 
 K  permeability of the porous medium 
 k  thermal conductivity 
 M  Hartmann number 
 n   non-dimensional positive constant 

 n   small positive constant 
 Pr  Prandtl number 
 Q   non-dimensional constant heat source 

 0Q   dimensional constant heat source 

 4R   buoyancy force distribution parameter 

 T    temperature of the fluid 

 mT    initial temperature of the fluid 

 hT    temperature of the heated wall 

 cT    temperature of the cooled wall 

 t   time in non-dimensional form 

 t   time 

 u   velocity of the fluid 
 u   fluid velocity in non-dimensional form 
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 0v   dimensional constant suction 

 S   suction parameter 
 y   non-dimensional co-ordinate perpendicular to the walls 

 y   co-ordinate perpendicular to the walls 

    coefficient of thermal expansion 

    kinematic viscosity ratio 
    porosity-perturbation parameter 
 f   dynamic viscosity of the fluid 

 eff   effective kinematic viscosity of the porous region 

 f   kinematic viscosity of fluid 

 f   density of the fluid 

    electrical conductivity of the fluid 
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