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The stretching sheets with variable thickness may occur in engineering applications more frequently than a 
flat sheet. Due to its various applications, in the present analysis we considered a three dimensional unsteady 
MHD nanofluid flow over a stretching sheet with a variable wall thickness in a porous medium. The effects of 
radiation, viscous dissipation and slip boundary conditions are considered. Buongiorno’s model is incorporated to 
study the combined effects of thermophoresis and Brownian motion. The dimensionless governing equations are 
solved by using MATLAB bvp4c package. The impact of various important flow parameters is presented and 
analysed through graphs and tables. It is interesting to note that all the three boundary layer thicknesses are 
diminished by slip parameters. Further, the unsteady parameter decreases the hydromagnetic boundary layer 
thickness. 
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and solutal slip. 

 
1. Introduction 
 
 The study of fluid flow in a stretched boundary layer accompanied by heat transfer has received 
great interest of scientists due to the applications which are widely spread in many areas. The heating and 
cooling process in heat transfer analysis plays an important role in various industries such as manufacturing, 
electronics and transportation, etc. During this process metals are heated and cooled in a specific order so 
that to keep the metal away from molten state. The steady two dimensional boundary layer flow of a 
Newtonian fluid over a stretching surface has been studied by Crane [1]. The boundary layer flow and heat 
transfer of nanofluids over a stretching sheet is a vital concept in the present research era. These concepts 
provide many applications over a broad spectrum of science and engineering disciplines. The heat transfer 
feature is an important aspect in the study of boundary layer flow of a nanofluid over a stretching sheet. The 
boundary layer flow of a nanofluid over a stretching sheet was studied by Khan and Pop [2]. They found that 
the Brownian motion and thermophoresis parameters cause a reduction in the heat transfer rate. Nadeem and 
Lee [3] analysed the impact of a nanofluid over an exponential stretching sheet. Mansur and Ishak [4] 
discussed the unsteady nanofluid flow over a stretching/shrinking sheet with convective boundary condition. 
The illustrative studies on boundary layer flow of a nanofluid over a stretching sheet can be found in [5-8]. 
 The no-slip boundary condition is often utilized in the flow problems of viscous fluids. However, 
there are numerous cases where such condition is inadequate and slip may occur on the boundary, when the 
fluid is particulate such as emulsions, suspensions, foams and polymer solutions. The behaviour of a fluid 
flow subject to the slip flow governance shows great discrepancy from the traditional flow. The discrepancy 
between the fluid velocity at the wall and the velocity of the wall itself is directly proportional to the shear 
stress. The proportionality constant is called the slip length (Maxwell [9], Hak [10]). Beavers and Joseph 
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[11] investigated fluid flow over a permeable wall with a slip boundary condition. The boundary layer flow 
of a nanofluid over non-linear permeable stretching sheet at prescribed surface temperature was discussed by 
Das [12]. Goyal and Bhargava [13] explained the visco-elastic nanofluid flow past a stretching sheet with 
partial slip condition. They found that the visco-elastic parameter contraverses the direction of fluid flow 
when it is close to the stretching sheet and far away from the sheet. Awais et al. [14] investigated the MHD 
stagnation point flow of a nanofluid over a stretching sheet with slip boundary conditions. Raza et al. [15] 
examined the hydromagnetic boundary layer flow of a nanofluid in a rotating channel with the slip 
conditions and suction/injection. The study of nanofluid with slip conditions over a stretching sheet was 
carried out by the authors [16-19]. 
 The stretching sheet with variable thickness has more engineering applications than a flat sheet. So, 
many authors have concentrated on variable thickness sheets. Among them, Fang et al. [20] considered the 
boundary layer flow over a stretching sheet with variable wall thickness and observed that the boundary 
layer becomes thinner for m 1  and becomes thicker for m 1 . Khader and Ahmed [21] presented the 
numerical solutions for the steady boundary layer slip flow over a stretching sheet with variable wall 
thickness. Anjali Devi and Prakash [22, 23] studied the effects of thermal conductivity, temperature 
dependent viscosity and radiation on MHD slendering sheet. Abdel-wahed et al. [24] presented the nanofluid 
flow over a moving surface with non-linear velocity and variable wall thickness under the influence of a 
magnetic field and heat source. Kumar and Varma [25] investigated the magnetohydrodynamic nanofluid 
flow through a porous medium over a slendering sheet under the influence of viscous dissipation, thermal 
radiation and chemical reaction and found that the radiation parameter, thermophoresis parameter enhance 
the nanofluid temperature. Later, Kumar et al. [26] analysed the hydromagnetic 3D slip flow over a 
slendering sheet by using single walled and multi-walled nanotubes. Hayat et al. [27] examined the 
hydromagnetic flow of a tangent hyperbolic nanofluid over a stretching sheet with variable wall thickness.  
Acharya et al. [28] discussed the MHD slendering stretched flow by using TiO2 and Ag nanoparticles with 
water as a base fluid. Very recently, Prasad et al. [29] studied hydromagnetic flow of a nanofluid over a 
slender elastic sheet with variable wall thickness, thermal conductivity and species molecular diffusion. 
 The main goal of this article is to investigate a three dimensional unsteady flow of a hydromagnetic 
nanofluid over a stretching sheet with variable wall thickness in a porous medium. Thermal radiation and 
viscous dissipation effects are taken into account. The resulting set of ordinary differential equations is 
solved by using MATLAB bvp4c package. The influence of various important flow parameters on the 
velocity, temperature, nanofluid concentration as well as the friction factor coefficient and the rate of heat 
and mass transfer coefficients are analysed through graphs and tables. 
 
2. Formulation of the problem 
 
 A three-dimensional hydromagnetic nanofluid flow over a stretching sheet with variable wall 
thickness in a porous medium has been considered in the present work. The velocity, thermal and solutal slip 
conditions, viscous dissipation and thermal radiation effects are taken into account. Buongiorno’s model is 
incorporated. The x  axis is chosen in the direction of flow, andy z  axes are perpendicular to it (see 

Fig.1). Let ( , , )wu x y t ( )

( )

n
0U x y c

1 t
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along the x and y  directions, respectively. We assume that the sheet is not flat but rather is defined as
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thin to avoid a measurable pressure gradient along the sheet. A variable magnetic field
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 is applied normal to the flow direction. The non-uniform permeability of the 
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porous medium can be taken in the form
( )

0 1 n 1

1 t
k k

x y c 

  
     

. The thickness of the sheet may decrease or 

increase with distance from the slot, which is dependent on n . For n 1 , the sheet is flat. 

 
 

Fig.1 The physical model of flow configuration. 
 

 Under the aforesaid assumptions the governing boundary layer equations for an unsteady three 
dimensional flow is 
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 The appropriate boundary conditions are 
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 The Roseland approximation is taken as  
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where *k  is the mean absorption coefficient, *  is the Stefan-Boltzman constant and the linear temperature 
4T  is expanded by using the Taylor series in terms of T  as 
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 In view of Eqs (2.11) and (2.12), Eq.(2.4) can be written as 
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3. Solution of the problem 
 
 The above mentioned dimensional equations are transformed to dimensionless form by using the 
following suitable similarity transformations 
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 In view of the above similarity transformations the set of Eqs (2.2), (2.3), (2.5) and (2.13) and the 
boundary conditions (2.6) are transformed as 
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 The skin friction coefficient, heat and mass transfer rates are defined as  
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4. Results and discussion 
 
 The set of ordinary differential Eqs (3.3)-(3.5) with the corresponding boundary conditions (3.6) is 
solved by using MATLAB bvp4c package. The obtained numerical results are presented through graphs (2-
19) and Tabs 4-5. Also, we compare the present results with the existing results of Fang et al. [20] and 
Khader and Megahed [21] in Tabs 1-3 with some limiting cases. We fixed the value of non-dimensional 
parameters as Pr . ,0 71  ,M 2 ,K 2  . ,A 0 5  . ,R 0 5  . ,Nb 0 2  . ,Nt 0 3  Ec= . ,0 1  . ,0 5   Sc ,2  

. ,n 0 3  . ,b 0 5  . ,0 5   . .1 2 3L L L 0 3    The numerical values of the skin friction coefficient and the 
local Nusselt number for various flow quantities are presented in Tabs 4 and 5. 
 
Table 1. Comparison of the numerical values of  f 0  for .0 5   with 1L M  A K 0  . 

 

n  10 9 7 5 3 2 1 0.5 0 -0.5 
Fang et al. [20] -1.0603 -1.0589 -1.0550 -1.0486 -1.0359 -1.0234 -1.0000 -0.9799 -0.9576 -1.1667 

Khader and 
Megahed [21] 

1.0603 1.0588 1.0551 1.0486 1.0358 1.0234 1.0000 0.9798 0.9577 1.1666 

Present result 1.060343 1.058934 1.055063 1.048629 1.035884 1.023893 1.000484 0.981340 0.95803 1.167724

 
Table 2. Comparison of the numerical values of  f 0  for .0 25   with 1L M  A K 0  . 
 

n 10 9 7 5 3 1 0.5 0 -1/3 -0.5 
Fang et al. [20] -1.1433 -1.1404 -1.1323 -1.1189 -1.0905 -1.0000 -0.9338 -0.7843 -0.5000 -0.0833 

Khader and 
Megahed [21] 

1.1433 1.1404 1.1322 1.1186 1.0904 1.0000 0.9337 0.7843 0.5000 0.0832 

Present Result 1.143334 1.140406 1.132299 1.118603 1.090508 1.000063 0.934325 0.78443 0.500417 0.086003

 
Table 3. Comparison of the numerical values of  f 0  with M  A K 0  . 

 

1L    n  Khader and Megahed [21] Present Result 

0.0 0.2 0.5 0.924828 0.925333 
0.2 0.2 0.5 0.728201 0.728725 
0.5 0.2 0.5 0.561082 0.561615 
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Table 4. Numerical values of the skin friction coefficient when Pr . , ,0 71 M 2   K=2, A=0.5,

. , . , . , Ec . , . , ,Sc . , . ,1 2 3R 0 5 Nb 0 2 Nt 0 3 0 1 0 5 2 L L L 0 3 n 0 3           . .0 5   
 

M  A  
xCf  

1   1.359824 
2   1.430758 
3   1.491775 
 0.1  1.388477 
 0.3  1.410127 
 0.5  1.430758 
  0.5 1.430758 
  1.0 1.455985 
  1.5 1.480581 

 
Table 5. Numerical values of the Nusselt number when Pr . , ,0 71 M 2   , . ,K 2 A 0 5   

. , . ,R 0 5 Nb 0 2   . , Ec . ,Nt 0 3 0 1   . , Sc ,0 5 2    . ,1 2 3L L L 0 3    . , . .n 0 3 0 5    
 

K  A  R  Nb Nt Ec  Sc Nux  

1        0.250578
2        0.237039
3        0.225986
 0.1       0.282042
 0.3       0.259321
 0.5       0.237039
  1      0.223307
  2      0.210681
  3      0.204781
   0.1     0.249088
   0.3     0.225419
   0.5     0.203444
    0.1    0.246615
    0.3    0.237039
    0.5    0.228055
     0.1   0.237039
     0.5   0.177254
     0.7   0.157452
      0.5  0.237039
      1.0  0.268861
      1.5  0.300584
       0.2 0.209707
       0.4 0.215470
       0.6 0.220107

 
 Figure 2 illustrates the influence of the magnetic field parameter  M  on the velocity profile and shows 

that the fluid velocity decreases with increasing of M. This is due to the existence of magnetic field sets a resistive 
force called Lorentz force, which behaves as a retarding force on the fluid velocity and consequently reduces the 
fluid flow. The impact of the porosity parameter ( )K on velocity profiles ( )f   and ( )g   is shown in Fig.3. It is 
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observed that for increasing values of K the fluid velocity decreases. The porous medium imposes high limitations 
on the fluid flow and slows down the fluid motion. Therefore, on increasing the permeability parameter the 
resistance of the fluid motion increases and hence velocity decreases. Figures 4-6 display the influence of the 
power law index parameter (n) on the axial velocity  ( ) ,f   transverse velocity  ( ) ,g   temperature and 

concentration fields. It is seen that the velocity, temperature and concentration profiles are increased with 
increasing the value of n and also a significant change is observed in the fluid characteristics for a shear thickening 
fluid ( )n 1  than that of a shear thinning fluid ( )n 1 . Generally, a thin surface generates more heat than a thick 
surface. Therefore, enhancing the velocity power law index parameter tends to reduce the thickness of the sheet. 
Therefore the temperature of the fluid increases.  
 

   
 

Fig.2. Effect of M on ( )f    and ( )g   .               Fig.3. Effect of K on ( )f    and ( )g   . 
 

   
Fig.4. Effect of n  on ( )f    and ( )g   .                           Fig.5. Effect of n  on ( )  . 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6



f'(
)

,g
'( 

)

 

 

0.2 0.4 0.6 0.8 1 1.2
0.05

0.1

0.15

 

 

--------------  f '(),
..............  g'()

M=4,3,2,1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6



 

 

f'(
)

,g
'( 

)
0 0.1 0.2 0.3

0.41

0.42

0.43

0.44

 

 

-----------------  f '()
.................. g'()

K=1,2,3,4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



f'(
)

,g
'( 

)

 

0 0.5 1

0.15

0.2

0.25

 

 

--------------- f '()
............... g'()

n=0.5, 1.0, 1.5, 2.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



(
)

 

 

n=0.5, 1.0, 1.5, 2.0



Unsteady three-dimensional MHD nanofluid flow over ... 717 

 
 

Fig.6. Effect of n  on ( )  . 
 
 Figure 7 presents the effect of the thermal radiation parameter on the temperature field. From the 
figure it is clear that the fluid temperature increased with increasing values of  R . The velocity 

profiles for various values of the unsteady parameter ( )A  are shown in Fig.8. It is observed that the 

velocity profiles are decreased with an increase in  A . An opposite trend is observed on temperature 

profiles (see Fig.9). Figures 10-12 show the velocity, temperature and concentration profiles with the 
impact of the variable wall thickness parameter ( ) . It is evident that for large values of ,  there is a 
smaller deformation in the stretching of wall and hence the fluid velocity decreases. As said above, thick 
surfaces slowly emit the heat into the flow. Therefore, increasing the value of   is to reduce the heat 
dissipation towards the flow and reduce the temperature profiles. A similar phenomenon is observed on 
the concentration profile.    
 

  
                Fig.7. Effect of R on ( )  .                               Fig.8. Effect of A on ( )f    and ( )g   . 
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Fig.9. Effect of A  on ( )  .                                        Fig.10. Effect of   on ( ), ( )f g   . 

 

   
Fig.11. Effect of   on ( )  .                                     Fig.12. Effect of   on ( )  . 

 
 Figures 13 and 14 illustrate the impact of thermophoresis ( )Nt  on temperature and concentration 
fields. It is noted that on increasing the values of Nt the temperature and concentration profiles of a fluid 
increase significantly. This is due to suspension of micro sized particles into fluid acquire an increment in the 
temperature difference between the fluid and the sheet. In accordance with this, the thermal boundary layer 
thickness increases and hence temperature increases. A similar trend is observed on concentration profiles. 
Because for higher values of Nt, the thermophoretic difference becomes stronger and absorbs the particles 
from the hotter region to the cooler region. In fact , the Brownian motion tries to push the particles in the 
direction opposite to the concentration gradient and makes the nanofluid more homogeneous. Hence, for 
higher values of  Nb  the concentration becomes low (see Fig.15).  
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Fig.13. Effect of Nt on ( )  .                                    Fig.14. Effect of Nt on ( )  . 

 
 

Fig.15. Effect of Nb on ( )  . 
 
 Figure 16 shows the influence of the velocity slip parameter ( )1L  on ( )f    and ( )g  . It is 
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with the thermal slip parameter. This is because an increasing slip parameter causes to reduce the heat 
transfer phenomenon. Therefore, the temperature of the fluid decreases (see Fig.17). Figure 18 
presents the concentration profiles for the solutal slip parameter ( )3L . It is clear that the increasing 

values of 3L  decrease the concentration profiles of the fluid. The effect of the Eckert number (Ec) on 
the temperature profile is shown in Fig.19. It is seen that the fluid temperature increases in the 
presence and absence of the radiation parameter  R with an increase value of Eckert number (Ec). 
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Physically, the Eckert number is the relation between the flow kinetic energy and heat enthalpy 
difference. Therefore, Ec improves the kinetic energy and consequently increases the temperature of a 
fluid. Further, we noticed that there is more significant in temperature profiles when R 0 , than R 0 .  
 

   
 

Fig.16. Effect of 1L  on ( )f    and ( )g   .                                 Fig.17. Effect of 2L  on ( )  . 
 

   
Fig.18. Effect of 3L  on ( )  .                                     Fig.19. Effect of Ec on ( )  . 
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parameters increase the fluid flow. From Tab.5, it is seen that the heat transfer rate is decreased for higher 
values of , , , , Ec,A R Nt Nb  while a quite opposite trend is observed for and Sc.  
 
5. Final remarks 
 
 In the present work we investigate the unsteady three dimensional nanofluid flow over an 
exponentially stretching sheet in the presence of slip conditions. The important remarks which can be found 
in the present study are: 
1. High values of the magnetic field parameter increase the skin friction coefficient. 
2. An increase in the Eckert number leads to more heat transfer in the fluid. 
3. The Nusselt number and Sherwood numbers decrease for growing values of the thermophoretic 

parameter. 
4. More heat is transferred with growing values of the unsteady parameter.  
5. There is a significant change in the velocity, temperature and concentration profiles for a shear 

thickening fluid than for a shear thinning fluid with the impact of the power law index parameter. 
 
Nomenclature 

 
  A  dimensionless unsteady parameter 
 0B

 
 magnetic field strength 

 b, d  constants 
 C  concentration of fluid (kg/m3) 
  pC

 
 specific heat capacity at constant pressure (J/Kelvin) 

  wC   concentration of fluid at the wall 

 C  
 concentration of the fluid in the free stream 

 xCf   skin friction coefficient 

  c  physical parameter related to stretching sheet velocity 
 BD   Brownian diffusion coefficient 

  TD   thermophoretic diffusion coefficient (m2/s) 

 E
 
 a small constant 

 Ecx   Eckert number in x- direction 

 Ec y   Eckert number in y- direction 

 f , g
 
 dimensional less velocities 

 K   porosity parameter 
  k  thermal conductivity of the fluid (Wm–1K-1) 
 0k   non-uniform permeability 

 1k   coefficient of permeability 

 *k   mean absorption coefficient 
  1L

 
 dimensionless velocity slip parameter 

  2L   dimensionless temperature jump parameter 

  3L   dimensionless concentration jump parameter 

  *
1L   dimensional velocity slip parameter (m) 

  *
2L   dimensional temperature jump parameter (m) 

  *
3L   dimensional concentration jump parameter (m) 

  M  dimensionless magnetic field parameter 

 
m

 
 wall thickness parameter 
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 Nb   Brownian motion parameter 
  Nt   thermophoresis parameter (m2/s) 
 Nux   heat transfer rate 

 n
 
 velocity exponent 

 P  pressure (Nm–2) 
 Pr  Prandtl number 
 R  thermal radiation parameter 
 Rex   local Reynolds number 

 Sc  Schmidt number 
 Shx   mass transfer rate 

 T  temperature of fluid (K) 
 wT

 
 wall temperature (K) 

  T   temperature of the fluid in the free stream (K) 

 0U   reference velocity (ms–1) 

 U  ambient stream velocity 

 , ,u v w
 
 velocity components in , andx y z  directions (ms–1) 

 ,w wu v   stretching surface velocity in x and y direction (ms–1) 

 rq   radiative heat flux (W/m2) 

 , ,x y z   spatial Cartesian coordinates (m) 

    wall thickness parameter 
 f   thermal diffusivity of fluid 

    thermal relaxation parameter 

    similarity variables 

    dimensionless temperature 
    unsteady parameter 
    dynamic viscosity of a nanofluid (m2s–1). 

    kinematic viscosity (m2s–1) 
    fluid density (kg m–3) 

     electrical conductivity of fluid (S/m) 

  *   Stefan Boltzman constant (Wm–2K–4) 
    ratio of specific heats 
     rescaled nanoparticle volume fraction 
 
Subscripts 
 
 f   base fluid 

 w   condition at the wall 
    ambient condition 
 
Superscripts 
 

 '  differentiation with respect to   

 *   dimensional properties 
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