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The governing equations for a homogeneous and isotropic thermoelastic medium are formulated in the 
context of coupled thermoelasticity, Lord and Shulman theory of generalized thermoelasticity with one relaxation 
time, Green and Lindsay theory of generalized thermoelasticity with two relaxation times, Green and Nagdhi 
theory of thermoelasticity without energy dissipation and Chandrasekharaiah and Tzou theory of thermoelasticity. 
These governing equations are solved to obtain general surface wave solutions. The particular solutions in a half-
space are obtained with the help of appropriate radiation conditions. The two types of boundaries at athe surface 
of a half-space are considered namely, the stress free thermally insulated boundary and stress free isothermal 
boundary. The particular solutions obtained in a half-space satisfy the relevant boundary conditions at the free 
surface of the half-space and a frequency equation for the Rayleigh wave speed is obtained for both thermally 
insulated and isothermal cases. The non-dimensional Rayleigh wave speed is computed for aluminium metal to 
observe the effects of frequency, thermal relaxation time and different theories of thermoelasticity. 
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1. Introduction 
 
 The classical dynamical coupled theory of thermoelasticity with hyperbolic-parabolic field equations 
was developed by Biot [1]. This theory of thermoelasticity was extended by Lord and Shulman [2] and 
Green and Lindsay [3] and is termed as generalized thermoelasticity. Green and Naghdi [4] developed a 
theory of thermoelasticity without energy dissipation. These theories [2-4] use hyperbolic field equations for 
describing heat as a wave. The main difference between Biot’s coupled thermoelasticity and generalized 
thermoelastic theories is that the generalized thermoelastic theories [2-4] admit a finite speed of heat 
propagation. Hetnarski and Ignaczak [5] and Ignaczak and Ostoja-Starzewski [6] reviewed these 
representative theories of generalized thermoelasticity. 
 Wave propagation phenomena have numerous applications in the fields of geophysical exploration, 
mineral and oil exploration and seismology. Plane wave propagation in thermoelasticity has many 
applications in various engineering fields. Problems on wave propagation in coupled or generalized 
thermoelasticity have been studied by various researchers [7-16]. The surface waves are very helpful for 
studying various aspects of an earthquake. In 1885, Lord Rayleigh [17] studied the propagation of surface 
waves along free surface of an isotropic elastic solid. Rayleigh waves are widely used for material 
characterization and to discover the mechanical and structural properties of the objects, because Rayleigh 
waves can travel along the surface of relatively thicker solid materials penetrating to a depth of one wave 
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length and are very sensitive to surface defects. The studies on Rayleigh type surface wave in 
thermoelasticity are applicable in different engineering fields and future technologies. Various studies on 
Rayleigh surface wave in theory of thermoelasticity have been reported till date. Few of them are cited 
herein. For example, Lockett [18] studied the thermal effects on velocity of Rayleigh waves. Flavin [19] 
considered the propagation of thermo-elastic Rayleigh waves in a half space subjected to large uniform 
extensions at constant temperature in three mutually perpendicular directions. Chadwick and Windle [20] 
studied the effects of heat conduction upon the propagation of Rayleigh surface waves in a semi-infinite 
elastic solid in two special cases (i) when the surface of the solid is maintained at constant temperature and 
(ii) when the surface is thermally insulated. Tomita and Shindo [21] considered the propagation of Rayleigh 
waves in a perfectly conducting elastic half-space in the presence of magnetic fields. Dawn and Chakraborty 
[22] studied the Rayleigh wave in generalized thermoelastic media in the context of Green and Lindsay 
theory. Abd-Alla and Ahmed [23] investigated the influence both of gravity field and initial stress on the 
propagation of Rayleigh waves in an orthotropic thermoelastic medium. Ahmed [24] studied the effect of 
initial stress on the propagation of Rayleigh waves in a granular medium under incremental thermal stresses. 
Sharma et al. [25] presented an analysis of Rayleigh surface waves in a homogeneous, transversely isotropic, 
generalized piezothermoelastic half-space rotating with uniform angular velocity about normal to its 
boundary and subjected to stress free, electrically shorted/charge free and thermally insulated/isothermal 
boundary conditions. Abouelregal [26] studied the Rayleigh waves in a thermoelastic homogeneous isotropic 
solid half space in the context of dual-phase-lag model, where the medium is subjected to stress free, 
thermally insulated, boundary conditions. Mahmoud [27] investigated the influences of rotation, relaxation 
times, magnetic field, initial stress and gravity field on Rayleigh waves velocity in an elastic half-space of a 
granular medium. Chirita [28] studied the Rayleigh surface waves on an anisotropic homogeneous 
thermoelastic half-space. Singh [29] considered the propagation of Rayleigh waves in a thermoelastic solid 
half-space with microtemperatures. Bucur et al. [30] analyzed the behavior of plane harmonic waves and 
Rayleigh waves in a linear thermoelastic material with voids by considering the damped effects of the 
thermal field. Passarella et al. [31] considered the propagation of Rayleigh waves in isotropic strongly 
elliptic thermoelastic materials with microtemperatures in the context of Green and Naghdi theory. Biswas, 
et al. [32] studied the propagation of Rayleigh surface waves in a homogeneous, orthotropic thermoelastic 
half-space in the context of three-phase-lag model of thermoelasticity. Recently, Vashishth and Sukhija [33] 
investigated the propagation of coupled Rayleigh-type waves in a 2mm piezoelectric layer over a porous 
piezo-thermoelastic half-space. 
 The aim of this paper is to study the propagation of Rayleigh type surface waves along the surface of 
an isotropic generalized thermoelastic solid half-space in the context of five different theories of 
thermoelasticity. 
 
2. Basic equations 
 
 Following references [1-6], the linear governing equations of an isotropic and homogeneous 
thermoelastic solid in five different theories are: 
the stress-strain-temperature relation  
 

  ij 0 ij ij= e 1 T 2 e
t

              
, (2.1) 

 

the stress-displacement relation  
 

  ji
ij

j i

uu1
e =

2 x x

 
    

, (2.2) 

 

the equation of motion  
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the heat conduction equation  
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T e
n t T = c n T n n

t t t t t

                                
. (2.4) 

 
 Here,  = 3 2      and 0  and 0  are the relaxation times which ensure a finite speed of heat 

propagation. Equations (2.3) and (2.4) reduce for the following five different theories as follows: 
(a) Coupled thermoelastcity 

 If we put *
1 1 0 0n = n = 1, t = = = 0  , the field Eqs (2.3) and (2.4) are written as  

 
   ij ij ij= e T 2 e       , (2.5)  

 

  2
e 0

T e
T = c T

t t

 
   

 
. (2.6) 

 
(b) Lord-Shulman (L-S) theory 

 If we put *
1 0 1 0 0n = n = n = 1, t = = 0, > 0  , the field Eqs (2.3) and (2.4) are written as  

 
   ij ij ij= e T 2 e       , (2.7) 
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0 e 0

T e
T = 1 c T

t t t

               
. (2.8) 

 
(c) Green-Lindsay (G-L) theory 

 If we take *
1 0 1 0 0n = n = 1, n = 0, t = 0, > 0,    the field Eqs (2.3) and (2.4) are written as  

 

  ij 0 ij ij= e 1 T 2 e
t

              
, (2.9) 
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T e
T = c 1 T

t t t

            
. (2.10) 

 
(d) Green-Naghdi type II (G-N-II) theory 

 If we take *
1 0 1 0 0n > 0, n = 0, n = 1, t = = 0, = 1  , the field Eqs (2.3) and (2.4) are written as  

 
   ij ij ij= e T 2 e       , (2.11) 
 

  
2

* 2 *
e 0 2

T e
n T = c n T

t t t

            
. (2.12) 

 
(e) Chandrasekharaiah and Tzou (C-T) theory [34] 
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         If we take *
1 0 0 0 1n = n = n = 1, = 0, > 0, t > 0  , the field Eqs (2.3) and (2.4) have the following form 

 
   ij ij ij= e T 2 e       , (2.13) 

 

  2
1 0 e 0

T e
1 t T = 1 c T

t t t t

                         
. (2.14) 

 
3. Method and solution 
 
 For Rayleigh type waves in the half-space z 0 , the surface z =0  is assumed to be stress free. The 
present study is restricted to the plain strain parallel to the x z  plane, with the displacement vector 

 1 3u = u ,0,u . 

 With the help of Eqs (2.1) and (2.2), Eqs (2.3) and (2.4) are written in the x z  plane as  
 

     
22 2 2

31 1 1
02 2 2

uu u u T
= 2 1

x z t xt x z

                        
, (3.1) 
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, (3.2) 
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. (3.3) 

 
 Using Helmohltz's representation, the displacement components 1u  and 3u  are written in terms of 

scalar potentials   and   as  
  

  , 1 3u =  u =
x z z x

   
 

   
. (3.4) 

 
 Using Eq.(3.4) in Eqs (3.1) to (3.3), we obtain  
 

   
2 2 2
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tt x z
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, (3.5) 
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2 2 2 2

* *
1 e 0 0 1 0 02 2 2 2

T T T
n t = c n T n n

t t t t tx z x z

                                                      
. (3.7) 

 
Here, Eqs (3.5) and (3.7) are coupled in   and T  and Eq.(3.6) is uncoupled. 
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 For thermoelastic waves in the half-space propagating in the x -direction, the functions T ,  and   
are taken in the following form  
 

            ˆ ˆ ˆ, , , , expT = T z z z x t         (3.8) 

 

where 2 2 2= c  ,   is the wave number and c is the phase velocity. 

 Substituting Eq.(3.8) in Eqs (3.5) to (3.7) and eliminating ˆ ˆT ,  , we obtain the following auxiliary 
equation  
 

  4 2D AD B= 0   (3.9) 
 
where   ,/= dzdD   
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 With the help of Eq.(3.9) and keeping in mind that ̂  and T̂ 0  as z   for surface waves, the 

solutions of , T  are written as  
 

         exp exp exp1 2z = A z B z x t          , (3.10) 
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                     
            

    

 (3.11) 

where  

  ,2 2 2 2
1 22 2

1 1
= A A 4B   = A A 4B .

2 2
               

 

 
 Using Eq.(3.8) in Eq.(3.6) and keeping in mind that ˆ 0  as z   for surface waves, the solution 

of   is written as  
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       exp exp3z = C z x t       (3.12) 

where  

  ,
2

2 2
3 22

2

c
= 1 c = .

c


 


 

 
4. Frequency equation 
 

4.1. Isothermal case 
 
 The mechanical and thermal boundary conditions at the stress free isothermal surface z =0  are  
 
  , ,zz zx= 0 = 0, T = 0   (4.1) 
where  

   
2 2 2 2

zz 02 2
= 2 1 T

x z x z tz x

                                             
 , 
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zx 2 2
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x zx z
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    

    
. 

 
 Making use of solutions (3.10) to (3.12) and boundary conditions (4.1) and eliminating A, B and C, 
we obtain the following frequency equation  
 

     
222

3 1 2 3 1 22
1

c
1 4 1 = 0

c

          
  

. (4.2) 

 
4.2. Thermally insulated case 
 
 The mechanical and thermal boundary conditions at the thermally insulated surface z =0  are  
 

  , ,zz zx
T

= 0 = 0 = 0.
z


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
 (4.3) 

 

 Making use of solutions (3.10) to (3.12) and boundary conditions (4.3) and eliminating A, B and C, 
we obtain the following frequency equation  
 

  

    
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2 2 2 2
1 3 1 2 1 2 3 1 22 2

1 1

c c
2 1 1 1 1

c c

c c
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                 
  

 (4.4) 

 

5. Special cases 
 

5.1. Small thermal coupling  1   

 
 For  1   the approximated expressions for 1  and 2  are obtained as  
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 , (5.1) 
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    

 . (5.2) 

 
5.2. Small reduced frequency  1   

 
 For small reduced frequency 1  , the approximated expressions for 1  and 2  are obtained as  
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  (5.3) 
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5.3. Isotropic elastic case 
 
 If we neglect thermal parameters, then the frequency Eqs (4.2) and (4.4) reduce to  
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which is the velocity equation of thr Rayleigh wave along the surface of an isotropic elastic half-space. 
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6. Numerical results and discussion 
 
 The following physical constants of aluminium metal are chosen to compute the non-dimensional 
speed 2c / c  of the Rayleigh wave in a thermoelastic solid half-space in the context of five different theories 
of thermoelastcity 
 

  =2.7 gm.cm 3 ,       11= 5.8 10   dyne.cm 2 ,      11= 2.6 10  dyne.cm 2 ,  
 

  .K 0 5 cal.cm 1 .s 1 . o C 1 ,      .ec 0 9 cal.gm 1 . o C 1 , ,0 1= 0.0006s   t = 0.0006s.  
 
 The frequency Eqs (4.2) and (4.4) are solved numerically for the real part of non-dimensional speed 

2c / c  of Rayleigh waves by using a program of an iteration method. The variations of non-dimensional 

speed  2c / c  of Rayleigh wave against the frequency    are shown by a solid line (coupled 

thermoelasticity), solid line with rhombus (L-S theory), solid line with triangle (G-L theory), solid line with 
stars (G-N-II theory) and solid line with circles (C-T theory) in Figs 1 and 2 for isothermal and thermally 
insulated cases, respectively, when 0 = 0.0005s . 
 For coupled thermoelasticity in Fig.1 (isothermal case), the non-dimensional wave speed is 
0.92934263  at = 1 Hz . The wave speed increases first sharply with the increase in value of frequency and 

then slowly to a value 0.9416163  at = 20 Hz . The variations in cases of the Lord and Shulman (L-S) 
theory, Green and Lindsay (G-L) theory and Chandrasekharaiah and Tzou (C-T) theory are similar to that of 
coupled thermoelasticity. The values of non-dimensional wave speed of the Rayleigh wave in these theories 
are different in 3rd and 4th decimal places at each value of frequency. In the case of the Green and Naghdi 
(G-N-II) theory, the non-dimensional wave speed is 0.926241  at each value of frequency. 
 

 
 

Fig.1.  Variations of non-dimensional speed (c/c2) of Rayleigh wave against the frequency () in five 
different theories of thermoelasticity for isothermal case. 
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 For coupled thermoelasticity in Fig.2 (thermally insulated case), the non-dimensional wave speed is 
0.85341489  at = 1Hz . The wave speed increases with the increase in value of frequency and attains a 

value 1.01074839  at = 20 Hz . The variations in cases of the Lord and Shulman (L-S) theory, Green and 
Lindsay (G-L) theory and Chandrasekharaiah and Tzou (C-T) theory are also similar to that of coupled 
thermoelasticity. However, the values of non-dimensional wave speed of the Rayleigh wave in these theories 
are same up to 2nd or 3rd decimal places at each value of frequency. In the case of Green and Naghdi (G-N-
II) theory, the non-dimensional wave speed is 0.8510 at each value of frequency. 
 

 
 

Fig.2.  Variations of non-dimensional speed (c/c2) of Rayleigh wave against the frequency () in five 
different theories of thermoelasticity for thermally insulated case. 

 
 In Green-Naghdi theory of type-II, the variations of non-dimensional speed  2c / c  of the Rayleigh 

wave against the parameter *n  are shown in Fig.3 by solid and dashed lines for isothermal and thermally 
insulated cases, respectively, when = 10Hz  and 0 = 0.0005 . For the isothermal case, the non-dimensional 

value of wave speed is 0.92624146  at *n = 0.001 . It decreases slowly to a value of 0.91144258  at *n = 1 . 

For the thermally insulated case, the non-dimensional value of wave speed is 0.85121471  at *n = 0.001 . It 

increases sharply to a maximum value 0.99999964  at *n = 0.868  and then decreases to a value of 

0.98975891  at *n = 1 . 
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Fig.3.  Variations of non-dimensional speed (c/c2) of Rayleigh wave against a parameter (n*) in Green-
Naghdi theory of type-II for both thermally insulated and isothermal cases. 

 

 In C-T theory of thermoelasticity, the variations of non-dimensional speed  2c / c  of the Rayleigh wave 

against the thermal relaxation time  0  are shown in Fig.4 by solid and dashed lines for isothermal and thermally 

insulated cases, respectively, when = 10Hz . For the isothermal case, the value of non-dimensional wave speed 

is 0.94118643  at 0 = 0.001s . It increases slowly and attains a value of 0.94447386  at 0 = 0.1s . For the 

thermally insulated case, the non-dimensional value of wave speed is 0.96714586  at 0 = 0.001 . It increases to a 

maximum value 1.0030185  at 0 = 0.071s  and then decreases to a value of 1.00000036  at 0 = 0.1s . 
 

 
 

Fig.4.  Variations of non-dimensional speed (c/c2) of Rayleigh wave against the thermal relaxation time 0  
in C-T theory for both thermally insulated and isothermal cases. 
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6. Conclusions 
 
 A problem on propagation of Rayleigh surface wave is solved in the context of coupled 
thermoelasticity, Lord and Shulman theory of generalized thermoelasticity with one relaxation time, Green 
and Lindsay theory of generalized thermoelasticity with two relaxation times, Green and Nagdhi theory of 
thermoelasticity without energy dissipation and Chandrasekharaiah and Tzou theory of thermoelasticity. 
Using appropriate radiation conditions, the surface wave solutions in a thermoelasic solid half-space are 
obtained. A frequency equation of the Rayleigh surface wave is obtained for both thermally insulated and 
isothermal boundaries. Using the frequency Eqs (4.2) and (4.4), the non-dimensional wave speed of the 
Rayleigh surface wave is computed for mechanical and thermal constants of aluminium metal. The non-

dimensional speed of the Rayleigh wave is plotted against frequency, parameter *n  and thermal relaxation 
time 0 . The numerical results are discussed in detail. The following important observations are made from 
the numerical results: 
(i)  For the isothermal case in Fig.1 and for the thermally insulated case in Fig.2, the effect of frequency on 

the non-dimensional wave speed is observed significant in coupled thermoelasticity, L-S, G-L and C-T 
theories, whereas the effect of frequency on the non-dimensional wave speed is negligible in the case of 
G-N-II theory. 

(ii)  The comparison of solid and dashed variations in Fig.3 shows the effect of G-N theory parameter *n  
and thermal boundary on the non-dimensional wave speed of the Rayleigh wave. 

(iii)  The comparison of solid and dashed variations in Fig.4 shows the effect of the thermal relaxation time 

0  and thermal boundary on the non-dimensional wave speed of the Rayleigh wave in C-T theroy.  
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Nomenclature 
 
 c   phase velocity 
 ec   specific heat at constant strain 

 i ,ie = u   dilatation 

 ije   Cartesian components of the linear strain tensor 

 *n   parameter in Green-Nagdhi theory 
 1n , 0n , 1t   parameters 

 T   the change in the absolute basic temperature 0T  

 t  time 
 iu   displacement components 

 ix   Cartesian coordinates 

    coefficient of thermal expansion 
 ij   Kronecker delta 

    wave number 

    coefficient of thermal conductivity 
 ,    the Lame's constants 

 0 , 0   the relaxation times 

    coefficient of mass density 
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 ij   Cartesian components of the linear stress tensor 

  ,    scalar potentials 

 2   Laplace operator 
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