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The present study is to investigate the effect of the chemical reaction parameter on stagnation point flow of 
magnetohydrodynamics field past an exponentially stretching sheet by considering a nanofluid. The problem is 
governed by governing coupled nonlinear partial differential equations with appropriate boundary conditions. The 
transformed non-dimensional and coupled governing ordinary differential equations are solved numerically using 
the fourth order Adams-Bashforth Moulton method. The effects of various dimensionless parameters on velocity, 
temperature and concentration fields are studied and then the results are presented in both tabular and graphical 
forms. 
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1. Introduction 
 
 Nanofluids are important to study because of their heat and mass transfer properties. They enhance 
the thermal conductivity and convective properties over the properties of the base fluid. The study of heat 
and mass transfer with chemical reaction is of great practical importance to engineers and scientists because 
of its almost universal occurrence in many branches of science and engineering. Moreover, such fluids when 
compared with the conventional heat transfer fluids, have a much higher rate of thermal conduction and 
exhibit significant characteristics. Owing to their enhanced features, nanofluids have immense applications in 
automobile industries, medical arena, power plant cooling systems, nuclear engineering and a lot more. 
Moreover, several research studies have been performed by considering the different aspects of the flows 
past a stretching sheet.  
 Choi in [1] used the term nanofluid for the first time, which is the colloidal mixture of nanoparticles 
and base fluid. Most of the research has shown that metallic particles transfer more heat energy as compared 
to non-metallic particles. Buongiorno [2] presented a simple convective model to analyze transport in 
nanofluids and implied that energy transfer by dispersion of nanoparticles was negligible. In the boundary 
layer, there may be a decrease in viscosity, which will lead to heat transfer enhancement. An excellent 
assessment of nanofluid physics and developments was provided by Cheng [3]. Buongiorno and Hu [4] 
analyzed the convective heat transfer enhancement had been suggested to be due to the dispersion of the 
suspended nanoparticles, this effect was too small to explain the observed enhancement. It is often assumed 
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in the problems of boundary layer flow over a stretching surface that the velocity of the stretching surface is 
linearly proportional to the distance from the fixed origin. However, Gupta and Gupta [5] argued against the 
linearity condition. In the past few years, noted the stretching of plastic sheet may not necessarily be linear. 
For example, Emmanuel and Khan [6] considered MHD flow past an exponentially stretching sheet. Heat 
transfer in a viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source and 
viscous dissipation was studied by Subhas and Siddheshwar [7]. The effect of thermal radiation on the flow 
was examined by Nadeem et al. [8]. Al-odat et al. [9] obtained the results on the effect of a magnetic field on 
an exponential temperature distribution on a stretching sheet. Chand and Jat [10] considered an unsteady 
stretching surface in a porous medium and explained the thermal radiation and viscous dissipation effects on 
a magnetohydrodynamic flow over it. Ishak [11] worked on the MHD boundary layer flow due to an 
exponentially stretching sheet with radiation effect. Flow through a porous medium bounded by a vertical 
surface in the presence of Hall current was explained by Sudhakar et al. [12]. Bidin and Nazar [13] 
numerically investigated the MHD boundary layer flow over an exponentially stretching sheet with thermal 
radiation.  
 The objective of this paper is to extend the work of Anwar et al. [14] by taking into account radiation 
effect on an MHD stagnation-point flow of a nanofluid over an exponentially stretching sheet in the presence 
of chemical reaction. 
 
2. Mathematical formulation 
 
 A two-dimensional boundary layer flow of a viscous, Newtonian and incompressible nanofluid 
through a delete plate in a porous medium has been considered with focus on the heat and mass transfer. The 
geometry of the flow model is shown in Fig.1. The stretching velocity and free stream velocities are assumed 

to be of the forms  
x

l
wu x ae

 
 
   and  

x

lu x be
 
 
 

   where a   and b are constants. The magnetic field of 

strength  
x

2l
0B x B e

 
 
   is applied perpendicular to the stretching sheet. The coordinate system is chosen in 

a manner that the x  axis is along the flow whereas the y  axis is perpendicular to the flow. Furthermore, 
the direction of the uniform magnetic field is chosen in such a manner that it is normal to the surface of the 
fluid flow. The effects of Brownian motion and thermophoresis have been elaborated. Moreover, the 
convective surface conditions have been taken into consideration. 
 

 
 

Fig.1. Physical model and coordinate system. 
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 The flow is described by the equation of continuity, equation of momentum, the energy equation and 
concentration equation as 
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 In the above equations,   is the kinematic viscosity, f  is the density of the base fluid,   is the 

electrical conductivity,  B x  is the magnetic field, 
  f

c


 


 where   is the thermal conductivity and 

  f
c  is the heat capacitance of the base fluid,   is the parameter defined by 

 
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c  is the 

effective heat capacity of a nanoparticle, BD  is the Brownian diffusion, rq  is the radiation flux. 
 The Rosseland approximation has been considered for radiation and the formula for the radiative 
heat flux rq  is stated below. 
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 For smaller values of temperature contrast, the temperature difference 4T  might be expanded about 
T  using Taylor series, as follows 
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omitting the terms having higher order, we get     
    

  4 3 4T 4T T 3T   .  (2.7) 
 
Then 
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 Using Eq.(2.8) in Eq.(2.5) and differentiating, we have the following form 
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 Then Eq.(2.3) gets the following form 
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 The corresponding boundary conditions at the boundary surface are 
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 The prescribed temperature and the concentration on the surface of the sheet are 
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  . Here ,0 0T C  are the reference temperature and concentration, 

respectively.  
 Let   be the stream function satisfying the continuity equation in the following sense 
 

  ,u v
y x

 
  
 

.            (2.12) 

 
 For the conversion of the mathematical model (2.1) - (2.4) into the dimensionless form, the 
following similarity transformation has been introduced 
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 The final dimensionless form of the governing model, is 
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 The transformed boundary conditions are stated below 
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 Different parameters used in the above equations have the following formulations: 
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 The major interest of the study is to calculate the skin-friction coefficient ,fC  the reduced Nusselt 

number  ' 0  and the reduced Sherwood number  ' 0  which are given as follows 
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 the kinematic viscosity. 

 
3. Numerical technique 
 
 The numerical solution of the mathematical model in the form of non-linear differential Eqs (2.14)-
(2.15) along with the boundary conditions (2.17) was reported by Imran Anwar et al. [14]. They opted for the 
Keller-box method for the numerical solution of the above model. In the present section, the shooting 
technique has been proposed to reproduce the same solution. The Adams-Bashforth Moulton method of 
order four and the Newton's technique for solving the non-linear algebraic equations are the main 
components of the shooting technique. 
 To have a system of first order ODEs, use the notations 
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 By using notations (24), we have the following IVP 
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where r , s  and t are the initial guesses. 
 For the computational purpose, the unbounded domain  ,0   has been replaced by a bounded 

domain  ,0  , where   is some suitable finite real number. It is chosen in such a way that the solutions 
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of the problem start looking settled for    . In Eqs (3.2), the missing initial conditions r , s  and t  are to 
be chosen such that 
 
       , , , , , , , , , , ,2 4 6y r s t A 0 y r s t 0 y r s t 0         . (3.3) 

 
 To start the iterative process, choose ,0 0r r s s   and 0t t . The initial guess is updated by the 
Newton's method until a solution of the problem which approximately meets the given boundary conditions 
at the right end of the domain. Next, the IVP in the first order ODEs given in Eq.(3.2) is solved by the 
Adams-Bash forth Moulton method. 
 The convergence criteria are chosen to be successive value agree up to 3 significant digits. The 
choice of max 10   was more than enough for end condition. 

 
4. Result and discussion 
 
 Physically realistic numerical values were assigned to the pertinent parameters in the system in order 
to gain an insight into the flow structure with respect to the velocity, temperature, skin friction and Nusselt 
number. The results have been depicted graphically and their detailed physical explanation also given. Table 

1 below shows the Nusselt number  ' 0  values for different values of the Prandtl number, Hartmann 

number and reaction rate parameter while the rest of the parameters are set to be zero where 
LeNt Nb A 0    . The table shows the comparison between the results and those of [11, 13 and 14] and 

it shown that the results are in agreement. 
 

Table 1. Comparison of the reduced Nusselt number  ' 0  when LeNt Nb A 0    . 

 

Pr  M  R  

Bidin and 
Nazar [13] 

Ishak [11] Imran Anwar et al. [14] Present results 

 ' 0  

1 0 0 0.9548 0.9548 0.9548 0.9547822 
2 0 0 1.4714 1.4714 1.4714 1.4714600 
3 0 0 1.8691 1.8691 1.8691 1.8690730 
1 0 1.0 0.5315 0.5312 0.5312 0.5317377 
1 1.0 0 - 0.8611 0.8611 0.8610874 
1 1.0 1.0 - 0.4505 0.4505 0.4513935 

 

 Table 2 below shows the values of the local Nusselt number  ' 0  and the local Sherwood number 

 ' 0  when different values of all parameters involved are considered. It is observed from this table that 

 ' 0  decreases with the increasing values of ,Le, ,Nb R  and A . Whereas for increasing values of 

Pr, ,Nt Nb  and   is increasing. However, it is found that  ' 0  decreases for the increasing value of R  

whereas it increases for increasing values of , ,Pr,Le, , ,Nt Nb M A  and  . Here, it is noted that for the 

increasing values of M , the local Nusselt number  ' 0  and the local Sherwood number  ' 0  show a 

quite opposite effect in both cases of A 1  and A 1 . 
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 Figure 2 shows how the magnetic parameter affects the velocity profiles  'f    when ,A 1  A 1

and A 1 . It has been observed that ' ( )f   decreases with an increase in the values of M  for the case of 
A 1 . The velocity reduces when the magnetic parameter increases in the case A 1 . When the velocity of 
the stretching sheet is equal to the free stream velocity, there is no boundary layer thickness of nanofluid near 
the sheet A 1 . 
 

Table 2. Values of the local Nusselt number  ' 0  and the local Sherwood number  ' 0 . 

 

Nb  Nt  Pr  Le M  A  R     ' 0   ' 0   'f 0  

0.1 0.1 1 10 0.1 0.1 0.1 0.2 0 .5374883 3.4259970 1.2856510 

0.5 0.1 1 10 0.1 0.1 0.1 0.2 0.4683891 3.5519440 1.2856510 

0.1 0.5 1 10 0.1 0.1 0.1 0.2 0.5083771 2.9029440 1.2856510 

0.1 0.1 10 10 0.1 0.1 0.1 0.2 1.6193550 2.9614960 1.2856510 

0.1 0.1 1 25 0.1 0.1 0.1 0.2 0 .5358281 5.6791770 1.2856510 

0.1 0.1 1 10 2.5 0.1 0.1 0.2 0 .4688037 3.3257190 1.8976840 

0.1 0.1 1 10 2.5 1.1 0.1 0.2 0.8037469 3.6890500 -0 .2702405 

0.1 0.1 1 10 0.1 0.9 0.1 0.2 0 .7565519 3.6181150 0 .2083470 

0.1 0.1 1 10 0.1 1.1 0.1 0.2 0.7540233 3.6805980 -0.2216342 

0.1 0.1 1 10 0.1 2.0 0.1 0.2 0.7221949 3.975730 -2.7517690 
0.1 0.1 1 10 0.1 0.1 3.0 0.2 0.2762322 3.5029530 1.2881670 
0.1 0.1 1 10 0.1 0.1 0.1 -1.0 0.7615607 0.8892360 1.2881670 
0.1 0.1 1 10 0.1 0.1 0.1 1.0 0.7819918 4.3453950 1.2881670 
0.1 0.1 1 10 0.1 0.1 0.1 5.0 0.8309667 7.6726790 1.2881670 
 

 
 

Fig.2. Velocity profiles vs M when . , Pr Le . , . , . .Nt Nb 0 1 2 0 R 1 0 0 1        

 
 Figure 3 illustrates the effect of the Brownian motion on the profile of temperature. So, distribution 
of the nanoparticle can be adjusted by adjusting the Brownian motion parameter. 
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 Figure 4 displays the effect of the thermophoresis parameter Nt  on the temperature profile. It is 
observed that the temperature increases with increasing the thermophoresis parameter. The temperature 
gradient generates thermophoresis force which creates a fast flow away from this surface. In this way more 
heated fluid is moved away from the surface and consequently, the temperature increases when Nt  
increases. It shows particularly that the effect of increasing the velocity ratio parameter A  leads to a 
decrease in the temperature in the nanofluid.  
 

 
 

Fig.3. Temperature profiles vs Nb  when . , Pr Le . , . , . .Nt M 0 1 2 0 R 1 0 0 1         
 

 
 

Fig.4. Temperature profiles vs Nt  when . , Pr Le . , . , . .Nb M 0 1 2 0 R 1 0 0 1        
 
 Figure 5 is designed to see the influence of the thermal radiation R on the temperature    . It is 

noticed that the temperature     enhances due to an increase in the radiation parameter. It is because of the 
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fact that for larger R the mean absorption coefficient *k  decreases which enhances the divergence of the 
radiative heat flux. Hence, the rate of the radiative heat transfer to the fluid will rise and consequently the 
fluid temperature increases. 
 Figure 6 reveals the influence of Pr on the dimensionless temperature profile. As expected, 
increasing Pr leads to a reduction in the dimensionless temperature. Based on the definition of Pr (the ratio of 
momentum diffusivity to thermal diffusivity), for large Pr heat will diffuse more rapidly than the momentum. 
Consequently, the thickness of thermal boundary layer reduces as Pr increases. It is also noticed that higher 
values of Pr reduce the temperature more drastically. 
 

 
 

Fig.5. Temperature profiles vs R when . , Pr Le . , . , . .Nt Nb M 0 1 2 0 R 1 0 0 1         
 

 
 

Fig.6. Temperature profiles vs Pr when . , Le . , . , . .Nt Nb M 0 1 2 0 R 1 0 0 1        
 
 Figure 7 shows that     increases with increasing values of M  when A 1  while it decreases in 

the case of A 1 . It is noticed that the thermal boundary layer thickness is not much influenced by larger 
values of M  when A 1 . 
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 Figure 8 reveals the variation of concentration in response to a change in the Brownian motion 
parameter Nb . As the values of the Brownian motion parameter increase, the concentration boundary layer 
thickness is decreasing.  
 Figure 9 shows the variation of radiation on the concentration profile. The influence of the radiation 
parameter on concentration is not this much significant. As the values of the radiation parameter R increase, 
the concentration boundary layer thickness is not changing much. It can be observed from Tab.2 that as the 
radiation parameter R increases, the mass transfer rate is almost constant. 
 Figure 10. As the Lewis number increases the concentration graph decreases and the concentration 
boundary layer thickness decreases. This is probably due to the fact that the mass transfer rate increases as 
the Lewis number increases. Moreover, concentration at the surface of a sheet decreases as the values of Le 
increase.  
 

 
 

Fig.7. Temperature profiles vs M when . ,Pr . , . , . .Nt Nb 0 1 Le 2 0 R 1 0 0 1        
 

 
 

Fig.8. Concentration profiles vs Nb  when . , Pr Le . , . , . .Nt M 0 1 2 0 R 1 0 0 1        
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Fig.9. Concentration profiles vs R when . ,Pr . , . .Nt Nb M 0 1 Le 2 0 0 1        
 

 
 

Fig.10. Concentration profiles vs Le when . , Pr . , . , . .Nt Nb M 0 1 2 0 R 0 1 0 1        
 

 Figure 11 shows the concentration graph in response to a change in the thermophoresis parameter 
Nt . The influence of the thermophoresis parameter on the concentration profile graph is monotonic, i.e. as 
the values of Nt  increase, the concentration boundary layer thickness is also increasing.  
 

 
 

Fig.11. Concentration profiles vs Nt  when . ,Pr . , . , . .Nb M 0 1 Le 2 0 R 1 0 0 1        
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 Figure 12. It is observed that the concentration profile diminishes with an increase in the chemical 
reaction. Nanoparticle concentration and layer thickness shrinkage is also noticed with the destructive 
chemical reaction.  
 

 
 

Fig.12. Concentration profiles vs   when . , Pr Le . , . , . .Nb M 0 1 2 0 R 1 0 A 0 1       
 

5. Conclusions 
 
 Some of the important findings of this observations are given below: 
 The velocity bounded  layer thickness shows  an opposite behavior A 1  and A 1 . 
 For A 1  there exists no boundary layer due to the fact that the fluid and sheet move at the same 

velocity.  
 For large values of the chemical reaction parameter   shows decreasing behavior. 

 The concentration profile decreases an increase in chemical reaction parameter    and Prandtl number. 
 Increasing the Prandtl number decelerates the flow and strongly depresses temperature throughout the 

boundary layer regime, while the opposite behavior is seen in the case of enhancing the values of the 
Brownian motion parameter, thermophoresis parameter and radiation parameter. 

 We noticed that concentration is decreased by increasing the Brownian motion, Lewis number. 
 
Nomenclature 
 
 A   velocity ratio parameter  
 , ,a b l   constants 

 B   magnetic field strength ( . )1A m  

 fc   heat capacity of the fluid 

 pc   effective heat capacity ( . )1 1J kg K   

 BD   Brownian diffusion coefficient 

 TD   thermophoretic diffusion coefficient 

 0k   chemical reaction coefficient ( )1s  

 Le  Lewis number 
 M   magnetic parameter 
 Nb   Brownian motion parameter 
 Nr   radiation parameter 
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 Nt   thermophoresis parameter 
 Nu  Nusselt number 
 Nur   reduced Nusselt number 
 Pr  Prandtl number 
 p   pressure 

 mq   wall mass flux 

 wq   wall heat flux 

 xRe   local Reynolds number 

 Shr   reduced Sherwood number 
 xSh   local Sherwood number 

 T   fluid temperature 
 wT   temperature at the stretching sheet 

 T   ambient temperature 

 ,u v   velocity components along the x  and y  axis  

 wu   velocity of the stretching surface 

 ,x y   Cartesian coordinates ( x  axis is aligned along the stretching surface and y  axis is perpendicular to it) 

    thermal diffusivity 
    dimensionless nanoparticle volume fraction 

    similarity variable 

    dimensionless temperature 

    thermal conductivity ( . . )1 1W m K  . 

 f   density of fluid 

 p   mass density 

    fluid electrical conductivity  
    parameter defined by the ratio between the effective heat capacity of the nanoparticle material and heat 

capacity of the fluid.    p f
c c     

    chemical reaction parameter 
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