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In this analysis, we present a theoretical study to examine the combined effect of both slip velocity and 
periodic body acceleration on an unsteady generalized non-Newtonian blood flow through a stenosed artery with 
permeable wall. A constant transverse magnetic field is applied on the peristaltic flow of blood, treating it as an 
elastico-viscous, electrically conducting and incompressible fluid. Appropriate transformation methods are 
adopted to solve the unsteady non-Newtonian axially symmetric momentum equation in the cylindrical polar co-
ordinate system with suitably prescribed conditions. To validate the applicability of the proposed analysis, 
analytical expressions for the axial velocity, fluid acceleration, wall shear stress and volumetric flow rate are 
computed and for having an adequate insight to blood flow behavior through a stenosed artery, graphs have been 
plotted with varying values of flow variables, to analyse the influence of the axial velocity, wall shear stress and 
volumetric flow rate of streaming blood.  
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1. Introduction  
 
 Today rheology of streaming blood in human arteries is a very significant aspect of research due to 
feasible medical and engineering applications and recently has attracted attention of researchers since the 
malfunctioning of the cardiovascular system is the most world wide-spread disease in humans. Systematic 
blood circulation all over the body through blood vessels is the base of our life. Peristaltic pumping by heart 
is to supply nutrients through oxygen rich blood to each and every cell of a human body under a sufficient 
pressure induced by a progressive wave of regular contraction and expansion of the heart and then blood or 
(bodily fluid) returns along with cellular waste. But blood peristalsis is not always so regular since transport 
of blood depends on its hydrodynamic behaviour and mechanical properties of blood vessel walls. When a 
normal blood flow in an artery is disturbed, it may be the cause of development of many cardiovascular 
diseases, especially: hypertension, hypotension, heart attack, stroke, etc. and particularly atherosclerosis 
(athero means gruel or paste and sclerosis means hardness), medically called stenosis. It is a common disease 
developed by intimal thickening of artery’s lumen, due to deposition of arteriosclerotic plaque or other types 
of abnormal tissues along the wall of blood vessel, narrowing the artery through which blood has to pass 
with relatively high pressure. Also, eventually necrosis may occur, when blood supply to a tissue is blocked 
or reduced. Therefore, the analysis of blood flow in stenosed arteries is of great importance. 
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 To examine the flow characteristics of blood through stenosed vessel, Beaver and Joseph [1] 
employed boundary conditions at a naturally permeable vessel wall. It would help in understanding why no-
slip condition at vessel wall should be replaced by slip velocity. Oka and Murata [2] presented hydro- 
dynamical theory for flow of blood through a blood vessel with permeable wall and investigated the 
exchange of fluid as a steady slow motion across the permeable wall upon the motion of the fluid within 
rigid circular tube. Saffman [3] discussed boundary conditions for flow of fluid at the surface of a porous 
medium. Popel et al. [4] investigated a continuum approach to blood flow with couple stresses. Steady flow 
of blood through modeled vascular stenosis was investigated by McDonald [6]. Shukla et al. [7] discussed 
the effect of stenosis on non-Newtonian flow of blood in an artery but later on they took into account the 
effect of radial distribution of cells and the existence of the peripheral plasma layer near the wall, and studied 
the flow of blood through an artery with mild stenosis by assuming blood as a power law fluid. Blood flow 
through an artery with mild stenosis was investigated by Sinha and Singh [8] and couple stresses effects on 
blood flow were also discussed by them. Srivastava [10] studied the flow through stenotic blood vessel by 
considering blood as a couple stress fluid. Lee [11] developed a numerical study on flow of fluid through 
tubes with double constrictions. Misra et al. [14] presented a non-Newtonian model in which they discussed 
flow of blood through arteries under stenotic conditions. Haldar and Ghosh [15] studied blood flow under the 
effect of a magnetic field through an indented artery in the presence of erythrocytes taking blood as a 
Newtonian fluid and discussed the expressions for blood velocity, pressure and flow rate. Murata [16] 
proposed a sedimentation model on flow properties of aggregating red cell suspension in constricted 
horizontal tubes and assumed a constant hematocrit level and the Newtonian viscosity in the central region of 
circular tubes. Chakravarty and Mandal [17] investigated a two dimensional flow of blood under stenotic 
conditions through tapered artery. Srivastava [18] analysed the flow of blood in a mild stenosed artery taking 
the central layer (core region) as a couple stress fluid as it is the suspension of erythrocytes (RBC) and a 
peripheral layer of plasma as a Newtonian fluid. Pralhad and Schultz [19] studied the modeling of arterial 
stenosis and employed its application to blood diseases taking blood as a non- Newtonian couple stress fluid.  
 A large number of investigations have been presented by several researchers to understand peristalsis 
through a permeable medium under the influence of body acceleration by considering blood as a Newtonian 
or non-Newtonian fluid. When our body experiences a sudden change in velocity, blood flow is disturbed. 
Although human body has remarkable adaptation to such type of sudden change, even then a prolonged 
exposure of body to such vibrations may lead to many health problems. While driving vehicles (car, bus, 
motorcycle, etc.), travelling in aircraft, spacecraft, jogging, etc., the human body is quite subjected to 
accelerations or vibrations, and they may be the reason of many health issues like increasing pulse rate, 
headache, losing vision, and abdominal pain. Rathod and Tanveer [20] discussed the effects of periodic body 
acceleration on pulsatile blood flow through a porous medium under the influence of a magnetic field and 
reported that local exposure to a magnetic field could relax blood vessel and enhance blood flow. Varshney 
et al. [21] also presented the effect of a magnetic field on blood flow in a multiple stenosed artery and 
reported that under a strong magnetic field effect, the flow rate of the streaming blood reduces up to 40%.  
Shit and Roy [22] proposed a theoretical study of hydro- magnetic pulsatory blood flow in a channel which 
is constricted and porous and provided evidence for the vital role of hydro-dynamic factors in the 
development and the progression of stenosis in an artery. Rathee and Singh [23] employed an analysis of a 
two- layered model of blood flow under the effect of a magnetic field through a stenosed artery in a porous 
medium and concluded that as effects of the magnetic field increase, the velocity profile of the blood flow 
under given conditions shows a reverse behavior. Eldesoky [24] studied an unsteady MHD pulsatile blood 
flow through a stenotic channel in a porous medium with slip at permeable walls subjected to time dependent 
velocity (injection/ suction). Siddiqui and Geeta [25] investigated a mathematical model for blood flow 
through inclined stenosed artery and presented the influence of the inclination angle. The unsteady slip flow 
of blood through constricted artery was investigated by Gaur and Gupta [26]. They reported the variation in 
flow characteristics along the axial distance with passage of time. Elangovan and Selvaraj [27] analysed the 
blood flow through a multiple stenosed artery with periodic body acceleration in the presence of a magnetic 
field. Malek and Horque [28] recently presented a theoretical study on the flow of blood through a stenosed 
artery with permeable wall taking into the consideration of the hematocrit level. Sankad and Nagathan [29] 
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discussed the transport of an MHD couple stress fluid through peristalsis in a porous medium under the 
influence of the heat transfer and slip effects. Tripathi and Sharma [30] focused on the study of effects of 
heat and mass transfer on an arterial blood (with variable viscosity) flow in the presence of the applied 
magnetic field with chemical reaction. 
 Motivated by the above investigations and in order to simulate the constricted artery flow problem, 
we have made an attempt to present a theoretical analysis to explore the significant influence of slip velocity 
and body acceleration on the flow of non-Newtonian blood through a stenosed artery with permeable wall in 
the presence of an externally applied magnetic field. Since selective permeability of the arterial wall permits 
applying slip condition in place of no-slip condition, it is another close step to the real situation of flow of 
blood at wall of a narrow artery as the arterial permeable walls allow the fluid particles to slip at boundary. 
Extensive quantitative analysis is set up by applying the Laplace and finite Hankel transformations to 
estimate quantitative effects of slip velocity, body acceleration, and applied magnetic field on flow of blood 
through an artery so as to substantiate the utility of the present study. 
 
2. Formulation of problem 
 
 In this study, we assume one dimensional motion of blood in a straight and rigid cylindrical stenosed 
artery through a porous medium by considering blood as a non-Newtonian elastico-viscous, incompressible 
and electrically conducting fluid under the influence of a transversely applied magnetic field. It is well 
known that when a magnetic field is applied on an electrically conducting fluid like blood, an 
electromagnetic force will be generated.  The electromotive force is given by the proportionality relation to 
the speed of motion and the magnetic field intensity by Ohm's law, which is given by 
 
  ( )   J E u B                                                                                                          (2.1) 
 
where E is the electric field intensity vector,   is the electrical conductivity, u is the velocity vector, 

0 1 B B B  is the total magnetic flux intensity vector in which 1B  is the negligibly small induced magnetic 

field vector) in comparison with the externally applied magnetic field 0B  for a magneto-hydrodynamic 
(MHD) flow. We also assume that the electric field intensity vector E due to the polarization of charge is 
also negligible. Now the electromagnetic force is defined and included in the momentum equation as 
 

  2
0B   F BJ u           where          00 BB .                                             (2.2) 

 
 Further, we assume that the blood flow is laminar, unsteady, axially-symmetric and fully developed. 
We restrict our study to a one-dimensional blood flow along the axial direction of a cylindrical small artery.  
          Now the geometry of the arterial segment with symmetric shape of stenosis as proposed by Eldesoky [24] is 
 

 
 

Fig.1. Geometrical representation of the arterial segment with stenosis. 
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 and s 2  is the stenosis shape parameter, d  is the position of stenosis, 0l  is the length of stenosis, ( )R z  is 

the radius of stenosed vessel, 0R  is the radius of normal artery. 

 
3. Governing equations 
           
 The Navier-Stokes equation for blood flow including the Lorenz force under the above assumptions, 
in cylindrical polar co-ordinates is 
 

    2 2
1 0

u p
G t u u B u

t z t k

                   
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where 

           2 1
r
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       ; 0 bG t G cos w t t 0                                                               (3.4) 

 
where 0p  is the amplitude of the steady part of the pressure gradient, 1p  is the amplitude of the oscillatory 

pressure gradient, p pw 2 f   with pf  is the heart pulse frequency, 0G  represents the amplitude of body 

acceleration, b bw 2 f    with bf  as body acceleration frequency,   is the phase difference, z  is the axial 
direction. Then Eq.(2.5) is written as 
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2
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0 1 p 0 b 1 02

u u 1
p p w t G cos w t u B u

t t r r Kr
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  (3.5) 

where  
              ( , )u r t  is the component of velocity in the axial direction, 

           is the density of blood, 

          is the blood viscosity coefficient , 

        1  is the blood elastic-viscosity coefficient , 

          is the electrical conductivity of blood, 
        K  is the porosity coefficient, 
        r  is the radial co-ordinate, 

        t  is the time variable. 
 
 Let us introduce the following non-dimensional quantities 
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 After applying non-dimensional terms and on dropping primes, we have a simplified form of 
Eq.(3.5) as 
 

     cost cos
2

2 2 2
0 1 0 2

u u 1 u
p p G bt 1 H M u

t t r rr

                      
      (3.7) 

 

where 0R





 is the Womersley  parameter, H 0 0B R





 is the Hartmann number, 
1

M
K

  is the 

permeability parameter and 1 



. 

 Further, we assume that at t 0 , only heart pumping action is present and at t 0 , the blood 
streams in the artery due to the instantaneous pressure gradient which is given by 
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4. The initial and boundary conditions 
 
 When intensity of permeability is small, the boundary condition proposed by Beaver and Joseph [1] 
is applicable which was further simplified by Saffman [4] (also known as Saffman's Slip condition) as 
d u

u
d r K


  where   is constant depending on the porous material properties and on its structure, K  is the 

permeability parameter (or Darcy number) of the porous material of the wall. This condition is also 
applicable to an unsteady flow as well as to MHD fluid flows. Now the initial and boundary conditions are 
prescribed as follows 
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5. Required integral transformations 
 
 If ( )g t  is a continuous function of t  and is of exponential order for t 0 , then its Laplace 
transformation is defined as 
 

             ,          st

0

g s e g t d t s 0


  ,   (5.1) 

 

and if ( )f t  satisfies the Dirichlet condition in a finite interval  ,0 a  then its finite Hankel tranformation is 

defined as  
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where n  are the roots of the equation '
0 0J h J 0   , where ( )0J r  and ( )1J r  are Bessel functions of the 

first kind. Then ( )f r  is given by  
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6. Analysis 
 
 Applying the Laplace transformation to Eq.(3.7) in the light of Eq.(5.1), we have 
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 Applying the Hankel transformation to Eq.(6.1) in the light of Eq.(5.2), we obtain 
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 To obtain the expression for fluid velocity, applying the inverse Laplace transformation and Hankel 
transformation to Eq.(6.3), we get  
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 The expression for the fluid acceleration is given by  
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 Similarly, we can obtain the expression for the volumetric flow rate, which is given by  
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 Also, the expression for the shear stress is calculated as 
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7. Graphical results and discussion 
 
 In the analysis of salient features of  flow characteristics of blood e.g. the axial velocity, flow rate, 
wall shear stress and fluid acceleration, we obtained the expressions given in Eqs (6.4), (6.6), (6.8), (6.10) 
and exhibited through Figs 2–13. The effects of physical parameters defining fluid behaviour and flow 
geometries on the flow characteristics are discussed for different values of the Hartmann number H, slip 
parameter h , amplitude of the body acceleration 0G , permeability parameter of the porous medium M and 
are shown in Figs 2 to 13. Figure 2 shows that high magnetic field strength decreases the blood velocity 
which is in accordance with [22, 24]. It indicates that velocity of blood can be controlled by applying a 
suitable strength of the magnetic field. Figure 3 reveals through parabolic axial velocity profile that axial 
velocity has its maximum value at the centerline of the artery and a slip at wall fairly enhances? The blood 
flow velocity as compared to no-slip condition for different values of the slip parameter h , which is in 
agreement with the studies carried out by in the works [20, 22, 27, 30]. Figure 4 demonstrates the influence 
of amplitude of the body acceleration G0 on axial velocity in the stenosed section and it is observed that by 
increasing slowly the value of the parameter G0, we can increase fluid velocity but higher values show the 
reverse behaviour. Figure 5 shows that fluid velocity increases with increasing the permeability parameter of 
the porous medium and Womersley parameter whereas it decreases with increasing the Hartmann number 
and frequency of body acceleration. The volumetric flow rate exhibits approximately the same profile as the 
blood velocity which is shown in Figs 10 to 13. 
 It is widely accepted that the shear stress plays an important role in the growth of stenosis. So it is 
important to study the effects of flow parameters on it. Figure 6 shows the variation in the wall shear stress 
and it is observed that the wall shear stress decreases with increasing the magnetic parameter as reported in 
[24]. Figure 7 shows that wall shear stress decreases maximum at the throat of stenosis by increasing the 
values of the slip parameter h as noticed in [24, 25, 26, 29]. Figure 8 shows that the effective viscosity and 
wall shear stress slightly decrease with body acceleration. Figure 9 shows that wall shear stress can be 
controlled by applying a suitable combination of values of the Hartmann number, slip parameter, amplitude 
of body acceleration and Womersley parameter. Finally, the fluid acceleration increases with an increase in 
the slip parameter, whereas decreases the magnitude of the wall shear stress. In contrast, flow acceleration 
caused by slippage at the stenotic throat reduces the wall shear stress but increases the flow rate with 
increasing the permeability parameter of the porous medium, Womersley parameter and slip parameter, 
whereas it decreases with increasing the Hartmann number and the frequency of body acceleration. It is also 
noticed that the effective viscosity and wall shear stress decrease with body acceleration but velocity and 
flow rate increase due to the wall slip velocity.  
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Fig.2. Variation in axial velocity; b = 2; G0 = 3; p0 = 2; p1 = 4; t = 1;   =0.25; h = 0.4; K = 0.4. 
 

 
 

Fig.3. Variation in axial velocity; b = 2; G0 = 3; p0 = 2; p1 = 4; t = 1; = 0.25; H = 2.5; K = 0.4. 

 
 

Fig.4. Variation in axial velocity; b = 2; H=2.5; p0 = 2; p1 = 4; t = 1; = 0.75; h = 0.4; K = 0.4. 
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Fig.5. Variation in axial velocity; b = 2; G0 = 3; p0 = 2; .0 50 ; H=4; p1 = 4; t = 1; h = 0.4; K = 0.4. 
 

 
 

Fig.6. Variation in wall shear stress; b= 2; G0 = 3; p0 = 2; p1 = 4; t = 1; = 0.60; h = 0.4; K = 0.4. 
 

 
 

Fig.7. Variation in wall shear stress; b= 2; G0 = 3; p0 = 2; p1 = 4; t = 1; = 0.60; H = 4; K = 0.4. 
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Fig.8. Variation in wall shear stress; b = 2; H = 2.5; p0 = 2; p1 = 4; t = 1; = 0.75; h = 0.4; K = 0.4. 
 

 
 

Fig.9. Variation in wall shear stress; b = 2; G0 = 3; p0 = 2; p1 = 4; t = 1; =0.75; h = 0.4; K = 0.4; H = 5. 
 

 
 

Fig.10. Variation in volumetric flow rate; b = 2; p0 = 2; p1 = 4; h = 0.4; t = 1; ϕ= 0.60; H = 2.5; K = 0.4. 
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Fig.11. Variation in volumetric flow rate; b = 2; G0 = 3; p0 = 2; p1 = 4; t = 1; ϕ= 0.25; h = 0.4; K = 0.4. 
 

 
 

Fig.12. Variation in volumetric flow rate; b = 2; H = 2.5; p0 = 2; p1 = 4; t = 2; = 0.75; h = 0.4; K = 0.4. 
 

 
 

Fig.13. Variation in volumetric flow rate; b= 2; G0= 3; p0 = 2; p1 = 4; t = 1; =0.75; h = 0.4; K= 0.4; H= 5. 
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8. Conclusion 
 
 In this investigation, effects of the wall slip and body acceleration on the blood flow through a 
constricted artery in a porous medium under the influence of the applied magnetic field have been analyzed. 
In this study, the  assumption of the slip velocity at the permeable wall is of prime concern. Some effective 
results of the article are summarized below as:  
(i)  The pulsatile axial velocity and volumetric flow rate increases considerably with the increase of slip 

velocity and body acceleration parameters in the presence of the magnetic field and porosity.  
(ii)  There is a considerable decline in the wall shear stress at the throat of stenosis with an enhancement of 

slip velocity and body acceleration parameters in the presence of the magnetic field.  
(iii)   The application of the magnetic field is helpful in controlling the axial blood flow since high strength of 

the magnetic field causes a decrease in the axial speed of blood. 
(iv)   A significant growth in the velocity slip as well as the body acceleration leads to a considerable growth 

in the streaming blood velocity and volumetric flow rate with the applied magnetic field and porosity. 
This suggests that the blood flow through stenosed arteries can be enhanced by increasing the 
application of slip inducing drugs as well as the body acceleration. 

(iv)   When the blood flow rises, the heart has to pump blood at a faster rate. Hence cardiovascular disease 
patients should be advised to avoid strenuous activities in order to avoid the excessive pressure on the 
heart. 

(v) Evidently the application of suitable slip inducing drugs and the magnetic field can control the wall shear 
stress within the stenosed section of the porous artery. 

  A proper understanding of the interaction of the body acceleration and slip velocity with the 
rheological properties of the streaming blood may contribute to the treatment of cardiovascular diseases. 
Such a combined investigation of the body acceleration and slip velocity can also be useful in the diagnosis 
and treatment of some health problems like vision loss, joint's pain and vascular problems. By applying an 
appropriate magnetic field, it is possible to control blood pressure and also it is effective for conditions such 
as poor circulation (nacrosis), headaches, joint's pain, travel sickness, muscle pain, etc. The slip condition 
plays a significant role in spurt, hysteresis effects and shear skin. The fluids with boundary slip have useful 
technological and clinical applications; for instance in polishing artificial heart valves and internal cavities.  
 
Nomenclature 
 
 B  magnetic flux intensity (T) 
 B0  applied magnetic field 
 D  stenosis location 
 G0  amplitude of body acceleration (m/s2) 
 fb  body acceleration frequency(Hz) 
 fp  pulse rate frequency(Hz) 
 G(t)  body acceleration (m/s2) 
 H  Hartmann number 
 J   current density vector (A/m2) 
 l0  length of stenosis (m) 
 p0  amplitude of pressure gradient steady (N/m2) 
 p1  amplitude of pressure gradient oscillations (N/m2) 
 R  radial direction 
 R0  radius of normal artery (m) 
 R(z)  radius of artery in stenosed region (m) 
 s  stenosis shape parameter (s = 2) 
 t  time (s) 
 u  axial velocity component 
 u  velocity vector of streaming blood (m/s) 
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 α  Womersley frequency parameter 
    dynamic viscosity of blood (kg/ms)  

 1   particle concentration parameter 

 ρ  density of blood (kg/m3) 
     electrical conductivity (S/m) 

 
References 
 

[1] Beaver G.S. and Joseph D.D. (1967): Boundary conditions at a naturally permeable wall.  J. Fluid Mech., 
vol.30, pp.197-207. 

[2] Oka S. and Murata T. (1970): A theoretical study of flow of blood in a capillary with permeable wall.  Jpn. J. 
Appl. Sci., vol.9, pp.345-352. 

[3] Saffman P.D. (1971): On the boundary conditions at the surface of a porous medium.  Stud. Appl. Math., 
vol.50, pp.93-101. 

[4] Popel A.S., Regirer S.A. and Usick P.I. (1974): A continuum model of blood flow.  Biorheology, vol.11, pp.427-
437. 

[5] Yuan S.W. (1976): Foundation of Fluid Mechanics.  New Delhi: Prentice Hall of India Pvt. Ltd.. 

[6] McDonald D.A. (1979): On steady blood flow through modelled vascular stenosis.  J. Biomech., vol.12, pp.13-
20. 

[7] Shukla J.B., Parihar R.S. and Rao B.R.P. (1980): Effect of stenosis on non-Newtonian flow of blood in an artery. 
 Bull. Math. Bio., vol.42, pp.283-294. 

[8] Sinha P. and Singh C. (1984): Effects of couple stresses on the blood flow through an artery with mild stenosis.  
Biorheology, vol.21, pp.303-315. 

[9] Fung Y.C. (1984): Biodynamics - Circulation.  New York: Springer Verlag. 

[10] Srivastava L.M. (1985): Flow of couple stress fluid through stenotic blood vessels.  J. Biomech., vol.1, pp.479-
485. 

[11] Lee T.S. (1990): Numerical studies of fluid flow through tubes with double constrictions.  J. Numer. Methods 
Fluids, vol.11, pp.1113-1126. 

[12] Fung Y.C. (1990): Biodynamics Motion, Flow, Stress and Growth.  New York: Springer Verlag. 

[13] Mazumdar J.N. (1992): Biofluid Mechanics.  Singapore: World Scientific. 

[14] Misra J.C., Patra M.K. and Misra S.C. (1993): A non-Newtonian model for blood flow through arteries under 
stenotic conditions.  J. Biomech., vol.26, pp.1129-1141. 

[15] Haldar K. and Ghosh S.N. (1994): Effect of a magnetic field on blood flow through an indented tube in the 
presence of erythrocytes.  Indian J. Pure Appl. Math., vol.25, pp.345-352. 

[16] Murata T. (1998): Theoretical analysis of flow properties of aggregating red cell suspensions in narrow 
horizontal tubes.  Clini. Hemorh., vol.14, pp.519-530. 

[17] Chakravarty S. and Mandal P.K. (2001): Two-dimentional blood flow through tapered arteries under stenotic 
conditions.  Int. J. Non-Linear Mech., vol.36, pp.731-741. 

[18] Srivastava V.P. (2003): Flow of a couple stress fluid representing blood through stenotic vessels with a 
peripheral layer.  Indian J. Pure Appl. Math., vol.34, pp.1727-1740. 

[19] Pralhad R.N. and Schultz D.H. (2004): Modelling of arterial stenosis and its applications to blood diseases.  J. 
Math. Biosci., vol.190, pp.203-220. 



The effect of slip velocity on unsteady peristalsis MHD ... 659 

[20] Rathod V.P. and Tanveer S. (2009): Pulsatile flow of couple stress fluid through a porous medium with periodic 
body acceleration and magnetic field.  Bull. Malaysian Math. Sci. Soc., vol.32, pp.245-259. 

[21] Varshney G., Katiyar V.K. and Kumar S. (2010): Effect of magnetic field on the blood flow in artery having 
multiple stenosis.  A numerical Study; Int. J. Eng. Sci. and Technol., vol.2, pp.67-82. 

[22] Shit G.C. and Roy M. (2012): Hydro-magnetic pulsatory flow of blood in a constricted porous channel.  A 
Theoretical Study; Proc. World Congr. Eng., vol.1, pp.83-88. 

[23] Rathee R. and Singh J. (2013): Analysis of two- layered model of blood flow through composite stenosed artery 
in porous medium under the effect of magnetic field.  J. Rajasthan Academy Phys. Sci., vol.12, pp.259-276. 

[24] Eldesoky I.M.I. (2014): Unsteady MHD pulsatile blood flow through porous medium in stenotic channel with 
slip at permeable walls subjected to time dependent velocity (injection/ suction).  Walailak J. Sci. Tech., 
vol.11, No.11, pp.901-922.  

[25] Siddiqui S.U., Shah S.R. and Geeta (2014): Effect of body acceleration and slip velocity on the pulsatile flow of 
casson fluid through stenosed artery.  Adv. Appl. Sci. Res., vol.5, No.3, pp.213-225. 

[26] Gaur M. and Gupta M.K. (2015): Unsteady slip flow of blood through constricted artery.  Adv. Appl. Sci. Res., 
vol.6, pp.49-58. 

[27] Elangovan K. and Selvaraj K. (2016): Study of multiple stenosed artery with periodic body acceleration in 
presence of magnetic field.  Int. J. Sci. Res. Manag., vol.4, No.06, pp.4214- 4226. 

[28] Malek A. and Horque A. (2017): Hematocrit level on blood flow through a stenosed artery with permeable wall. 
 Int. J. Appl. Appl. Math., vol.12, No.1, pp.291-304. 

[29] Sankad G.C. and Nagathan P.S. (2017): Transport of MHD couple stress fluid through peristalsis in a porous 
medium under the influence of heat transfer and slip effects.  Int. J. of Appl. Mech. Engg., vol.22, No.2, 
pp.403-414  

[30] Tripathi B. and Sharma B.K. (2018): Effect of variable viscosity on MHD inclined arterial blood flow with 
chemical reaction.  Int. J. of Appl. Mech. Engg., vol.23, No.3, pp.767-785. 

 

 

Received: October 20, 2018 

Revised:   June 2, 2019 

 


