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In this paper, triple diffusive convection in a Rivlin-Ericksen fluid layer, which is permeated with suspended 
particles in the porous medium under the effect of compressibility and variable gravity, is investigated. Linear 
stability theory and normal mode analysis have been used to study the problem under consideration. It is observed 
that, for stationary convection, suspended particles, compressibility and medium permeability have 
destabilizing/stabilizing effects under certain conditions. The variable gravity parameter destabilizes the system 
whereas stable solute gradients have a stabilizing effect.  
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1. Introduction 
 
 Due to the growing importance of non Newtonian fluids such as the Walters fluid, Rivlin-Ericksen 
fluid and couple stress fluid in many fields such as in industries and in modern technologies, the study on 
these fluids is eminently required. In convective problems it is more recommendable to consider fluid flow in 
the presence of solute gradient (Because of wide applications in ionosphere, astrophysics, atmospheric 
physics etc.) with free boundaries. The principles and theory of thermosolutal convection are investigated by 
Bejan [1]. The convection problem when the fluid layer is heated and soluted from below is studied by 
Veronis [2] and Nield [3]. The instability of non-Newtonian fluids has been studied by several authors [4-15] 
and [16, 17, 18, 19, 20, 21]. There are so many problems in engineering, oceanography and limnology which 
can be studied by double diffusive convection. The problems of astrophysics, geophysics, hydrology, etc. can 
be investigated through double diffusive convection in a porous medium. The assumption of uniform gravity 
field is removed in case of large scale convective phenomenon such as the mantle of earth or ocean so 
condition of variable gravity is considered in the present problem. Study on compressible fluids was started 
by Landau [22] and Lees [23] earlier investigated by Dunn and Linn [24]. Further, convection in a multi-
component fluid was investigated by Straughan and Walker [25]. The problem of multi diffusive-convection 
(when more than one salt is present in the fluid) is of great importance because of its usefulness in describing 
so many natural phenomena such as acid rain effects, underground water flow, warming of stratosphere etc.  
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The present paper is an effort to study triple diffusive convection which arises due to temperature 
and the presence of two salt components in a horizontal layer of the Rivlin-Ericksen fluid, under the effect of 
compressibility and variable gravity in a porous medium. Pearlstein et al. [26] obtained very interesting 
results regarding triple diffusive convection. Triple diffusion was investigated by Rionero [27], Kango and 
Rana [28] for Walter’s fluid under varying gravity. 

 
2. Mathematical model of the problem  

 
Here we consider a compressible Rivlin-Ericksen fluid layer (horizontal) of infinite length and the 

bounds of the layer are  lower bound  & (upper bound)L Uz 0 z d  , in the presence of suspended particles. 

This fluid layer is subjected to variable gravity  , ,0 0 gg  where  ,0 0g g g 0    is the value of g at z = 0 

and   is the variable gravity parameter (can be positive or negative) in a porous medium. This layer is 
heated and salted from below. The temperature T at  & L Uz 0 z d   are and 0 1T T  and solute concentrations 

 and 1 2C C  at the bottom and top surfaces are  and C ;  C  and C1 1 2 2
0 1 0 1C , respectively. The uniform solute 

concentration gradients  &  =
1 2dC dC

dZ dZ

 
     

 
 and a uniform temperature gradient 

dT

dZ
   
 

 are 

maintained. 
Under the above assumptions mathematical equations suitable for this model are  
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 The density equation of the state is  
 

      1 1 1 2 2 2
0 a a a1 T T C C C C              , 

 

  1 1 2 2
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where   average temperature 0 1
a

T T
T

2


  and average concentrations are given by C

1 1
1 0 1
a

C C

2


  

and  C
2 2

2 0 1
a

C C

2


 . 

The equations obtained after linearization are as follows 
 

    1 1 2 20F
F F

m m 1

KN1 1 1
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q
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 . F 0 q , (2.9) 
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where   , , , , ,  and 
m m m v m vm v

q q q
v v

C CC
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1 2 3

v mv v

C C C mN
h f h f h f f

C C C

 
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G
g


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Now, we linearize the perturbation equations (Boussinque approximation) and obtain non 

dimensional equations as 
 

    1 1 1 2
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t t
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 . 0 q , (2.16) 
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where  

 

 

   

= , , ,  e  is a constant;
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3. Exact solution 

 

 
After maintaining uniform temperature and solute concentrations at the boundaries (stress free), the 

boundary conditions suitable for this mathematical model are  
 

,  at   and  .
2

1 2
2

w
w 0 0 z 0 z 1

z


         


 (3.1)                     

 
Now solving Eqs (2.15)-(2.21), we get 
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 (3.2)      

   
Now we take the solution in the form of the following expression (using normal mode method for analyzing 
disturbances) 
 

          
 ( )exp . . .x yw W z ik x ik y nt                          (3.3)                     

  
Now by Eqs. (3.2) and (3.3), we obtain 
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1 1 2

d
L p n Fn L n 1 D

dz
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4. The stationary convection 
 
     The neutral state, obtained by putting n 0 in Eq.(3.4), is given by 
 

   22 2 2 2 2
1 1 2 2 3

1

G 1
D k W R H k W S H k W S H k W

P G

             
 

, (4.1) 

 
when the two boundaries are free, the solution of Eq.(3.4) for the lowest mode is  
 

       
sin0W W z   where 0W  is a constant.                         (4.2) 

 
 From Eqs (4.1) and (4.2), we get 
                                                                                                                                                                                     

 
 22 2
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k S HS HG
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G 1 H Hk H P

                

. (4.3) 

This relation is termed dispersion relation. 
 

5. Instability analysis 
 
Differentiating Eq.(4.3) with respect to P1, H1, G,  ,  1 2S S and   respectively, we get  
 

 
 

,
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6                                                            A.K.Aggarwal and D.Dixit 

 
 

 
,

22 2

1 31 2
2 2

1 11 1

k S HS HdR 1

dG H Hk H PG 1

           

 (5.3) 

                                                       

  

   2

1 1

HdR G

dS G 1 H

         
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 3

2 1

HdR G

dS G 1 H

          
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 

.

22 2

2 2
1 1

kdR G

d G 1 k H P

       
 (5.6)

 
 

It is evident from Eqs (5.1), (5.2) and (5.3) that medium permeability, suspended particles and 
compressibility show a destabilizing/stabilizing effect when   is positive/negative and Eq.(5.6) is always 
negative and thereby implies that the effect of the variable gravity parameter is to destabilize the system. On 
the other hand, the positive sign of Eqs (5.4) and (5.5) implies stabilizing character of solute gradients. 
 
6. Graphical representation and verification of analytical results 

 
Now we analyze the dispersion relation graphically. It is clearly evident from Figs 1-3 that as the 

value of permeability, compressibility and suspended particles increases, the value of the Rayleigh number 
decreases which thereby proves the destabilizing effects and the flow is no longer stable. On the other hand, 
it is clear from Figs 5 and 6, that as the values of the solute gradient increase the values of the Rayleigh 
number increase. Figure 4 shows the destabilizing effect of varying gravity. As the value of the gravity 
parameter increases, the Rayleigh number decreases. 

 

 
Fig.1. The variation of R with k (2, 4, 6...) for H1=10, H2=20, H3=30, S1=20, S2=30, G=5, 2  , 

,  5 10     and medium permeability P1 (=0.2, 0.4, 0.6, 0.8). 
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Fig.2.  The variation of R with k (2, 4, 6...) for P1=0.5, H2=20, H3=30, S1=20, S2=30, G=5, 2  , 

,  5 10     and suspended particle parameter H1 (=20, 40, 60, 80). 
 

 
 
Fig.3.  The variation of R with k (2, 4, 6...) for P1=0.5, H1=10, H2=20, H3=30, S1=20, S2=30, 2  , 

,  5 10     and compressibility parameter G (=5, 10, 15, 20). 
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Fig.4.  The variation of R with k (2, 4, 6...) for P1 =0.2, H1=10, H2=20, H3=30, S1=20, S2=30, G=5, 
,  5 10     and variable gravity parameter   (= 2, 4, 6, 8). 

 

 
 
Fig.5.  The variation of R with k (2, 4, 6...) for H1=10, H2=20, H3=30, S2=30, P1=0.5, G=5, 2  , 

,  5 10     and solute gradient parameter S1 (=20, 40, 60, 80). 
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Fig.6.  The variation of with k (2, 4, 6…) for H1=10, H2=20, H3=30, S1=10, P1=0.5, G=5, 2  ,
,  5 10     and solute gradient parameter S2 (=20, 40, 60, 80). 

 
7. Conclusions 

 
 We have examined the effect of medium permeability, suspended particles, compressibility, stable solute 

gradients and variable gravity parameter in triple diffusive convection and obtained the following results: 
           Medium permeability, compressibility and suspended particles exhibit a destabilizing effect when 
gravity increases and hence the flow is no longer stable.  
          Solute gradients exhibit a stabilizing effect, and the flow is more stable. This stabilizing effect is in 
agreement with the earlier work of Kango and Rana [28]. The variable gravity parameter also has a 
destabilizing effect on the system. 
 
Nomenclature  
 
      pC   specific heat at constant pressure 

   ptC    specific heat of particles 

     sC 
  

specific heat of solid material 

      vC    specific heat at constant volume 

      ,1 2
a aC C    average concentrations 

 D   
d

dz
  

   G    compressibility parameter 
      1H   suspended particle parameter  

      K   Stokes drag coefficient 
     k    wave number of disturbances 
     N    perturbation in number density 
     0N    number density of suspended particles 

      1P   medium permeability 

     p    pressure of the fluid 

 

      q    effective thermal conductivity of pure fluid 
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     ,q q     analogous effective solute conductivities 

    

 , ,F u v w q

 

velocity of fluid  

      ( , , )r l s q  velocity of suspended particles 
      R     Rayleigh number 
       & 1 2S S    analogous solute Rayleigh number 

       s    vertical particle  velocity 
      aT   average temperature 

       w   vertical fluid velocity 
         coefficient of thermal expansion 

      ,1 2    analogous coefficient of solvent expansion 
          temperature gradient 
       &       analogous solute gradients 

       & 1 2     perturbation in solute concentrations 
      p    perturbation in pressure 
         perturbation in density 
           medium porosity  
          perturbation in temperature 
          thermal diffusitivity 
       &       analogous solute diffusivities 
        variable gravity parameter 
          viscosity of the fluid  
         viscoelasticity of the fluid 
          kinematic viscosity  
          kinematic viscoelasticity 
        density of the fluid 
     m    constant space average of density 

     s    density of solid material 

      2   
2 2 2

2 2 2x y z

  
 

  
 

 
 

References 
 
[1]   Bejan A. (1984): Convection Heat Transfer. – New York: Wiley Publications. 

[2] Veronis G. (1965): On finite amplitude instability in thermohaline convection. – J. Marine Res., vol.23, pp.1-7. 

[3] Nield D.A. (1967): The thermohaline Rayleigh-Jeffreys problem. – J. Fluid Mechanics, vol.29, pp.545. 

[4] Aggarwal A.K. and Dixit D. (2018): Effect of suspended particles on thermosolutal convection of Rivlin-Ericksen 
fluid in porous medium with variable gravity. – Int. J. Appl. Mech. Engg., vol.23, pp.813-820. 

[5] Aggarwal A.K. and Verma A. (2014): The effect of compressibility, rotation and magnetic field on thermal 
stability of Walters’ fluid permeated with suspended particles in porous medium. – Thermal Science., vol.18, 
pp.539-550. 

[6] Aggarwal A.K. and Makhija S. (2011): Combined effect of magnetic field and rotation on thermal stability of 
couple-stress fluid heated from below in presence of suspended particles. – Int. J. Appl. Mech. Engg., vol.16, 
pp.931-942. 

[6] Aggarwal A.K. and Verma A. (2010): Effect of rotation and magnetic field on thermal instability of a viscoelastic 
fluid permeated with suspended particles. – WSEAS Transactions on Mathematics., vol.9, pp.593-602. 

[8] Aggarwal A.K. and Verma A. (2012): Effect of suspended particles, magnetic field and rotation on the thermal 
stability of a ferromagnetic fluid. – Int. J. Appl. Mech. Engg., vol.17, pp.1109-1122. 



Triple diffusive convection of a non-Newtonian ... 11 

[9] Aggarwal A.K. (2010): Effect of rotation on thermosolutal convection in a Rivlin-Ericksen fluid permeated with 
suspended particles in porous medium. – Advances in Theoretical and Applied Mechanics, vol.3, pp.177-188. 

[10] Aggarwal A.K. and Makhija S. (2014): Hall effect on thermal stability of ferromagnetic fluid in porous medium in 
the presence of horizontal magnetic field. – Thermal Science., vol.18, pp.503-514. 

[11] Aggarwal A.K. and Makhija S. (2012): Hall effect on thermal stability of ferromagnetic fluid in the presence of 
suspended particles. – Int. J. Appl. Mech. Engg., vol.17, pp.349-365. 

[12] Aggarwal A.K. and Verma A. (2016): Effect of hall currents on thermal instability of dusty couple stress fluid. – 
Archives of Thermodynamics, vol.37, pp.3-18. 

[13] Aggarwal S. and Rana P. (2016): Periodic and a periodic convective stability analysis of double diffusive 
nanofluid convection in a rotating porous layer. – Applied Mathematics and Mechanics, vol.37, pp.215-226. 

[14] Aggarwal A.K. and Verma A. (2017): Effect of Hall currents on double diffusive convection of compressible 
Rivlin-Ericksen fluid permeated with suspended particles in porous medium. – In: Proc. 2nd International 
conference on Recent Advances in Mathematical Sciences and its Applications 2017, Noida, India, vol.1802, 
pp.020001-1-020001-9.    

[15] Aggarwal A.K. and Dixit D. (2017): Thermosolutal instability of Rivlin-Ericksen fluid under the effect of 
suspended particles and compressibility in porous medium. – In: Proc. 2nd International Conference on Recent 
Advances in Mathematical Sciences and its Applications 2017, Noida, India, vol.1897, pp.020010-1–020010-7.   

[16] Gupta U. and Aggarwal P. (2011): Thermal instability of compressible Walter’s fluid in the presence of hall 
currents and suspended particles. – Thermal Science, vol.15, pp.487-500. 

[17] Kumar P. and Mohan H. (2012): Thermal instability of a heterogeneous Oldroydian viscoelastic fluid heated from 
below in porous medium. – Journal of Theoretical and Applied Mechanics, vol.50, pp.943-951. 

[18] Sharma R.C. and Rani N. (1987): Effect of suspended particles on thermosolutal convection in porous medium. – 
Indian J. Pure Appl. Math., vol.18, pp.178-185. 

[19] Sharma R.C. and Aggarwal A.K. (2006): Effect of compressibility and suspended particles on thermal convection 
in a Walters’ B elastico-viscous fluid in hydromagnetics. – Int. J. Appl. Mech. Engg., vol.11, pp.391-399. 

[20]  Stern M.E. (1960): The ‘salt-fountain’ and thermohaline convection. – Tellus., vol.12, pp.172. 

[21] Sharma R.C and Chand S. (2000): Thermosolutal convection in Walters’ (model B) fluid in porous medium in 
hydromagnetic. – Studia Geotechnica et Mechanica, vol.13, pp.3-4. 

[22]  Landu L.D. (1944): Dokl. Akad. Nauk.  – SSSR, vol.44, pp.139. 

[23] Lees L. (1947): The stability of the laminar boundary layer in a compressible fluid. – N.A.C.A. Tech. Rept. No.876. 

[24] Dunn D.W and Lin C.C. (1955): On the stability of the laminar boundary layer in a compressible fluid. – J. Aero. 
Sci., vol.22, pp. 455-477. 

[25]  Straughan. B.D. and Walker W. (1997): Multi component diffusion and penetrative convection. –Fluid Dynamics 
Research, vol.19, pp.77–89. 

[26]  Pearlstein A.J., Harris R.M. and Terrones G. (1989): The onset of convective instability in triply diffusive fluid 
layer. – J. Fluid Mech., vol.202, pp.443-465. 

[27]   Rionero S. (2013): Triple diffusive convection in porous media. – Acta Mech., vol.224, pp.447-458. 

[28] Kango S.K. and Rana G.C. (2013): Triple-diffusive convection in Walters’ (model B') fluid with varying gravity 
field saturating fluid with varying gravity field saturating a porous medium. – Studia Geotechnica et Mechanica, 
vol.35, pp.45-56. 

 

 

Received: July 26, 2018 

Revised:   December 6, 2018 


