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A b s t r a c t  

This paper investigates the effect of simultaneous adding of recycled tire rubber (RTR) 
and marble waste (MW) as fine aggregates on the properties of concrete. To achieve this 
objective, the particles size distribution of crushed sand (CS) was corrected by the use of 
marble waste sand (MWS), and RTR was used by volumetric substitution (1%, 2%, 3% 
and 4%) of aggregates in concrete. The fresh properties were investigated using the slump, 
density and air content tests. Hardened properties were investigated through 
the compressive strength, flexural strengths, pulse velocity, elastic modulus and water 
absorption. The obtained results showed that the increase in the substitution rate of RTR 
reduced the fresh and hardened properties of concrete containing marble waste sand. 
However, with low substitution rates the properties of concrete remain satisfactory and the 
utilization of RTR and MWS leads to making a green concrete while protecting the 
environment. 
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1. INTRODUCTION 

The reduction in the exploitable reserves of natural aggregates and forecast of a 
decrease in the production of these aggregates prompted researchers to find 
alternative supply sources of aggregate for concrete industry (Huang et al 2020, 
Youssf et al 2020). On the other hand, the industrial activities produce large 
amounts of wastes annually, which are deposited in landfills. It is becoming 
evident that the valorization of these wastes is a major environmental issue, and 
their reuse as aggregates or fibers intended for making new green concrete would 
be a beneficial alternative for the environment. It would indeed allow the 
preservation of raw materials and limitation of pollution (Jalal et al 2020). 

Among these wastes which cause serious problems for the environment and 
public health, there is the waste of tires rubber. It was estimated that about 1 billion 
end-of-life tires are produced in the world annually, more than half of these are 
discarded in landfills (Thomas and Gupta 2016a). By the year 2030, it was also 
estimated that 5 billions more will be discarded (Azevedo et al 2012). In the 
European Union, it was estimated that 3.2 million tonnes of used tires were 
discarded in 2009 with valorization rate equal to 96% (Bravo and Brito 2012).  In 
the Algerian context, 49.62 thousand tons of rubber tires are imported every year. 
Knowing that every new sold tire generates end-of-life tire and taking into account 
the loss of mass due to the wear, the amount of end-of-life tires reaches 45.65 
thousand tons, every year (Bekhiti et al 2014). The uncontrolled storage of end-
of-life-tires is a source of public health nuisance (pollution, aesthetics, spread of 
insects and potential fire risks) (Munoz-sanchez et al 2017). Thus, the reuse of 
these in concrete technology can be effective to limit the environmental pollutions 
and protect the public health (Xiong et al 2020). 

Several studies have been conducted to reuse the RTR as aggregates and 
filler in various types of concretes. Bravo and Brito (2012) observed that 
workability of rubber concrete (RC) decreases with the increase in RTR content. 
Similar result was observed by Mhaya et al (2020). Su et al (2015) concluded that 
the larger rubber particles give for concrete better workability than the finer 
particles. The decrease in workability is accompanied by a reduction in density of 
rubberized concrete, this reduction is influenced by the RTR content and size 
(Seddika et al 2019).  

The effect of RTR on the mechanical properties of concrete has been 
investigated by several studies (Aslani et al 2018, Bisht and ramana 2017, Najim 
and hall 2012, Si et al 2018, Zhang et al 2015). They observed a significant 
reduction in strength and elastic modulus. Batayneh et al (2008) report that with 
full replacement of fine aggregates with RTR, the compressive strength decrease 
by 90%. Thomas et al (2014) reported that crumb rubber may be utilized as fine 
aggregates up to 7.5%, without significant decrease in strength. Raffoul et al 
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(2016) recommended the combined substitution of fine and coarse aggregates with 
RTR to minimize the strength reduction. However, it was reported that RTR give 
higher flexibility for concrete (Lv et al 2015), increase the ductility and concrete 
ability of energy absorption (Li et al 2018). 

Thomas et al (2015) studied the durability properties of rubberized concrete 
in aggressive environments; they found that RTR enhance the concrete resistance 
to acid attack. Yung et al (2013) noted that 5% of RTR powder was the optimal 
substitution rate which led to best durability properties. Thomas et al (2016b) 
noted that the rubberized concretes have higher water absorption than ordinary 
concretes.   

In order to avoid the large drop in properties of rubberized concrete, several 
researchers studied the combined use of RTR with other cementitious materials. 
Erhan (2010) reported that the use of RTR with fly ash led to minimize fresh 
properties reduction of self compacting concrete. Gesoglu and Guneyisi (2007) 
found that silica fume decrease chloride penetration depth and improve 
compressive strength of rubberized concrete. AbdelAleem and Hassan (2018) 
added that the use of silica fume allows increasing the RTR rate in concrete with 
enhanced mechanical properties and acceptable fresh properties.   Mhaya et al 
(2020) observed that the incorporation of 20% of granulated blast furnace slag 
reduce the workability and increase mechanical properties of rubberized concrete. 
Jalal et al (2019a) showed that the use of 10% of zeolite decrease the workability 
of concrete by 4%, while it leads to minimize compressive strength reduction by 
8%.  

On the other hand, large amounts of MW with different sizes are generated 
every year during sawing, shaping and polishing process for marble industry 
(Evram et al 2020). Vardhan et al (2019) noted that marble waste constitute about 
20-30% of total production of marble industry. In China which is considered as 
the largest producer of marble in the world, it was estimated that one million tons 
of marble waste must be disposed every year (Zhang et al 2020). In Turkey, it was 
noted that the marble waste was reached millions of tons and the storage of this 
waste was considered impossible (Alyamaç and Ince 2009). The United States, 
Belgium, India, Brazil, France, Spain, Sweden, Italy, and Egypt also have large 
reserves of marble (Arel 2016, Vardhan et al 2019). In Algeria, Hebhoub et al 
(2011) noted that 70% of marble gets wasted during the extraction, processing and 
polishing stages.  These wastes cause environmental problems (Khodabakhshian 
et al 2018), soil fertility and morphology damage (Zhanget al. 2020) and disposal 
problem (Choudhary et al 2020). Varadharajan (2020) noted also that the fine 
particles of marble waste that move with the air cause air pollution and clogging 
the waterways. The valorization of marble waste in the construction field has 
emerged as an efficient solution which leads to sustainable development. 
Currently, one of the principal research tendencies is the reuse of MW in concrete 
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manufacturing in order to develop an environmentally friendly concrete. Several 
researchers studied the utilization of MW as aggregates and powder in the 
concrete technology. Rashwan et al (2020) examined the utilization of MW sludge 
to replace cement in concrete. The results indicated that the workability increase 
when the marble sludge content increase. Similar result was obtained by Djebien 
et al (2015). André et al (2014) were used MW as coarse aggregate. They 
explained the improvement of workability by the low absorption and plan surface 
of MW. Corinaldesi et al (2010) added that marble waste gives more cohesiveness 
for concrete and mortar. Topçu et al (2009) studied the properties of self-
compacting concrete containing MW. They concluded that the MW reduce the 
bulk density and increase the air content of self-compacting concrete. They also 
recommended an optimum amount of MW of 200 Kg/m3. Gencel et al (2012) 
attributed the decrease in bulk density to the lower density of MW when compared 
to the other aggregates. Ergun (2011) noted that the incorporation of 5% of MW 
leads to improve the compressive strength of concrete by 12%. This improvement 
of concrete strength was observed by other researchers (Boughamsa et al 2020, 
corinaldesi et al 2010, Hebhoub et al 2011, Vardhanet al 2019). The enhancement 
of the mechanical properties of concrete containing MW was attributed to the 
generation of carbo-aluminates in presence of MW which has certain binding 
capacity (Chawla et al 2018, Ergun 2011). Aliabdo et al (2014) showed that the 
use of MW significantly improves the tensile strength of concrete. Vardhan et al 
(2019) noted that due to its filler effect, MW is more suitable when it is used in 
the substitution of ordinary fine aggregates for concrete production. Ince et al 
(2020) used MW as a partial substitution of fine aggregates in concrete. They 
reported that the utilization of MW improve the sulphate Attack and freeze-thaw 
resistances of concrete. Singh et al (2019) added that the MW reduces the water 
permeability and sorptivity with optimum rate of 15%. This tendency was 
observed also by Gameiro et al (2014). Gencel et al (2012) concluded that the 
addition of MW reduces the manufacturing cost of concrete paving blocks by 
11.76%. 

2. RESEARCH SIGNIFICANCE 

Concrete is the most common construction material used worldwide (Arel 2016). 
This leaded to a high demand of aggregates and depletion of natural resources. 
The valorization of wastes and by-products in concrete technology remains the 
best solution which leads to reduce the consumption of raw materials, eliminate 
the wastes and protect the public health. To achieve these objectives, this study 
investigated for the first time the effect of combined use of RTR and MWS on 
fresh and hardened properties of concrete. The MWS was used with the RTR to 
benefit from its positive effects on the properties of concrete. As recommended 
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by Raffoul et al (2016), the rubberized concrete was made by substitution of total 
volume of aggregates by RTR, and the particles distribution of CS was corrected 
by MWS. The combined use of MWS and RTR not only leads to increase the 
wastes content in the concrete composition, but also to use different types of waste 
and consequently a green concrete will be manufactured. It should also be noted 
that the use and increase of the waste rate in the concrete composition leads to 
reduce the cost of the concrete manufacturing. 

3. MATERIALS, MIX DESIGN AND TESTS  

3.1.  Materials  
Portland cement (PC) CEM1 42.5 was used in this experimental research; its 
properties are detailed in Tables 1 and 2.  

Crushed aggregates of a limestone rock were used as coarse aggregates 
(CA) and fine aggregate (FA); two types of gravel (G1 and G2) were used with 
maximal nominal size of 16 mm and 25 mm respectively. The maximal nominal 
size of CS used was 4 mm. The properties of the FA and CA are presented in 
Table 3. WMS was obtained from the crushed process of marble rock in Skikda 
marble carry (East of Algeria). The WMS was used to correct the grain size 
distribution of CS (Figure 1). The properties of the MWS are presented in Tables 
2-3. The RTR used in this study was obtained by cutting of end-of-life tires in 
small particles followed by washing of them (Figure 1). 
 

 
Fig. 1. Wastes used 
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Table 1. Physical and mechanical properties of PC 

Physical and mechanical properties PC 

Initial setting time (min) 75 

Final setting time (min) 181 

Specific gravity 3.124 

Blaine specific surface  (cm2/g) 3156 

Compressive strength for 2 days (MPa) 27.88 

Compressive strength for 7 days (MPa) 42.44 

Compressive strength for 28 days (MPa) 57.32 

Flexural strength for 2 days (MPa) 5.27 

Flexural strength for 7 days (MPa) 7.60 

Flexural strength for 28 days (MPa) 8.56 

 
The RTR had a maximum size of 6.30 mm, specific gravity of 1.62 and water 
absorption of 1.66%. The particle size distribution of crushed and wastes 
aggregates are shown in Figure 2. To obtain the desired workability, the 
superplasticizer (SP) used was POLYFLOW SR 5400   based on polycarboxylate 
with brown color, density of 1.07 and PH of 5. 
 

 
Fig. 2. Particles size distribution of aggregates 
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Table 2. Chemical properties of PC and MW 

Chemical properties (%) PC MW 

CaO 61.38 53.85 

Al2O3 5.18 0.38 

Fe2O3 3.34 0.22 

SiO2 19.97 1.11 

MgO 0.99 2.81 

Na2O 0.2 0.15 

K2O 0.44 0.04 

Cl- 0.19 0.02 

SO3 2.90 4 

Loss in ignition 3.71 - 

C4AF 10.25 - 

C3A 8.08 - 

C3S 58.45 - 

C2S 13.24 - 

Table 3. Properties of aggregates 

Properties Fine aggregates Coarse aggregates 
CS MWS G1 G2 

Specific density 2.6 2.78 2.64 2.64 

Sand equivalent (%) 71 71 - - 

Finenes modulus 3.18 2.27 - - 

Methylene blue value  0.5 0.5 - - 

Micro-deval (%) - - 17 18 

Los Angeles (%) - - 20 22 

3.2. Mix design and tests  
To formulate the control concrete, the Dreux-Gorisse method was used. 
Thereafter, 1%, 2%, 3% and 4% substitutions of aggregates total volume by RTR 
were made. The dosages of PC, water and SP are kept constant (Table 4). The 
superplastizer quantity used in this study was 1% of the cement weight. The MWS 
was used to correct the finesses modulus of CS. According to ASTM C33, the 
fineness modulus of fine aggregate should not be less than 2.3 or more than 3.1. 
It was also recommended to use fine aggregates with finesses modulus closer to 
the upper limit to obtain a concrete with good workability and strength. Using 
Abrams formulas (Equations (1)-(2)), the target fineness modulus (FM) was 3. 
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                   CS (%) =   = 80.21%
                                    (3.1) 

 

                   MWS (%) =  = 19.78%
                                   (3.2) 

 
Where: CS (%): Proportion of CS; MWS (%): Proportion of MWS;  FM (MWS): 
Finesses modulus of MWS;  FM (CS): Finesses modulus of CS;  FM: The target 
finesses modulus. 

To ensure good homogeneity for all mixtures, the solid constituents were 
mixed for three minutes. Then, the water and SP were mixed with the other 
constituents for three more minutes. After mixing, the mixture was introduced and 
vibrated into standard steel molds according to NF P18-405. Cube samples 
(150×150×150 mm) were used for the compressive strength, pulse velocity and 
water absorption by immersion tests. Prismatic samples (70×70×280 mm) were 
used for the flexural strength. After 24 hours of casting, the samples were 
demoulded and conserved in water curing until the date of test. 

Table 4. Concrete mixtures 

 G2 

(Kg/m3) 

G1 

(Kg/m3) 

CS 

(Kg/m3) 

PC 

(Kg/m3) 

SP 

(L/m3) 

Water 

(L/m3) 

MWS 

(Kg/m3) 

RTR 

(Kg/m3) 

MC 306 612 695.08 350 3.27 147 178.46 00 

MRC1 303.10 606.30 688.14 350 3.27 147 176.67 11.04 

MRC2 299.99 599.91 681.17 350 3.27 147 174.88 22.07 

MRC3 296.89 593.79 674.23 350 3.27 147 173.09 33,14 

MRC4 293.83 587.87 667.26 350 3.27 147 171.33 44.15 

  
The fresh and hardened properties tests were performed according to standards 
mentioned in Table 5. Eighteen samples were produced for each concrete mixture 
and for each test the obtained result represents the average of three readings. 
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Table 5. Tests used 

Tests Standards 

Slump test NF EN 12350-2 

Bulk Density  NF EN 12350-6 

Air content  NF EN12350-7 

Compressive strength  NF EN 12390-3 

Flexural strength  NF EN 12390-5 

Pulse velocity NF EN 12504-4 

Water absorption by immersion NBN B15-215  

4. RESULTS AND DISCUSSION  

4.1.     Workability 
Figure 3 presents the slump values of concrete mixtures. It is observed that the 
workability decreases with the increase of RTR content in concrete. The slump 
value drops from 18 cm to 12 cm when 4% of RTR is included. This trend was 
confirmed by several studies (Holmes et al 2014, Mhaya et al 2020, Su et al 2015). 
It was attributed to the friction increasing between the concrete components in 
presence of RTR due to the rough nature of their grains, and the higher water 
absorption of RTR compared to the natural aggregates.  However, it is observed 
that the loss in the workability remains insignificant when the RTR rate does not 
exceed 2%. This is explained by the cohesiveness effect that the MWS plays, 
which leads to minimizing the friction between the grains and ensures good flow 
of concrete (Corinaldesi et al 2010, Djebien et al 2018).     
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Fig. 3. Slump values of concrete mixtures 

4.2.     Fresh density 
Figure 4 shows the fresh density values of concrete mixtures. As shown, the 
density of concrete gradually decreases by increasing the RTR rate.  
 

 
Fig. 4. Fresh density values of concrete mixtures 

 
The MRC4 mixture has density lesser by 3.30% when compared to the control 
concrete (MC). This tendency concord with that obtained by (Gesoglu et al 2014, 
Pelisser et al 2011). It was ascribed to the lower density of RTR compared with 
the other aggregates. The lightening of the concrete by the incorporation of RTR 
constitutes a solution which allows reducing the dead load of structures (Asuktar 
et al 2017) and ensuring thermal insulation (Fraile-Garcia et al 2018). It is also 
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suitable for some construction elements and architectural applications 
(Pavements, roads barriers, walls) (Asuktar et al 2017, siddique et al 2004). 

4.3.     Air content 
As reported in figure 5, the air content value of concrete increases with increasing 
RTR proportion. A 110% increase in air content is observed when 4% of RTR is 
used. This trend was showed by (Ling et al 2010, Siddique et al 2004), it was 
explained by the non-polar nature of the RTR grains which traps air bubbles and 
leads to increase the air content of concrete. 
  

 
 

Fig. 5. Air content values of concrete mixtures 
 

It was noted that the increase of the air content in presence of RTR can 
significantly improve the freeze-thaw resistance of concrete (Zhu et al 2012). 

4.4.     Compressive strength 
Figure 6 illustrates the effect of RTR content on compressive strength of concrete 
mixtures. It indicates that the addition of RTR gradually reduces the compressive 
strength of concrete. The compressive strength is reduced by 19% and 25% at 7 
and 28 days respectively when 4% of RTR is used. This reduction is attributed to 
the adhesion lack of the RTR with the cement paste and lower hardness of RTR 
in comparison with the other constituents (Gangian et al 2009). Additionally, the 
increase of the air content in the presence of RTR (figure 5) leads to reduce the 
compressive strength of concrete.  It can be seen also that with 1% of RTR content, 
the compressive strength decreases by 6% only. 
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Fig. 6. Compressive strength values of concrete mixtures 

4.5.     Flexural strength 
In figure 7, it can be seen that MC have flexural strength greater than that of the 
other specimens (MRC).  
 

 
Fig. 7. Compressive strength values of concrete mixtures 
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between the RTR and the cement paste which leads to the rapid propagation of 
cracks within the specimens.  
Figure 8 shows the relationship between the flexural and compressive strength at 
28 days for all concrete mixtures. As shown, there is a linear relationship between 
the flexural and compressive strength with lower correlation coefficient R2 equal 
to 0.546. This lower correlation is probably attributed to the dispersion of results 
of the flexural strength test due to non-uniform distribution of tensile strength. 
 

 
Fig. 8. Relationship between Compressive strength and flexural strength 
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Fig. 9. Pulse velocity values of concrete mixtures 

 
Figure 10 shows the relationship between the ultrasonic pulse velocity and 
compressive strength at 28 days for all concrete mixtures. As shown, there is a 
good linear relationship between the compressive strength and pulse velocity with 
correlation coefficient R2 equal to 0.94. This indicates that the compressive 
strength is predominantly influenced by the RTR content. 
 

 
Fig. 10. Relationship between Compressive strength and pulse velocity 
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Fig. 11. Water absorption values of concrete mixtures 

 
A gradual increase of absorption values with increasing RTR content is showed. 
The absorption values increase by 16.74% and 170.44% when the RTR rate 
increases by 2% and 4% respectively. It should also be mentioned that the 
absorption increase is more significant when the RTR content exceeds 1%. This 
trend can be explained by the increase in internal porosity due to the bonding lack 
between cement paste and RTR which facilitates the penetration of water into 
specimens (Ganjian et al 2009). 
A linear relationship between the ultrasonic pulse velocity and water absorption 
was illustrated in Figure 12. It is clear that there is a good correlation between the 
variations of pulse velocity and water absorption with higher correlation 
coefficient R2. 

  

 
Fig. 12. Relationship between water absorption and pulse velocity 
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Figure 13 presents a linear relationship between the compressive strength and 
water absorption. As presented, the highest correlation coefficient R2 was obtained 
for the compressive strength - water absorption relationship. The good 
correlations between the pulse velocity, compressive strength, and water 
absorption indicates that the weak bonding of RTR with cement paste and the RTR 
content are the predominant factors that govern the variation of these properties.  

 

Fig. 13. Relationship between water absorption and compressive strength 
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Fig. 14. Dynamic elastic modulus values of concrete mixtures 

5. CONCLUSIONS 

This paper investigated the effect of combined use of recycled tires rubber and 
marble waste as fine aggregates on fresh and hardened properties of concrete. The 
recycled tire rubber was used by volumetric substitution of aggregates. The 
following conclusions can be drawn: 

 The addition of MWS delays the reduction of rubberized concrete 
properties. 

 The workability of concrete containing MWS decreases with increasing 
RTR content. The decrease of workability remains insignificant when 
RTR content does not exceed 2%. 

 The decrease in workability of concrete was accompanied by a decrease 
in density and increase in the air content. 

 The increase of RTR content reduces the compressive and flexural 
strength of concrete containing MWS. The reduction of compressive 
strength is more pronounced when RTR content exceeds 1%. 

 The use of RTR in the formulation of concrete significantly increases the 
ability of concrete to absorb water. 

 With low substitution rates, the pulse velocity test indicated that concretes 
were considered to have good quality. 

 There are good relationships between the compressive strength, ultrasonic 
pulse velocity and water absorption of concrete containing RTR and 
MWS with correlation coefficients greater than 0.94 . 

 
It can be noted that the combined use of RTR and MWS in production of concrete 
presents promising ecological and economical interests. From the obtained results, 
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the concrete containing RTR and MWS can be applied in the fabrication of 
(sealing element, dividing walls, cleanliness concrete…) when the mechanical 
strengths are not required. It should be also noted that the combined utilization of 
RTR and MWS in concrete composition leads to produce green concrete.  
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