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The purpose of this paper is to study the two dimensional deformation in a generalized thermoelastic medium 
with microtemperatures having an internal heat source subjected to a mechanical force. The force is acting along 
the interface of generalized thermoelastic half space and generalized thermoelastic half space with 
microtemperatures having an internal heat source. The normal mode analysis has been applied to obtain the exact 
expressions for the considered variables. The effect of internal heat source and microtemperatures on the above 
components has been depicted graphically. 
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1. Introduction 
 
 In recent years the theory of thermoelasticity for bodies with microstructures has been intensively 
studied. Grot [1] was the first who developed the concept of microtemperatures and established a theory of 
thermodynamics for elastic materials with microstructure. The particles of an elastic material with an inner-
structure possess microtemperatures. He modified the second law of thermodynamics to include 
microtemperatures. Iesan and Quintanilla [2] introduced a linear theory for elastic materials with an inner 
structure whose particles, in addition to the classical displacement and temperature fields, possess 
microtemperature, and established the continuous dependence of solutions on the initial data and body loads. 
They modified the Clausius-Duhem inequality to include microtemperatures and also the first order moment 
of the energy equations are added to the usual balance laws of a continuum with microstructures. Riha [3] 
applied a theory of heat-conducting micromorphic continua to an analysis of heat conduction in materials 
with inner structures so that it is proved that the experimental data for the silicone rubber containing 
aluminum particles and for human blood conform closely to the predicted theoretical model of 
thermoelasticity with microtemperatures. Riha [4, 5] studied  the theory of heat-conducting micropolar fluids 
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with microtemperatures and solved the problem of the Poiseuille flow between two parallel plates, while 
Iesan [6, 7] developed a linear theory for elastic materials with an inner structure whose particles, in addition 
to the classical displacement and temperature, possess microtemperatures and can stretch as well as contract 
independently of their translations. The theory of thermoelastic bodies with microstructures and 
microtemperatures was introduced by Iesan [8]. In this theory, the microelements of the material possess 
microtemperatures and can undergo microrotation, microstretch and translation. He also showed that there 
exists coupling of microrotation vectors fields with microtemperatures even for isotropic bodies. Recently, 
Iesan and Quintanilla [9] presented a linear theory of thermoelastic bodies with a microstructure and 
microtemperatures which permits the transmission of heat as thermal waves at finite speed. They established 
the existence and uniqueness results in the context of the dynamic theory. Svanadze [10, 11] studied the 
fundamental solutions to the equations of the equilibrium and investigated the steady oscillations of the 
theory of thermoelasticity with microtemperatures. Scalia and Svanadze [12, 13] considered the linear theory 
of thermoelasticity with microtemperatures and investigated the basic boundary value problems of steady 
vibrations by using the potential method. Scalia et al. [14] studied some fundamental solutions and proved 
the existence and uniqueness theorems for equilibrium solutions and steady state vibrations by means of the 
potential method. Iesan [15] studied the behavior of shock waves and higher-order discontinuities which 
propagate in a thermoelastic body with an inner structure and microtemperatures, while Iesan and Scalia [16] 
investigated the plane strain of homogeneous and isotropic elastic solids and the problem of thermal stresses 
in an elastic space with a cylindrical hole. Yang and Huang [17] studied the propagation of singularities of 
solutions to the Cauchy problem of a semilinear thermoelastic system with microtemperatures in one space 
variable. Some basic theorems are also developed by Aouadi [18] and Svanadze and Tracina [19] in which 
they considered the linear theory of microstretch thermoelasticity for isotropic solids with 
microtemperatures. Chirita et al. [20] studied the linear theory of thermoelastic materials with an inner 
structure whose particles, in addition to the classical displacement and temperature fields, possess 
microtemperatures. Steeb et al. [21] investigated the propagation of time harmonic waves in an infinite 
thermoelastic medium with microtemperatures. Kumar and Kaur [22] studied the reflection and refraction of 
plane waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures. 
Ailawalia et al. [23] studied the two dimensional deformation in a microstretch thermoelastic half space with 
microtemperatures and an internal heat source. Othman et al. [24] studied the effect of the gravity field on an 
initially stressed micropolar thermoelastic medium with microtemperatures. 
 In the present problem, the authors have discussed the deformation in a generalized thermoelastic 
medium with microtemperature having an internal heat source subjected to a mechanical force. Using the 
normal mode analysis method, we get the analytical expressions for the displacement component, force 
stress and temperature distribution. Variations of the considered variables through the vertical distance are 
illustrated graphically to show the effect of microtemperatures and the internal heat source on the 
displacement components, force stresses and temperature distribution. 
 
2. Formulation of the problem 
 

We consider a mechanical force of magnitude F acting along the interface of a generalized 
thermoelastic medium with microtemperatures and an internal heat source (medium I) occupying the region 
0 z    and a generalized thermoelastic medium (medium II) occupying the region z 0   . The plane 
z = 0  represents the interface of medium I and medium II.                              
 A rectangular coordinate system ( )x, y,z  with the z -axis pointing vertically downward is 

considered. Since we are considering a plane strain problem  in the xz plane, hence all quantities 
considered are functions of the time variable t  and of the coordinates x  and z .                                     
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3. Basic equations and their solutions 
 
 Following Iesan and Quintanilla [2], the constitutive relations for a homogeneous and  isotropic 
thermoelastic medium with microtemperatures and an internal heat source are 
 

  ,ij ij rr ij ijt e 2 e T              (3.1) 

 

  *
, ,i i 1 iq K T k w    (3.2) 

 
  , , , ,ij 4 r r ij 5 i j 6 j iq k w k w k w      (3.3) 

 

     *
, ,i 1 2 i 3 iQ k k w K k T      (3.4) 

 

  * ,rre a T           (3.5) 
 

  ,i ibw     (3.6) 
where 

   , ,ij i j j i
1

e u u
2

      

 

and *, , , , ,a b K       ,  , ,....ik j 1 2 6  are constant constitutive coefficents, 


ijt are the components of 

stress tensor,   is the reference mass density of the medium, * is the entropy per unit mass, i  are the 

components of the first moment of the energy vector, ijq  are the components of the first heat flux moment 

vector. iq  are the components of the heat flux vector, 


iu  are the components of the displacement vector u , 

iw  are the components of the microtemperatures vector w , ,0T T     where   is the temperature at 

time t , 0T  is the temperature of the medium in its natural state and assumed to be such that / 0T T 1  . A 

comma in the subscript denotes the spatial derivative and ij  is the Kronecker delta. 

 Following Iesan and Quintanilla [2], the consitutive Eqs (3.1)-(3.3), combined with the reduced 
Clausius-Duhem inequality in the context of the linear theory of thermoelasticity with microtemperatures 
imply the following inequalities 
 
    , ,4 5 6 6 53k k k 0 k k 0      (3.7) 
 

  *, ,6 5k k 0 K 0    (3.8) 
 

    * .
2

1 0 3 0 2k T k 4T K k 0    (3.9) 

 
 Following Iesan and Quintanilla [2], the fundamental system of field eqautions of the linear theory of 
thermoelasticity with microtemperatures and an internal heat source in the absence of body force are 
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(i) Stress equation of motion 
 

  , .ji j it u     (3.10)  

 
(ii) Equation of balance of energy 
 

  ,0 i iT q Q      (3.11) 

 
where Q  is the stable internal heat source. 
 
(iii) Equation of balance of the first moment of energy 
 

  ,i ji j i iq q Q      (3.12) 

 
where superposed dot represents the temporal derivative and other symbols are as described previously. 
Using Eqs (3.1)-(3.6) in Eqs (3.10)-(3.12), the following system of partial differential equations is obtained 
 

   , , , ,i jj j ij i iu u T u                  (3.13) 

 

  *
, , , ,ii 0 i i 1 i i 0K T T u k w a T T Q         (3.14) 

 

   , , , .6 i jj 4 5 j ji 3 i 2 i ik w k k w k T k w bw       (3.15) 

 
 For the generalized thermoelastic half-space with microtemperatures having an internal heat source 
(Medium I)   is replaced by I. For the generalized thermoelastic half-space (Medium II)   is replaced y II 
with .1 2 3 4 5 6k = k = k = k = k = k = Q 0  

 For the two dimensional problem, all quantities considered are functions of the time variable t  and 

of the coordinates x  and z . The displacement vector Iu  and microtemperature vector w  are thus taken as 
 

  , , , ,I I I
1 3 1 3= ( u ( x,z t ),0,u ( x,z t )), = ( w ( x,z t ),0,w ( x,z t )).u w  (3.16) 

 
 For convenience, the following non-dimensional variables are used 
 

          '' ' 'I I I I I I
1 3 1 3 ij ij ij ijI

0 1 0

1 1 1 1
x ,z = x,z , u ,u = u ,u , t t , q = q ,

L L T Lc T
  

 
 

   (3.17) 

  ,
Ł

I I I
I 21

i i 1 I
0 0

c T Q 2
t = t , T = , w = Lw Q = , c =

T Q
     


 

  
where L is a parameter having dimension of length. 

 Using relations in terms of scalar potential functions  I x, y,t ,  I x, y,t ,  1 x, y,t  and 

 1 x, y,t  defined by  
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I I I I

I I 1 1 1 1
1 3 1 3u = , u = , w = , w =

x z z x x z z x

      
   

       
 (3.18) 

  
and dimensionless variables given by Eq.(3.17) in Eqs (3.13)-(3.15), we obtain the following dimensionless 
equations (after dropping superscripts) 
 

  ,
2 2 2

I I
32 2 2
T = 0

x z t

   
         

 (3.19) 

 

    ,
2 2

I1
7 1 8 9 1 102 2

1 T = 0
tx z

   
               

 (3.20)  

 

  * ,
2 2 I 2 2 I

I 2 1
4 5 62 2 2 2

T
T = B Q

x t tx z x z

         
                      

 (3.21)  

 

  ,
2 2 2

I
1 12 2 2

= 0
x z t

   
         

 (3.22)  

 

  
2 2

8 9 12 2
= 0

tx z

   
         

 (3.23)  

where 

       ,
I II I I

0 0 1
1 2 3 4I I I I I I I*

T a T c L
= , = , = , =

2 2 2 K

       
                    

            

 

            , ,
I 2

4 51 1 1 1 2
5 6 7 8 9I I* * 6 6 6

0

k kc L k b c L k L
= = , = , = , =

k k kK K T


      

 

               ,
2

2 23 0
10 11 7 12 11 8 9 13 4

6

k T L
= , = 1 a , = a , = a a

k
              

 

           ,
I I I I

2 2 4 5 6
14 15 16 17 18I I I I 3

0 0 0 1 0

k k k2
= a , = , = , = , =

T T T c L T

     
      

   
 

 

   *, .
2

4 5 6
19 20 213 I 3 I 3 I I*1 0 1 0 1 0 0

k k k L
= , , B =

c L T c L T c L T K T

  
    

  
  

  
4. Normal mode analysis 
 
 The solution of the considered physical variable can be decomposed in terms of normal modes  and 
can be considered in the following form 
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        ,t axI I I I I I I I
1 1 ij ij 1 1 ij ij, , , ,t ,T ,q x,z,t = , , , ,t ,T ,q z e                 (4.1) 

 

   t ax
0Q = Q e     (4.2) 

 

where ,I I I I
1 1 ij ij, , , ,T ,t q       are the magnitude of the functions,   is the complex time constant and a  

is the wave number in the x -direction and 0Q  is the magnitude of the stable internal heat source.  
 Using normal mode in Eqs (3.19)-(3.23) we get 
 

  ,2 2 2 I I
3a T = 0         (4.3) 

  

        * ,2 2 I I 2 2 I 2 2
4 5 6 1 0a T aT a a = B Q                  (4.4)  

 

    ,2 2 I
11 1 8 1 9 1 10a T = 0             (4.5)  

 

    ,2 2 2 I
1 a = 0        (4.6)  

 

  2 2
8 9 1a = 0          (4.7) 

 

where     .=
dz

d
 

 

 Eliminating I  and 1  from Eqs (4.3)-(4.5) we get the following sixth-order differential equation as  
 

   6 4 2 I
51P R S T = l .         (4.8) 

 
where 
 

    ,6 1012
3 5 13 14

11 11

P =
  

       
 

  

 

  
   

,

2
6 10 14 12 13 142 12

13 14 3 5
11 11 11

a
R = a

         
            

 

  

  
 

,
2

6 10 14 3 5 12 12 13 14

11 11

a
S =

          


 
  

 

  
*

.12 14 0
51

11

B Q
l

 



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 The solution of Eq.(4.8) has the form 
  

   ,
3

h zI j
j 51

j=1

T = N a e l


   (4.9) 

 

where 2
jh   , ,j = 1 2 3  are the roots of the characteristic Eq.(4.8). 

 Since ,I IT   and 1  are coupled parameters as shown in Eqs (4.3)-(4.5), therefore we may suppose 
 

   , ,
3

h zI j
5 j j 52

j=1

= N a e l


     (4.10) 

 

   ,
3

h zj
1 5 j j 53

j=1

= N a e l


     (4.11) 

 
where  ,jN a  ,  ,jN a   and  ,jN a   are specific functions depending upon ,a   and 5 j  and 

 , ,5 j j 1 2 3   are the coupling constants. The values of coupling constants are obtained from Eqs (4.3)-

(4.5) and are given as 
            

  
 

,3
5 j 2 2 2

j

=
h a




 
 (4.12) 

 

  
 

,10
5 j 2

11 j 12

=
h




  
 (4.13) 

 

   * ,2
52 8 9 11l = B a       (4.14) 

 

  
 *

.

2 2
0 10

53
3

B Q a
l =

  


 (4.15) 

 
 The solutions of Eqs (4.6) and (4.7) are given by 
 

   , ,h zI 4
4= N a e   (4.16) 

 

   , h z5
1 5= N a e   (4.17) 

 
where  ,4N a   and  ,5N a   are specific functions depending upon ,a   and 4h  and 5h  are the roots of 

the characteristic Eqs (4.6) and (4.7) respectively given by 
  

  ,
2 2

2 2 21
4 5 9 8

1

a
h = h = a .

  
   


 (4.18) 
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 Thus the solutions of Eqs (3.13)-(3.15) are  
 

                          , , ,
3

h z h z t axI j 4
1 5 j j 4 4 52

j=1

u = a N a e h N a e e al
   

 
       
 
 
  (4.19) 

 

                          , , ,
3

h z h z t axI j 4
3 j 5 j j 4

j=1

u = h N a e aN a e e
   

 
      
 
 
  (4.20) 

 

                           , ,
3

h z t axI j
j 51

j=1

T = N a e e l
  

 
  
 
 
  (4.21) 

 

        , , ,
3

h z h z t axI j 4
31 5 j j 54 4

j=1

t = s N a e s N a e e
   

 
   
 
 
  (4.22) 

 

        , , ,
3

h z h z t axI j 4
33 5 j j 54 4 51

j=1

t = r N a e r N a e e F
   

 
    
 
 
  (4.23) 

 

       , , ,
3

h z h z t axj 5
31 5 j j 55 5

j=1

q = N a e N a e e
   

 
     
 
 
   (4.24) 

 

       , ,
3

h z h z t axj 4
33 5 j j 55 5 52

j=1

q = N a e N a e e F
   

 
      
 
 
   (4.25) 

 
where 

     , , ,2 2 2 2
5 j 5 j 16 j 15 5 j 5 j 17 j 5 j 5 j 18 j 19r = h a 1 s = 2 a h = h a               

 

       , , ,2 2
5 j j j 20 21 54 4 15 16 54 17 4= ah r = ah s = a h             

 
     , ,55 5 19 18 55 5 19 18= ah = ah           

 

   2
51 51 15 52F = l a l   ,         .2

52 19 53F = a a l                              

 
 Neglecting the effect of microtemperatures i.e., 1 2 3 4 5 6k = k = k = k = k = k = 0  and letting Q 0  in 
Eqs (3.14)-(3.15), we obtain the field equations and their  constitutive relations in a generalized 

thermoelastic medium. Adopting the same methodology, the expression for displacement components ( II
1u ,

II
3u ), force stresses  ,II II

33 31t t  and temperature distribution IIT  for the generalized thermoelastic medium 

(medium II) are obtained as 
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   , ,
2

z zII n 3
1 5n n 3 3

n=1

u = aa R a e R e  
     

 
  (4.26)  

 

   , ,
2

z zII n 3
3 n 5n n 3

n=1

u = a R a e aR e  
     

 
  (4.27)  

 

   , ,
2

z zII n 3
33 5n n 51 3

n=1

t = g R a e L R e  
   

 
  (4.28)   

 

   , ,
2

z zII n 3
31 5n n 52 3

n=1

t = q R a e L R e  
   

 
  (4.29) 

 

   ,
2

zII n
n

n=1

T = R a e
 

  
 
  (4.30)   

 

where      , , , , , ,t axII II II II II II II II II II
1 3 31 33 1 3 31 33u ,u t ,t T z e u ,u t ,t T x z t         and    , , ,nR a n 1 2   are 

the specific functions depending upon a, . 2
n   n = 1, 2  are the roots of the characteristic equation 

    

    ,4 2 IIU V T = 0        (4.31) 

 
with  
 

   ,2
56 52 57U 2a b a b b           2 2 2 2

56 52 57 56V a a b a b b a b a          and 2
3  are the roots 

of the characteristic equation    
 

   2 2 2 II
51b a = 0       (4.32) 

where  

  , , , ,
IIII II II II

0
51 52 53 54II II II II II II

0 0

T 2
b = b = b = b =

2 2 T T

      
          

 

 

   , , , ,
II IIII

II0 1 1
55 56 57 51 3 52 56II I I* *0

a T c L c L
b = b b = L = a b b

T K K


   


 

   (4.33) 

    , ,
2 2

2 II 2 51 52
52 55 3 3 5n 2 2 2

51 n

b a b
L = b a = a =

b a

 
   

  
, 

 

     , , .2 2
n 53 n 54 n 5 n ng = b b a 1 q = 2b a n 1 2              
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5. Boundary conditions 
 

  In this section, we determine the parameters jN ;  j = 1, 2,3,4,5  and jM ;  j = 1,2,3 . We should 

suppress the positive exponentials that are unbounded at infinity. Constants jN ;  j = 1, 2,3,4,5  and jM ;

 j = 1,2,3  have to be selected such that boundary conditions at the surface z = 0  take the form  

 

   (i) , (ii) ,t axI II 1 II
33 33 31 31t = t Fe t t = 0    

 

  (iii) , (iv) ,I I
33 31q = 0 q = 0  

   (5.1) 

   (v) , (vi) ,I II I II
1 1 3 3u = u u = u  

 

  (vii) , (viii)
I III III II * *T T

T = T K = K
z z

 
 

  

 
where F is the magnitude of the mechanical force. Using Eqs (3.1)-(3.3) and (3.17), the boundary conditions 
given by Eq.(5.1) reduce to non-dimensional boundary conditions. With the help of Eqs (4.19)-(4.20) and 
(4.26)-(4.30), we obtain a system of eight non-homogeneous equations with eight unknowns mN ; 

 m = 1,2,3,4,5  and jR ;  j = 1,2,3  as 

 

  *,51 1 52 2 53 3 54 4 51 1 52 2 51 3r N r N r N r N g R g R L R N        (5.2) 
 
  ,51 1 52 2 53 3 54 4 51 1 52 2 52 3s N s N s N s N q R q R L R 0        (5.3) 
 
  ,51 1 5 2 2 53 3 5 5 5 5 2N N N N F         (5.4) 
 
  ,51 1 52 2 53 3 55 5N N N N 0        (5.5) 
 
  ,51 1 52 2 53 3 4 4 51 1 52 2 3 3 52a N a N a N h N aa R aa R R al                  (5.6) 
 
  ,1 51 1 2 52 2 3 53 3 4 1 51 1 2 52 2 3h N h N h N aN a R a R aR 0               (5.7) 
 
  ,1 2 3 1 2 51N N N R R l       (5.8) 
 

    * * * * * .
I I I II II

1 1 2 2 3 3 1 1 2 2h K N h K N h K N K R K R 0        (5.9)  

 
 The above eight Eqs (5.2)-(5.9) are solved by applying the inverse of matrix method and the values 
of eight constants mN  m = 1,2,3,4,5  and  , ,jR j 1 2 3  are obtained as 
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6 j5m

j jN = , R =
  

      
 (5.10) 

where 
     , ,51 52 51 53 4 53 54 51 51 52 52 53 52= f r h a r = f f , = f f          

 
     , ,53 54 52 54 55 56 52 55 53 51 52= f f f f f , g g g        

 
       , , ,61 54 51 52 62 55 51 52 63 56 51 52g g g g g g g g g          

 

     ,51 54 53 53 4 52 52 51f ar a r h F l           ,*
5525152

II
Kaqf   

 

                  ,53 54 53 53 4 52 51 51f ar r h F l            * ,54 52 51 4 54 52f h N r l      

 

                  ,55 51 52 51 52 51 53 52f a r r l r F              * ,56 53 52 53 51 52f a r l N        

 

              * ,I
51 3 51 52 52 51g ah K s s           * ,I

52 54 53 1 2 51 52g s h h K     

 

   ,53 52 52 3 52 51g F g aa L          ,54 51 55 52 3 52 51g l g aa L      

 

   * ,55 55 52 51 3g al L N           * *, .56 55 52 52 52 51g a g l a N N F F        

 
6. Particular cases 
 
6.1. Generalized Thermoelastic Medium with Microtemperatures (GTM) 
 
  Neglecting the effect of the internal heat source i.e., Q 0  in Eqs (4.19)-(4.20) we obtain the 
component of displacements, force stresses and temperature distribution in the generalized thermoelastic 
medium with microtemperatures (GTM). 
 
6.2. Generalized Thermoelastic Medium (GT) 
 

 If we neglect both microtemperatures and the internal heat source, i.e., ( ijq , Q = 0 ) in Eqs (4.19)-

(4.25) we obtain the results for the generalized thermoelastic medium (GT). 
 
7. Numerical results 
 
 In order to illustrate our theoretical results obtained in the proceeding section, we now consider a 
numerical example for which computational results are given. The results depict the variations of 
displacement components, force stresses and temperature distribution. For this purpose, we take the 
following values of physical constants (Steeb et al. [21]) 
 

  . , . , ,10 2 10 2 3 3= 2 17 10 Nm = 3 2784.0 10 Nm = 1.74 10 kgm            
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        . . deg , deg , . deg ,6 3 1 * 2 1 1 6 2 1
0a T = 1 8 10 J m K = 1.7 10 Wm 2 68 A0 Nm              

 

              , . , , . ,10 1 10 1 10 1 10 1
1 2 3 4k = 2 10 Wm k = 0 1 10 Wm k = 04 10 Wm k = 0 3 10 Wm        

 

  . , .10 1 10 1
5 6k = 0 5 10 Wm k = 0 7 10 Wm .    

 
 The computations are carried out for the value of non-dimensional time t = 0.2  in the range 

0 x 10   and on the surface z = 1.2 . The numerical values for displacements  I I
1 3u ,u , force stresses 

 I I
31 33t ,t  and temperature distribution T  are shown in Figs 1-5 for the mechanical force with magnitude 

F = 1.0 , 0=    , 0 = 2.0 , = 0.1 , a = 0.9  and Q = 2  for a  

 
(a)  generalized thermoelastic medium with microtemperature having an internal heat source (GTMI) by a 

solid line (i.e., ijq , 1Q 0 ).  

(b)  generalized thermoelastic medium with microtemperature (GTM) by a solid line with centered symbols 
(*) (i.e., ijq 0 , 1Q = 0 ).  

(c)  generalized thermoelastic medium (GT) by a dashed line with centered symbols (*) (i.e., ijq ,

1Q = 0 ).  

 
8. Discussions 
 

  The variation of the tangential displacement I
1u  for GT is highly oscillating in nature in 

comparison to the variations obtained for GTMI and GTM. These variations of the tangential displacement 
I

1u  are shown in Fig.1. It is quite evident from Fig.2 that the variations of the normal displacement I
3u  is 

least oscillatory for GT. The variations of the normal displacement I
3u  for GTMI and GTM are opposite 

in nature with fluctuating values. The variations of the tangential force stress I
31t  with the distance x  is 

depicted in Fig.3. Initially, the value of the tangential force stress I
31t  for GT starts with a sharp increase 

in the range 0 x 2.0   and then follows an oscillatory pattern with reference to x . Further the tangential 

force stress I
31t  shows small variations close to zero in the whole range for GTM. Figure 4 depicts the 

variations of the normal force stress I
33t  with the distance x . The variations of the normal force stress 

I
33t  are very closely related with each other having different magnitude for GTMI and GT. Also, the value 

of the normal force stress I
33t  for GTM lie in a very short range. Further discussions are not required for 

the variations obtained in the case of the temperature distribution IT , since it is evident from Fig.5 that 

these variations are similar to the variations obtained in the case of the normal displacement I
3u  with 

difference in their magnitude. 
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Fig.1. Variations of tangential displacement u1 with distance x. 
 

 
 

Fig.2. Variations of normal displacement u31 with distance x. 
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Fig.3. Variations of tangential force stress t31 with distance x. 
 

 
 

Fig.4. Variations of normal force stress t33 with distance x. 
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Fig.5. Variations of temperature distribution T with distance x. 
 
9. Conclusion	
  
 Both microtmperatures and internal heat source have a significant effect on displacements, force 
stresses and temperature distribution. The variations of the normal displacement 3u  and temperature 

distribution T  are similar in nature with difference in magnitude. The variations of all the quantities are least 
oscillating for GTM. The normal mode analysis used in this article is applicable to a wide range of problems 
in different branches. This method gives exact solutions without any assumed restrictions on either the 
temperature or stress distributions. It helps us to study the effect of a heat source in the medium and the 
deformation caused in the medium due to the heat source.  
 
Nomenclature 
 
  a  wave number in x-direction  
 F  magnitude of mechanical force 
 L  parameter having dimension of length 
 0T    temperature of the medium in its natural state  

 ijt    components of stress tensor 

 iu    components of the displacement vector u  

 0Q   magnitude of stable internal heat source 

 iq    components of the heat flux vector 

 ijq    components of the first heat flux moment vector 

 iw    components of the microtemperatures vector w 0T T     

 i    components of the first moment of energy vector 

 ij   Kronecker delta 
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 *   entropy per unit mass 

    temperature at time t 

 
 

*, , , , , ,

, ,....i

a b K

k j 1 2 6

      


  constant constitutive coefficents 

    reference mass density of the medium 

 ,I I I I
1 1 ij ij, , , ,T ,t q         magnitude of the functions 

    complex time constant  
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