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A two-dimensional Cauchy Poisson problem for water with a porous bottom generated by an axisymmetric 
initial surface disturbance is investigated here. The problem is formulated as an initial value problem for the 
velocity potential describing the motion in the fluid. The Laplace and Hankel transform techniques have been 
used in the mathematical analysis to obtain the form of the free surface in terms of a multiple infinite integral. 
This integral is then evaluated asymptotically by the method of stationary phase. The asymptotic form of the free 
surface is depicted graphically in a number of figures for different values of the porosity parameter and for 
different types of initial disturbances. 
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1. Introduction 
 
 The problem of generation of surface waves due to an explosion above or within the water can be 
formulated as an initial value problem assuming linear theory of water waves. The explosion may occur 
above or below the ocean surface. When the explosion occurs within the water the initial condition is taken 
as an initial displacement (elevation or depression) distributed over a certain region of the free surface. 
However when the explosion occurs above water, the initial condition can be considered as an initial 
impulsive pressure distributed over a certain region of the free surface. Due to these types of initial 
disturbances, problems of wave generation in deep water were studied by Lamb [1] and Stoker [2]. For 
axisymmetric initial disturbance concentrated at a point on the free surface, the problem of generation of 
surface waves in deep water was studied by Stoker [2]. The form of the free surface elevation was obtained 
in terms of a multiple infinite integral using the Hankel transform and the asymptotic form of the free surface 
was found by using the stationary phase method twice. 
 For the three dimensional unsteady motion, the axially symmetric disturbance was considered by 
Kranzer and Keller [4] in finite depth water and they compared the theoretical result with experimental 
results. They also considered different types of impulse distribution to analyze the nature of the free surface 
elevation and the associated phenomenon of surface waves. Mandal and Mukherjee [5] considered wave 
generation at an inertial surface due to an axisymmetric initial surface disturbance. Maiti and Mandal [6] 
considered water waves generated due to initial axisymmetric disturbances in deep water covered by a thin 
layer of ice in the upper surface. 
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 In all these problems, the ocean bottom is either considered rigid or of infinite depth. However, in reality 
the ocean bottom is actually porous. In the present problem, we consider  the generation of surface waves due to 
different types of initial axisymmetric disturbances at the free surface in finite depth water with a porous bottom. 
Here a special type of porous bottom is considered as in Martha et al. [7] and Maiti, and Mandal [8] where the 

porosity parameter is described by a real quantity G whose dimension is taken as (length) .1  
 Three types of initial disturbances have been considered in this paper. In the first case, an initial 
axially symmetric displacement concentrated at a point on the free surface has been considered and in the 
second case it is an impulse concentrated at the origin while in the third case, a parabolic impulse distribution 
at the free surface has been considered as in Kranzer and Keller [4]. The problem is formulated as an initial 
value problem assuming linear theory. Laplace and Hankel transform techniques are used to solve the 
problem. Finally the depression of the free surface at any time t is obtained as a multiple infinite integral. For 
the first two disturbances the integral is evaluated asymptotically for large time and distance using the 
stationary phase method twice. However, for the case of parabolic impulse distribution, the multiple integral 
is evaluated by the method of steepest-descent as in Jeffreys and Lapwood [3]. The asymptotic form of the 
free surface is depicted graphically against a non-dimensional distance for fixed time and against non-
dimensional time for a fixed distance and for different values of non-dimensionalised porosity parameter. 
 
2. Mathematical formulation 
 
 A cylindrical co-ordinate system ( , , )r y  is chosen in which the y-axis is taken vertically downwards 

in the fluid region and    y h  corresponds to the bottom composed of some specific kind of porous materials. 

The porous bottom is characterized by a real quantity G which has the dimension of inverse of length. The 
fluid is assumed to be inviscid and the motion in the fluid starts from rest so that it is irrotational and the 
motion is described by a velocity potential ( , , )r y t  satisfying the Laplace equation 
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where G is the porosity parameter of the fluid bottom. The initial conditions are 
 

     φ , , ,r 0 0 0               φ , ,t r 0 0 gG r , 

 
when the initial axially symmetric depression ( )G r  of the free surface at a distance r  from the origin is 

prescribed and  g is the acceleration due to gravity, or 
 

      ( )
φ , , ,

F r
r 0 0  


            φ , ,t r 0 0 0 , 

 

when an initial axially symmetric impulse ( ) F r  is applied per unit area of the free surface at a distance r  

from the origin, and   is the density of water. 
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 The expression for free surface depression is given by 
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 Introducing a characteristic length l , characteristic time 
l

g
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 Removing the bars the dimensionless quantities satisfy 
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 Initial conditions at the free surface are 
 
    φ , ,r 0 0 0 , (2.4) 

  
      φ , ,t r 0 0 gG r , (2.5) 

or 

    ( )
 φ , ,

F r
r 0 0  


, (2.6) 

 

and    φ , ,t r 0 0 0 , 

 
according as the initial disturbance is axially symmetric depression of the free surface or an axially 
symmetric impulse at the free surface and the corresponding non dimensional depression of the free surface 
is to be obtained from the relation 
 

      , φ , ,t
1

r t r 0 t
g

  . (2.8) 

 
3. Method of solution 
 
 The Laplace and Hankel transform techniques are used to solve the above initial value problem. Let 

 , ,r y p  be the Laplace transform of  , ,r y t  at time t, defined as 
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     , , , ,  . pt

0

r y p r y t e dt


    

 
 Taking the Laplace transform of the Eqs (2.1), (2.2), (2.3) and using the initial conditions (2.4), and 
(2.5) we have 
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 Let ( , , )k y p be the Hankel Transform of  , ,r y p  defined by 
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where  Ĝ k  denotes the Hankel transform of ( ).G r  

 The solution of Eq.(3.4) satisfying Eqs (3.5) and (3.6) can be written as 
 

         
ˆ
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where 

     cosh sinh ( sinh cosh ).2k p k kh G kh k k kh G kh      
 

 Taking the inverse Hankel transform 
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where  
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Now   2 k  behaves differently for  Gh 1  and  .Gh 1  
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Case A ( ) :1Gh  
 

 The graph of  2 k  is shown in Fig.1 for Gh 1 . It is observed that there is a zero of  2 k  at 

1k    and    2 k 0   for 1 k     and  2 k 0   for .10 k    
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Fig.1. Graph of  2 k  for Gh 1 . 
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 Taking the Laplace inversion we obtain 
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 Free surface depression in the case of initial axially symmetric depression is given by 
 

           ˆ ˆ, cosh(µ ) cos(µ )
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 In the case of axially symmetric impulse at the free surface the expression for depression of the free 
surface at time t is obtained by a similar procedure as 
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( )1 GhCase B : 
 

 For  Gh 1  the numerator and denominator of  2 k  are as shown in Fig.2 and  2 k  in Fig.3. 

Let   3k    be the positive zero of numerator (  tanh( ) )k k kh G  and 2k   be the positive zero of 

denominator (   tanh( )).k G kh  

 Then  2 k  can be written as 
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Fig.2. ( tanh )k k kh G  and ( tanh( ))k G kh  for Gh 1 .                  Fig.3.  2 k  for Gh 1 . 

 
where ε is an arbitrary small positive real number. Then  , ,r y p  can be written as 
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 Taking the Laplace inversion, we obtain 
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 Free surface depression in the case of initial axially symmetric depression and for  Gh 1  is given by 
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 Similarly, in the case of axially symmetric impulse at the free surface and  Gh 1 , the expression for 
depression of free surface at time  t is obtained as 
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( )1 GhCase C : 

 

 For   Gh 1  the graph of  2 k  is shown in Fig.4 and in this case,  2 k can be written as 
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where ε is an arbitrary small positive real number. Then by a similar procedure the form of the free surface in 
the case of axially symmetric depression is obtained as 
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and in the case of axially symmetric impulse the form of free surface is obtained as 
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Fig.4. Graph of  2 k  for Gh 1 . 

 
4. Asymptotic expansion 
 
 We are interested in the waves after a long lapse of time and at a large distance from the origin. For 
this we use the method of stationary phase to evaluate the integral Eqs (3.11), (3.12) of Case A, Eqs (3.15), 

(3.16) of Case B and Eqs (3.17), (3.18) of Case C for large r and t such that 
r

t
is finite. 

 
( )1Case A Gh : 

 
 In particular, when the displacement is concentrated at the origin, then the initial axially symmetric 

depression ( )G r  of the free surface is taken as delta function. Therefore, we can take ˆ ( )  
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Eq.(3.11) becomes 
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 The integral 1I does not contribute to  η ,1 r t  and   1I can be written as 
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 For the first integral, we write 
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and r is large. Now 
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which has no zero in the range of integration. 
 Similarly, for the second integral we write 
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and  r is large. Thus 1I  does not contribute to  η ,1 r t  as 
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which has no zero in the range of integration. For 2I we have 
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 In Eq.(4.2) the first integral does not have any stationary point in the range of the integration. So this 

integral does not contribute to  ,1 r t . For the second integral let    
/

( )  , 
1 2

3 2 3
r k

f k k k g k
t 4t r

        
 

and t is large. Now 
 

   
   '

( tanh ) ( ) ( tanh tanh ) ( )
.

( tanh ) ( tanh )

2 2 2 1
2 2

3

Gh 1 kh 1 k k h 1 kh 2k kh G k1 r
f k

2 k G kh k G kh t

       
   
  
 

 

 

 We see that  '
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   '
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in the range of integration and  ''
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 Similarly, in the case of  Eq.(3.12)  if initial impulse is assumed to be concentrated at the origin, then 
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 In Eq.(4.4)  3I does not contribute to  η ,2 r t  and by similar reasoning for large  r  and t , the 

asymptotic form of  ,2 r t  is obtained as 
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and   is the unique real root of 
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in the range of integration and negative sign is taken since the sign of  ''
4f   is negative. 

 
( )1Case B Gh : 

 

 For  Gh 1  if the displacement is concentrated at the origin and taking ˆ ( )  
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 In Eq.(4.6) by similar calculation the second integral does not contribute to  η ,  3 r t and the 

asymptotic form of  ,3 r t  is given by 
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 The asymptotic form of  η ,4 r t  is given by 
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( )1 GhCase C : 
 
 Similarly, in the case of   Gh 1  the asymptotic form of  η ,5 r t , taking initial depression 

concentrated at the origin, we have 
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and 5  is the unique positive real root of  '
5f k 0  in  ,4  . Again, the asymptotic form of  η ,6 r t

taking initial impulse concentrated at the origin, we find 
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Parabolic impulse 
 
 We consider a different type of axially symmetric impulse, namely parabolic impulse distribution at 
the free surface given by 
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where R denotes the effective radius of initial impulse. The Hankel transform of ( )F r  is given by 
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 For  Gh 1  the free surface depression at time t for parabolic impulse distribution is given by 
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 For  Gh 1  the free surface depression at time t for parabolic impulse distribution is given by 
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 Using the result 
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 ' , 2 r t  can be written in terms of a multiple integral. This multiple integral can be evaluated approximately 

by the method of steepest-descent(cf. Jeffreys and Lapwood [3]). Usually, the use of the method of steepest-
descent for a single integral requires a large parameter in the exponential term of the integrand. However, 
Jeffreys and Lapwood [3] obtained steepest-descent approximations of multiple integrals whose integrands 
do not have any large parameter explicitly in the exponential term. In this method one has to orient the 
integration paths to pass through the saddle points and the maximum contribution to the integral comes from 
the immediate neighbourhood of the saddle points. In the integral (4.12) the only contribution comes from 

the second integral and  ' , 2 r t  is written in the following form 
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 The integrals 1J and 4J  do not contribute to  ' , 2 r t  and for 2J  we have 
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and 0  is the value of the Hessian determinant   at the saddle points. Thus 
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and applying the same calculation to 4J , we obtain the final form of  ' , 2 r t  as, 
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where 
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and , ,0 0 0k    are the saddle points in , , k  - plane for the integral 2J  and 
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and , ,1 1 1k    are the saddle points for the integral 3J . 

 A similar process is applied to the integral (4.11) for the case Gh 1  and in this case the only 
contribution comes from the third integral and the final result is obtained as 
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where 
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     , ,  ( ) sin sin2 3g k i k t 2r 2Rk kr          

 

and ' ' ', ,0 0 0k    are the saddle points in , , k  - plane and 
 

   ' ''' ' ' ', ,1 1 1 1k           and         ''' '', , sin cos2 2 2
3k 2t k rRk 2R rk          

and 

      , ,  sin sin3 3g k i k t 2r 2Rk kr          

 

and ' ' ', ,1 1 1k    are the saddle points in , , k  - plane. 

 
5. Numerical results 
 

( )1GhCase A : 

 
 To study the form of the free surface due to initial axisymmetric surface disturbance in water with a 
porous bottom, the non dimensional asymptotic form of  ,1 r t  is depicted graphically against r  for fixed 

time and against t for a fixed distance from the origin in a number of figures. To visualize the nature of the 
wave motion due to prescribed initial axially symmetric depression at the free surface,  ,1 r t  is plotted in 

Fig.5 against t for fixed   r 250  and t  ranging from 220 to 280 and porosity parameter   , . , . .Gh 0 0 6 0 9  Also 

 ,1 r t  is plotted in Fig.6 for fixed time and variable distance from the origin. In Fig.6  ,1 r t  is plotted 

for fixed   t 150  and r  ranging from 220 to 280 and the porosity parameter   , . , . .Gh 0 0 6 0 9  From Fig.5 it is 
observed that as  t  increases, the amplitude of wave motion increases and from Fig.6 it is observed that as r 
increases the amplitude of wave motion decreases. 
 

 
 

Fig.5. Wave motion due to initial axially symmetric depression for a fixed distance r=250. 
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Fig.6. Wave motion due to initial axially symmetric depression for fixed time t=150. 
 
 Similarly  η ,2 r t  obtained from Eq.(4.5) due to an initial disturbance in the form of an impulse 

concentrated at the origin, is plotted in Figs 7 and 8. In Fig.7 ( , )2 r t  is plotted against t for fixed   r 250  
and t ranging from 220 to 280 and porosity parameter   , . , .Gh 0 0 6 0 9 . From Fig.7 it is observed that the 

amplitude of the wave profile increases as time increases. In Fig.8 ( , )2 r t  is plotted against r  for fixed 
  t 150  and r  ranging from 220 to 280 and porosity parameter   , . , . .Gh 0 0 6 0 9  From Fig.8 it is observed that 

the amplitude of the wave profile decreases as distance increases. 
 

 
 

Fig.7. Wave motion due to initial axially symmetric impulse for a fixed distance r=250. 
 

 
 

Fig.8. Wave motion due to initial axially symmetric impulse for fixed time t=150. 
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( )1GhCase B and C  : 
 
 For the case , ( , )3Gh 1 r t   and ( , )5 r t  obtained from Eqs (4.7) and (4.10) in the case of initial 

axially symmetric depression concentrated at the origin are plotted in Fig.9 for fixed   r 250  and t  ranging 
from 220 to 280 and   , . , . .Gh 1 1 25 1 75  

 Similarly, ( , )3 r t  and ( , )5 r t  are plotted in Fig.10 for fixed time   t 150  and r  ranging from 220 
to 280 and   , . , . .Gh 1 1 25 1 75  
 

 
 

Fig.9. Wave motion due to initial axially symmetric depression for a fixed distance r=250. 
 

 
 

Fig.10. Wave motion due to initial axially symmetric depression for fixed time t=150. 
 

 Similarly,  , 4 r t and ( , )6 r t  obtained from Eqs (4.9) and (4.11) in the case of impulse con-

centrated at origin are plotted in Figs 11 and 12. In the Fig.11 ( , )4 r t and ( , )6 r t  are plotted against  t for 

fixed    r 250  and t  ranging from 220 to 280 and   , . , . .Gh 1 1 25 1 75  In Fig.12 ( , )4 r t  and ( , )6 r t  are plotted 
against r  for fixed    t 150  and r ranging from 220 to 280 and   , . , . .Gh 1 1 25 1 75  From Fig.9 to 12 it is observed 
that as the porosity parameter increases the amplitude of wave motion does not behave in any specific manner. 
 

 
 

Fig.11. Wave motion due to initial axially symmetric impulse for a fixed distance r=250 and Gh 1 . 
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Fig.12. Wave motion due to initial axially symmetric impulse for fixed time t=150 and Gh 1 . 
 
Parabolic Impulse : 
 
 For the parabolic impulse distribution the form of the free surface elevation in the case of   Gh 1
given in Eq.(4.14) is plotted in Figs 13 and 14. In Fig.13 ' ( , )2 r t  is plotted against t  for fixed    r 250  and 

t  ranging from 200 to 280 and   . , . , . ,   .Gh 0 2 0 6 0 9 R 10   In Fig.14 ' ( , )2 r t  is plotted against r  for fixed 

   t 150  and r  ranging from 220 to 280 and   . , . , . , .Gh 0 2 0 6 0 9 R 10   Similarly, ' ( , )4 r t  obtained from 
Eq.(4.15) is plotted in Figs 15 and 16.  
 

 
 

Fig.13. Wave motion due to parabolic impulse for   Gh 1  and for a fixed distance r =250. 
 

 
 

Fig.14. Wave motion due to parabolic impulse for   Gh 1  and for fixed time t =150. 
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Fig.15. Wave motion due to parabolic impulse for  Gh 1  and for a fixed distance r =50. 
 

 
 

Fig.16. Wave motion due to parabolic impulse for   Gh 1  and for fixed time t =150. 
 

 In Fig.15 ' ( , )4 r t  is plotted against t  for fixed   r 50 and t  ranging from 80 to 130 and 

  , . ,   . Gh 1 1 25 R 10  In Fig.16 ' ( , )4 r t  is plotted against r  for fixed  t 150  and r  ranging from 70 to 120 
and   , . ,   .Gh 1 1 25 R 10   
 
6. Conclusion 
 
 Generation of surface waves in water with a porous bottom is considered here due to various types of 
prescribed initial axisymmetric disturbances at the free surface. The initial disturbance on the free surface is 
taken to be concentrated at the origin for the first two cases and in the form of a parabolic impulse 
distribution at the free surface as in Krenzer Keller [4] for the third case. The fluid bottom is taken to be 
porous and the porosity parameter  G  to be real and the cases when Gh 1  and  Gh 1  and h being the finite 
depth of water are considered. It is observed that when the bottom is rigid, the integral form of free surface 
reduces to the form given in Kranzer and Keller [4] for the case of parabolic impulse distribution at the free 
surface. 
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Nomenclature 
 
 G   porosity parameter 
     ( )G r   axially symmetric depression of the free surface at a distance r from the origin 

 g   acceleration due to gravity 

   ( )F r   axially symmetric impulse per unit area of the free surface at a distance r from the origin 

 h   constant depth of water 
    free surface depression 

    density of water 

    velocity potential 
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