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A b s t r a c t  

Cost estimation, as one of the key processes in construction projects, provides the basis for 

a number of project-related decisions. This paper presents some results of studies on the 

application of artificial intelligence and machine learning in cost estimation. The research 

developed three original models based either on ensembles of neural networks or on support 

vector machines for the cost prediction of the floor structural frames of buildings. According to 

the criteria of general metrics (RMSE, MAPE), the three models demonstrate similar predictive 

performance. MAPE values computed for the training and testing of the three developed models 

range between 5% and 6%. The accuracy of cost predictions given by the three developed 

models is acceptable for the cost estimates of the floor structural frames of buildings in the early 

design stage of the construction project. Analysis of error distribution revealed a degree of 

superiority for the model based on support vector machines. 

Keywords: construction cost estimation, cost modelling, ensembles of neural 

networks, support vector machine 

1. INTRODUCTION 

Cost estimation is a key process for any construction project. The objective of the 

process is to deliver forecasts of construction costs on the basis of information 

available on successive stages of projects. The accuracy of the forecasts has a 

significant impact on project success as a number of decisions are made on the basis of 
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cost analyses. This paper presents some results of studies on the applicability of 

artificial intelligence and machine learning-based methods for the process of 

estimating construction costs. Alternative models are introduced which are based on 

either ensembles of artificial neural networks (ANN) or on the support vector machine 

method (SVM). 

 
Fig. 1. Classification of cost estimation methods with regard to methodology 

The proposal of classification of cost estimating methods is presented in Figure 1 

(compare [9, 13, 24, 31]). According to this classification, cost estimation based 

on statistical methods belongs to a broad class of quantitative methods. Both ANN and 

SVM are rooted in advanced statistics, their application for cost estimation relies 

on regression analysis. The fundamental assumption is that there exists a relationship 

between cost and a set of cost predictors. The former is considered a dependent 

variable while the latter are independent variables. The set of the known values of the 

variables allows the development of cost estimation models which are supposed to 

map the relationship. Specifically, nonparametric cost estimation is based on fitting 

an unknown, implicit function to the data representing cost and cost predictors – there 

is no functional relationship assumed a priori. (For more theoretical details about 

nonparametric estimating, one can refer to [33]).  

It is important to note that there exist a variety of construction cost estimation 

problems, which differ with regard to cost analysis. Therefore, the variables of models 

that are built for certain problems must be individually selected for each problem. The 

development of advanced statistical methods, especially those that are built on 

artificial intelligence and machine learning, along with the increasing data storage and 

processing capacities, has resulted in the exploration of cost estimation based on ANN 

or SVM for construction. Some examples of the use of ANN in the field are as 

follows: 

- modelling costs of various facilities or structures such as highways [35], road tunnels 

[27], sports fields [18] and buildings [6, 29]; 

- forecasting of construction site overhead costs [7, 25]. 

Examples of the use of SVM for construction cost estimation problems are: 

- prediction of construction project costs at completion [4]; 
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- forecasting construction project cost [21]; 

- prediction of bridge construction costs [16]. 

Some of the works present and compare both ANN and SVM methods for: 

- estimating costs of school buildings [20]; 

- modelling cost and schedule success for construction projects [34]. 

The use of both of the discussed tools is obviously not limited to cost estimation 

problems in construction. Some examples of applications of ensembles of ANN in 

broadly defined engineering problems are: modelling of air pollution [3], forecasting 

of concrete compressive strength for high-performance concretes [8], prediction of 

buildings’ electricity load levels [12], and the analysis of labour efficiency in 

construction works [17]. With regard to SVM, the use of this method is reported inter 

alia for: aiding contractors’ prequalification decision making processes [1], predicting 

heavy machinery performance in earthworks [22], analysis of noise pollution in 

special protection areas [23], forecasting of building energy consumption [37]. 

The aim of this work was to develop and compare models where either ANN 

ensembles or the SVM method were implemented to support fast cost estimates of 

floor structural frames of residential buildings. The applicability of these methods is 

discussed on the basis of the obtained results. This work continues and extends 

previous research [14, 15]. 

2. METHODOLOGY 

In the course of the research, several cost estimation models based on nonparametric 

statistical methods were developed. The models were designed to provide predictions 

of the construction costs of  the floor structural frames of buildings. The introduced 

models were based either on ANN ensembles or on the SVM method. Both the former 

and the latter were implemented for the problem as supervised learning models that 

allowed regression analysis and the implicit realisation of the relationships between 

costs and cost predictors.  

The theory, fundamentals and details for both methods that were omitted for the sake 

of brevity in this paper can be found in the literature for ANN see, for example, [2, 11, 

26, 32] and for SVM see, for example, [5, 10, 30, 36]. 

The basic assumption for the use of ANN ensembles is to combine a set of trained 

ANN and to use this set to approximate a true regression function instead of using a 

single ANN. Various kinds of ANN or ANN trained to different local minima might 

be incorporated into the ensemble (compare [2]). Such an approach brings a degree of 

reduction to the model’s error compared to the single network-based models. 

Moreover, it is useful for practical implementations in problems for which the number 

of training data samples is not large.  

The rationale for the use of SVM is the method’s capability to deal with high 

dimensional data. SVM enables finding a global solution for a given task, it also works 
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well on relatively small sets of training data. The use of both of these methods makes 

it possible to take into account several cost predictors (describing variables) and 

modelling relationships that bind these cost predictors with the construction costs of 

floor structural frames of buildings. 

Three models were developed in the course of research:  

- an ANN ensemble model based on a generalised averaging approach (later referred 

to as ANN ENSGA), 

- an ANN ensemble model based on a stacked generalisation approach (later 

referred to as ANN ENSSG), 

- a model based on SVM regression (later referred to as SVMREG).  

The following subsections present assumptions for the development of models and the 

concise presentation of data used for the purposes of supervised learning and testing. 

2.1. Assumptions for the development of the models 

Let y be a dependent variable (expected model’s output) and let x be a vector of the 

independent variables (model’s input) – specifically: 

- y – construction cost of the building’s floor structural frame, 

- x – information and characteristics of the building, structural and material solutions, 

basic measures of quantities. 

Consequently, the nonparametric cost estimating model is expected to implement 

input-output mapping:  x → y. Variables  (both y and x) that were used in the course of 

the models’ development process are explained in detail in section 2.2. 

If y denotes the expected model output, i.e. the real-life values of the dependant 

variable (real-life values of construction costs of the building’s floor structural frames), 

then let ŷ be the values predicted by a certain model. The error for p–th data sample is 

then e
p
: 

�� = �� − ��� (2.1)

Consequently, the assumed general metrics of the models’ cost prediction 

performance are: Pearson’s correlation coefficient (R), root mean squared error 

(RMSE), mean absolute percentage error (MAPE):  

� = �	
(�, ��)�����  (2.2)

���� = �1� �(��)�
�

 (2.3)

���� = 100%� � ������
�

 (2.4)
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where: cov(y,ŷ) – covariance between y and ŷ, σy – standard deviation for y, σŷ – 

standard deviation for ŷ , p – index of a data sample belonging to one of the subsets 

(for models based on ANN to L or V, for models based on SVM to L or T). 

Additionally, the measures for residuals’ analyses were: 

��� = ������ 100% (2.5)

���� = ������ 100% (2.6)

Successive stages of the models’ development and the assessment of their 

performance are presented schematically in Figure 2. For the two models based on 

ANN ensembles, the members of the ensembles were chosen from a set of trained 

ANN. The ANN differ from each other in their structures and employed activation 

functions – each of the selected members of the ensemble were trained for one of the 

five folds of testing and validating data (the details can be found in the scheme). 

 

 
Fig. 2. Process of the models development and assessment 
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In the case of the generalised averaging approach (assumed for model ANN ENSGA) 

the assumption is that members of an ensemble are linearly combined (compare [2, 

11]) so that the output of an ensemble ŷ is computed as the weighted average of ANN 

members outputs ŷk, so that: 

�� = � ��� ��  (2.7)

where αk stands for weight coefficients assigned to k-th ANN member of an 

ensemble, k = 1, …, K, and the following conditions are fulfilled: 

�  �� = 1 (2.8)

 � = ∑ (�−1)"#$#=1∑ ∑ (�−1)%#$#=1$%=1  (2.9)

where M is an error correlation matrix of errors produced by the members of an 

ensemble. In eq. (2.9), the member networks are marked by indexes k, h and l 

for clarity. 

In the case of the stacked generalisation approach (assumed for model ANN ENSSG), 

the general assumption is that the members of an ensemble are level-0 models for 

which outputs are combined with the use of the level-1 model. A scheme of this 

approach is presented in Figure 3. 

 

 
Fig. 3. Scheme of stacked generalisation 

For this study, it was assumed that the linear regression model would be used as the 

level-1 model. Thus, the prediction can be formally given as:  

�� = '( ) '*��* ) '���� ) ⋯ ) ',��,  (2.10) 

where b0, b1, b2 , …, bK are the structural parameters of the level-1 model. 
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The SVM method application for the given regression problem was based on an 

approximation of the assumed mapping as a linear regression hyperplane. The 

hyperplane was computed with the use of an SVM method after the nonlinear 

transformation of the input training data x to the high dimensional linear feature space 

with the use of a kernel trick and the application of a nonlinear kernel function.  

The aim was to find an approximation hyperplane which minimises the generalisation 

error: 12 ‖/‖ ) 0 �(1 ) 1∗) → 45�  (2.11) 

Where / is the sought for hyperplane’s parameter, C stands for the complexity 

parameter of a model, ξ and ξ
*
 are slack variables introduced to make the method less 

prone to noise and outliers. Slack variables are computed for each training data 

sample, in particular: ξ above, and ξ
*
 below the ε parameter of Vapnik’s loss function 

(ε determines borders within which the approximated hyperplane must lie – for details 

see, for example, [30, 36]) so that the constraints for eq. (2.11) are: 

6 ��− < 8�, / >≤ ; ) 1−��) < 8�, / >≤ ; ) 1∗1 ≥ 0; 1∗ ≥ 0   (2.12) 

The optimisation problem is solved with the use of Lagrange multipliers. Support 

vectors are the data points that correspond to non-zero multipliers for the optimal 

solution. Thus, the support vectors influence the position of the approximated 

hyperplane. Moreover, the use of the chosen kernel function K and scalar products 

K(x,x’) (the so-called kernel trick) is also implemented. Finally, the prediction can be 

formally given as: 

�� = � ( > −  >∗)> $(8, 8?) ) /@(  (2.13) 

Where α and α
* 
are the Lagrange multipliers for the optimal solution. 

2.2. Variables used in the course of the development of the models  

In accordance with the general assumptions for the development of the models, the 

dependent variable can be explained as follows: 

- total construction cost of the floor structural frame of a building – the variable took 

numerical values corresponding to costs given in thousands of PLN excluding VAT 

and was denoted as y. 

Information brought to the models by independent variables (cost predictors) was 

related to: building size, its location, geometrical measures of the building’s floor and 

structural members of its frame, basic material characteristics and some quality 
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measures of construction works. In particular, the independent variables included such 

data as: 

- building height, (with regard to classes present in relevant Polish legal acts) – the 

variable  took one of the three possible nominal values: low, medium-high or high, 

that were coded as one-of-n and denoted as: x1 for 1, 0, 0, x2 for 0, 1, 0 and x3 for 

0, 0, 1; 

- gross floor area – the variable took numerical values corresponding to the measured 

surface given in m
2
 and denoted as x4; 

- volume of horizontal structural members made of reinforced concrete (including 

slabs, beams, landings and flights of stairs) – the variable took the numerical values 

of the measured cubic capacity given in m
3
 and denoted as x5; 

- volume of vertical structural members made of reinforced concrete (including walls 

and columns) – the variable took the numerical values of the measured cubic 

capacity given in m
3
 and denoted as x6; 

- class of concrete – the variable originally took nominal values corresponding to the 

class of concrete for the structural members that were pseudo-fuzzy scaled to values 

0.1, 0.5 or 0.9 and denoted as x7; 

- class of formwork execution – the variable originally took nominal values such as 

class 1, class 2 or class 3 that were pseudo-fuzzy scaled to values 0.1, 0.5 or 0.9, 

respectively and denoted as x8; 

- volume of vertical masonry structural members (including walls) – the variable took 

the numerical values of the measured cubic capacity given in m
3
 and denoted as x9; 

- class of masonry works execution – the variable originally took nominal values such 

as: class A or class B that were pseudo-fuzzy scaled to values 0.9 or 0.1 and denoted 

as x10; 

- location of building – the variable originally took nominal values corresponding to 

the relevant voivodship of Poland, that were pseudo-fuzzy scaled to values 0.1, 0.3, 

0.5, 0.7 or 0.9 and denoted as x11. 

In the case of variables x7, x8, x10, x11 pseudo-fuzzy scaling into numerical values was 

made with regard to the association of the nominal values of these four variables with 

the costs of construction works. The increase of numerical values was related to 

growth of the costs.  

Table 1 presents descriptive statistics for the variables that took numerical values. 
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Table 1. Descriptive statistics for variables that took numerical values 

Symbol Mean 
Standard 

Deviation 

1
st
 

quartile 

2
nd

 

quartile 

3
rd

 

quartile 

4
th

 

quartile 

y 194.45 72.72 148.85 184.80 232.75 418.40 

x4 384.29 160.82 207.60 316.80 482.15 884.50 

x5 82.00 37.19 58.75 69.30 95.85 197.80 

x6 28.87 17.34 19.95 27.15 34.18 111.47 

x9 73.91 28.15 47.20 78.20 94.95 139.70 

 

Table 2 presents the frequencies of values for variables x1 – x3 coded as one-of-n. The 

frequencies of values that were taken by variables coded with the use of a pseudo 

fuzzy scale are presented in Table 3. 

The total number of samples that were used for model development (both for the 

purposes of training and testing models) was 162. The details of the data division into 

training and testing subsets are explained in the scheme depicted in Figure 2. 

Table 2. Frequencies of values for building height class coded as one-of-n 

Symbol 1, 0, 0 0, 1, 0 0, 0, 1 

x1 25.77% - - 

x2 - 44.79% - 

x3 - - 29.45% 

 

Table 3. Frequencies of variables values coded with the use of pseudo-fuzzy scale 

Symbol 0.1 0.3 0.5 0.7 0.9 

x7 11.04% - 46.01% - 42.94% 

x8 31.29% - 39.88% - 28.83% 

x10 51.15% - - - 47.85% 

x11 23.31% 19.63% 19.02% 25.77% 12.27% 

3. RESULTS 

For each of the five folds of learning and validating subsets  number of various ANN 

of a multilayer perceptron type were trained (see the scheme in Figure 1). The ANN 

differed in terms of their structure – the number of neurons in the networks’ hidden 

layers varied between 2 to 8. Moreover, various activation functions (namely: 

exponential (EXP), logistic (LOG), hyperbolic tangent (TANH) and linear (LIN) - in 

both the hidden and the output layer) were considered. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm was used for the purposes of supervised learning. 
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For each of the 5 folds of training the data number of the candidate ANN were 

investigated. Assessment of their performance enabled the selection of 5 ANN (one 

ANN for each of the folds) to be the members of the ensemble-based model.  

Details regarding structures, activation functions and RMSE values computed for the 

ensemble members are presented in Table 4. 

The criteria of selection reflected expectations of equivalence of learning, validating 

and testing errors and a high correlation of y and ŷ that is expected, and also predicted 

the total construction costs of a floor structural frame of a building for learning, 

validating and testing subsets. In Table 4, one can see that the RMSE values are 

relatively close for each of the subsets and for all of the networks. For all of the 

selected ANN, R > 0.960 for each of the subsets. 

Table 4. Details of ANN that were selected to be the members of the ensemble 

k-th 

fold 

ANN 

structure 

Activation functions 

hidden layer / output layer 

Training 

algorithm 
RMSEL RMSEV RMSET 

1 11_7_1 EXP / LIN 

BFGS 

 

16.742 16.369 17.012 

2 11_7_1 EXP / LOG 16.348 16.594 16.639 

3 11_5_1 EXP / LOG 16.392 16.546 17.230 

4 11_8_1 EXP / LIN 16.160 16.294 15.731 

5 11_3_1 TANH / LIN 17.198 16.093 16.405 

 

Coefficients αk for the ANN ENSGA model were computed with the use of eq. (2.9). 

The values of αk are given below: 

α1 = 0.1760; α2 = 0.2962; α3 = 0.1761; α4 = 0.2344; α5 = 0.1173 

In the case of ANN ENSSG, structural parameters of the level-1 model (see eq. (2.10)) 

were found with the use of the commonly known linear regression analysis and the 

least squares method. The parameters are given as follows (standard estimation errors 

for each of the parameters are given in the brackets below): 

b0 = -8.9556; b1 = 0.1336; b2 = 0.2920; b3 = 0.0490; b4 = 0.9024; b5 = 0.4808 

(3.555)         (0.0620)            (0.0618)            (0.0644)            (0.0637)          (0.0696) 

For both of the ANN ensemble-based models, the outputs, which are the predictions of 

the construction costs of the building’s floor structural frame, were computed with the 

use of the coefficients αk for ANN ENSGA and structural parameters bk for ANN 

ENSSG given  above. The outputs were computed for training and testing subsets of 

data on the basis of eq. (2.7) and eq. (2.10), respectively. 
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In the case of the SVM method, a number of models were investigated in order 

to find the one to implement cost prediction mapping: x → y. For the investigated 

models, a radial basis function was assumed as a kernel function: 

$(8, 8?) = exp(−D‖8 − 8?‖�)  (3.1) 

In the course of the research, a range of meta-parameters of the models was 

analysed. To find the model with the best performance, the values of C, ε and γ 

were sought with the use of grid analysis. The grid was characterised by ranges of 

values and steps specified for each of the parameters: 

- in the case of ε, the values varied between 0.05 and 0.10 (step 0.01); 

- in the case of C, the values varied between 1 and 20 (step 1); 

- in the case of γ, the values varied between 0.05 and 0.15 (step 0.01). 

In the course of the computations, 5-fold cross validation was applied (see 

scheme in Figure 1). A number of SVM based models were investigated and 

analysed. Details for the five models with the best performance are presented in 

Table 5. For the five models, one can see the values of C, ε and γ as well as the 

number of unbound vectors – uv and bound vectors – bv, parameter /0 and cross 

validation error cverr. It was found that the best performance was obtained for ε = 

0.05, this is reflected in Table 5. 

Table 5. Five SVM-based models with the best performance 

mod. C γ ε uv bv /0 cverr RMSEL RMSET 

1 20 0.05 0.05 61 29 0.884 0.009 15.684 15.738 

2 16 0.06 0.05 62 28 0.783 0.009 15.699 15.770 

3 11 0.07 0.05 61 28 0.678 0.009 15.711 16.028 

4 9 0.08 0.05 63 27 0.607 0.009 15.711 16.099 

5 9 0.09 0.05 62 27 0.559 0.009 15.658 16.057 

 

The selection criteria for SVM was similar to that used for ANN. Equivalence of 

training and testing errors and a high correlation of y and ŷ were expected. In 

Table 5, one can see RMSE values as performance measures. RMSE values were 

relatively close for both the subsets used for supervised learning and those for the 

testing models. For all of the models presented in the table, R > 0.970 for each of the 

subsets of data. 

Finally, it was decided that model number 1, as the model with lowest RMSE values 

for which RL=0.976 and RT=0.978, would be implemented as the core of the SVMREG 

for predictions of the construction costs of the building’s floor structural frame. The 

outputs of the model were computed for training and testing subsets of data. 

Comparison of the ANN ENSGA, ANN ENSSG and SVMREG models’ predictive 

performance of the total construction costs of a building’s floor structural frames in 
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terms of general metrics is presented in Table 6. The values of R, RMSE and MAPE 

are given for the training and testing of models. One can see that the differences 

between the models with regard to the values of certain general metrics are relatively 

small, especially where the number of training and testing samples is concerned. 

Analysis of the values presented in Table 6 allows to conclude that the general 

performance metrics are comparable for the three models. 

Table 6. Comparison of general performance metrics for the three developed models  

Model 

perf. metr. 

ANN ENSGA ANN ENSSG SVMREG 

TRAIN. TEST. TRAIN. TEST. TRAIN. TEST. 

R 0.978 0.980 0.978 0.984 0.976 0.978 

RMSE 14.616 15.747 12.976 15.984 15.684 15.738 

MAPE 5.55% 5.38% 5.22% 6.36% 5.75% 4.92% 

 

Figure 4 depicts a comparison of expected outputs y (denoted in the figures as 

“exp”, given in ascending order) and corresponding predictions of building’s 

floor structural frame construction costs ŷ by the three developed models. Figure 

4a presents results for training, and Figure 4b presents results for testing. From 

the graphs in Figure 3, one can generalise that predictions follow the expected 

outputs in similar ways for all three models. 

Figures 5, 6 and 7 present distributions of PE
p
 errors for the three developed 

models computed for training and testing. The errors were counted in the range 

widths of 5% with consideration as to whether the values were positive or 

negative. The shapes of the graphs depicting PE
p
 errors for training are similar in 

the case of all of the three models. In the case of the PE
p
 testing errors, one can 

see some differences between the models. Considering the graphs for each of the 

three models individually, especially while comparing training and testing 

errors, one can see that distributions of training and testing errors appear most 

similar in the case of the SVMREG model. 
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Fig. 4. Comparison of expected outputs and predictions of the three developed models: 

a) training subset, b) testing subset 

 

 
Fig. 5. Distribution of PE

p
 errors - ANN ENSGA 
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Fig. 6. Distribution of PE

p
 errors - ANN ENSSG 

 

 
Fig. 7. Distribution of PE

p
 errors – SVMREG 

Table 7 presents the accumulated shares of APE
p
 errors. The values were 

counted and accumulated in ranges increasing by 5% with each step. The table 

shows that in the case of all three developed models, more than 95% of APE
p
 

errors (computed for both teaching and testing samples) were smaller than or, at 

most, equal to 20%. Differences between the models result from the increase in 

the number of errors in individual ranges APE
p
 ≤ 5%, APE

p
 ≤ 10% and APE

p
 ≤ 

15%, which can be seen both for training and testing subsets. 
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Table 7. Cumulative distribution of APE
P
 values for the three developed models 

computed for training and testing subsets  

Model 

APE
p
  

cum. dist. 

ANN ENSGA ANN ENSSG SVMREG 

TRAIN. TEST. TRAIN. TEST. TRAIN. TEST. 

APE
p
 ≤ 5% 61.54% 56.25% 59.23% 43.75% 59.23% 65.63% 

APE
p
 ≤ 10% 83.85% 87.50% 86.92% 84.38% 87.69% 87.50% 

APE
p
 ≤ 15% 93.08% 96.88% 96.15% 90.63% 92.31% 87.50% 

APE
p
 ≤ 20% 98.46% 96.88% 98.46% 96.88% 95.38% 96.88% 

APE
p
 ≤ 25% 99.23% 100.00% 99.23% 100.00% 98.46% 100.00% 

APE
p
 ≤ 30% 99.23% 100.00% 99.23% 100.00% 98.46% 100.00% 

APE
p
 > 30% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

 

In terms of the general performance metrics, all three of the introduced models offer 

satisfactory prediction performance. With regard to the accuracy of cost predictions, 

the models fulfil the expectations for estimates provided in the early stage of the 

construction project as most of the percentage errors of cost predictions fall in the 

range of<-20%;+20%>. 

4. DISCUSSION 

The development of cost-estimation models based on ANN and SVM as tools rooted 

in artificial intelligence and machine learning is an up-to-date area of research and 

publications in the field of construction management. In the authors’ opinion, one of 

the main reasons for this is the need for the introduction of new methods that are 

alternatives to the traditional approach and capable of aiding cost estimates, especially 

in the early phase of construction projects. The application of ANN or SVM brings the 

following benefits:   

- the results of cost estimates are based on the relationship of cost with multiple 

describing variables related to analysed characteristics of objects, quantity measures 

and technical parameters; 

- there is no need to assume a priori functional relationships between the cost and 

describing variables for regression analysis; 

- cost estimates are based on the collected information (training patterns) which form 

the basis for automated training processes and gaining knowledge; 

- the developed models provide cost estimates in a very short time – it is also possible 

to analyse many variants that differ from each other in the values of describing 

variables. 

Success in the development of models based on artificial intelligence and machine 

learning that offer satisfactory performance of cost predictions depends on overcoming 
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a major obstacle – the collection of data and information necessary for supervised 

training process is a challenging task in itself. From the authors previous experience 

and research (see: [14, 15, 16, 18, 25]) it follows that for construction cost estimation 

problems, it is most likely to collect datasets that include a moderate amount of data. 

However, this matter may be counterbalanced through the use of ensembles of ANN 

or SVM. The tools work well for small or moderate datasets even if one must solve 

high dimensional problems (both of the mentioned methods apply to construction cost 

estimation problems). 

The use of both ensembles of ANN and SVM for the investigated problem of cost 

estimation of elements of buildings – namely floor structural frames – brought the 

expected benefits.  Models are developed for multidimensional problems – there are 

twelve describing variables that provide information about the floor structural frames. 

Moreover, there was no need to assume functional relationships between the described 

variable, that is cost of construction works and the describing variables. The models 

enable quick cost estimation of the specified building element.  

The development of the two models based on ANN ensemble needed more 

computational effort when compared to similar models based on single ANN (see 

[14]), this is reflected by the two step procedure (see Fig. 2),. On the other hand, the 

ensemble approach and the implementation of five combined ANN in the two 

introduced models (ANN ENSGA, ANN ENSSG) resulted in a synergy effect and the 

compensation of cost estimation errors obtained for the ANN acting in isolation. 

The third of the introduced models, which was based on the SVM method, required 

determination of the kernel function and ranges of values for meta-parameters. Several 

candidate models were trained with the use of cross-validation for tuning meta-

parameters, from which one was finally selected to be implemented for the cost 

estimation problem (SVMREG). 

For models based on ensembles of ANN as well as for the model based on SVM, the 

correlation of expected and predicted values of the construction costs of buildings’ 

floor structural frames is high (both for training and testing). General performance 

metrics are comparable for the three models and lead to the conclusion that their 

predictive capabilities are satisfactory. In particular, values of MAPE errors (see Table 

6) confirm the applicability of the developed models in the investigated cost 

estimation problem. Analysis of the distribution of PE
p
 and APE

p
 errors leads to two 

main conclusions: firstly, the models are predestined to cost estimates in the early 

stage of the construction project; secondly, the model based on the SVM method 

appears to be somewhat better than the two models based on ANN ensembles due to 

its more stable results of training and testing (see Figures 6-7). 

Most of the models presented in the literature aiming to support cost estimates in 

construction projects and based on artificial intelligence or machine learning are 

focused on various types of construction objects as a whole. The models presented 

herein are developed to aid cost estimates of certain elements of construction objects – 
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parts of buildings that require completion of a complex of construction works. Thus, 

the introduced models may be used for quick variant cost analyses – the considered 

variants may differ in the values of parameters specific for members of floor structural 

frames representing results of certain types of construction works. 

5. CONCLUDING REMARKS 

The research presented herein allowed investigation of  the applicability of artificial 

intelligence and machine learning tools in estimating the costs of buildings’ floor 

structural frames. The research resulted in the development of the three models 

capable of aiding cost estimates. The developed models were based on: 

- ensemble of 5 ANN and generalised averaging approach – ANN ENSGA;  

- ensemble of 5 ANN and stacked generalisation approach – ANN ENSSG; 

- SVM method – SVMREG. 

All of the three models offer comparable performance in cost prediction in terms of 

general metrics (especially RMSE and MAPE errors). The obtained accuracy of cost 

estimates of the structural frames of building floors is acceptable for the early design 

stage of a construction project. Analysis of the distribution of training and testing 

errors for each model showed some superiority for the model based on support vector 

machines. 

ADDITIONAL INFORMATION 

Computations for ANN and SVM based models were made with the use of the 

TIBCO Statistica™ software suite. 
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