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An analysis was carried out for an unsteady magnetohydrodynamic(MHD) flow of a generalized third grade 
fluid between two parallel plates. The fluid flow is a result of the plate oscillating, moving and pressure gradient. 
Three flow problems were investigated, namely: Couette, Poiseuille and Couette-Poiseuille flows and a number 
of nonlinear partial differential equations were obtained which were solved using the He-Laplace method. 
Expressions for the velocity field, temperature and concentration fields were given for each case and finally, 
effects of physical parameters on the fluid motion, temperature and concentration were plotted and discussed. It is 
found that an increase in the thermal radiation parameter increases the temperature of the fluid and hence reduces 
the viscosity of the fluid while the concentration of the fluid reduces as the chemical reaction parameter increases. 
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1. Introduction 
 
 A fluid is a substance which is capable of flowing or on the other hand we can say that a fluid is a 
substance which deforms continously when subjected to an external shearing force. Fluids may be of the 
following types: Newtonian, Non-Newtonian, plastic and ideal. Thus, considering Non-Newtonian fluids, 
which are fluids that do not obey the Newton law of viscosity and the relation between shear stress and rate 
of shear strain is nonlinear. Non-Newtonian fluids are increasingly considered as more important and 
appropriate in technological applications in several industrial manufacturing processes such as in the drilling 
of oil and gas wells, polymer and petroleum industries, power generators, pumps as well as accelerators. 
A large class of real fluids does not exibit a linear relationship between stress and the rate of strain, so 
because of their nonlinear dependence, the analysis of the behaviour of fluid motion of non-Newtonian fluids 
tends to be more complicated in comparison with that of a Newtonian fluid. Due to the complexity of these 
fluids several constitutive equations have been proposed which are complicated and contain some special 
cases of these fluids. The constitutive equations of viscoelastic fluids are usually classified under the 
categories of differential, rate and integral models. The fluid under consideration falls under the category of 
the differential model with a very short history of the deformation gradient which has an influence on the 
stress. However, there is no model which can alone predict the behavior of all non-Newtonian fluids and 
governing equation due to the complexity of these fluids. 
 In view of this type of fluid and its applications, many researchers have studied steady and unsteady 
magnetohydrodynamic(MHD) third grade fluids flow between parallel plates with different configurations. 
Hayat et al. [1] developed a set of differential equations describing the steady flow of an Oldroyd 6-constant 
magnetohydrodynamic fluid and found that the obtained solutions for the steady flow are strongly dependent 
on the material constant (non-Newtonian parameter) and it differs from the model of Oldroyd 3-constant 
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fluid. Closed form solutions for the velocity and temperature profiles were obtained for a particular 
viscoelastic fluid between two oscillatory walls in the presence of transverse magnetic field by Ajadi [2], 
where the flow is due to the continous movement of the oscillatory wall and the time dependent pressure 
gradient and there is a monotonic decrease in velocity with time in the domain while the viscoelastic fluid 
velocity decreases as the distance from the wall decreases while it is on the contrary for the non-viscoelastic 
fluid  E 0 . Aksoy and Pakdemili [3] investigated the flow of a non-Newtonian fluid through porous media 

between two parallel plates at different temperatures. The governing momentum equation of a third grade 
fluid with modified Darcy’s law and energy equation were derived. The approximate analytical solutions 
obtained by using perturbation techniques were within the validity range, the analytical and numerical 
solutions are same. The heat transfer analysis on the laminar flow of an incompressible third grade fluid 
through a porous flat channel was studied by Ellahi et al. [4] where the lower plate was assumed to be at a 
higher temperature than the upper plate. The obtained analytical solutions were compared with the numerical 
solutions and showed that accuracy is remarkable. Hayat and Nawaz [5] investigated the effects of heat 
transfer on a magnetohydrodynamic(MHD) axisymetric flow of a viscous fluid between two radially 
stretching sheets and the solutions presented by using the homotopy analysis method show that the magnetic 
field slows down the motion of the fluid while the dimensionless radial velocity decreases when the porosity 
parameter increases. Danish et al. [6] obtained the exact analytical solutions for the velocity profiles and 
flow rates in an explicit form for the Poiseuille and Couette-Poiseuille flow of a third grade fluid flow 
between two parallel plates. The exact solutions match well with their numerical counterpart and better than 
the recently developed approximate analytical solutions. Radiation and heat transfer effects on an MHD non-
Newtonian unsteady flow in a porous medium with slip condition were investigated by Gbadeyan and Dada 
[7] where the fluid is assumed not to absorb its own emitted radiation but that of the boundaries. Crank 
Nicolson type of the finite difference method was used to solve the resulting governing equations. 
 An unsteady MHD thin film of a third grade fluid down an inclined plane with no slip boundary 
condition was studied by Aiyesimi et al. [8] and it was found that the magnetic field decreases the viscous 
and Joule dissipation, while it decreases the velocity profile and its gradient. Aiyesimi et al. [9] investigated 
the combined effects of the magnetic field on the MHD flow of a third grade fluid through an inclined 
channel in the presence of a uniform magnetic field with the consideration of heat transfer. Also, three 
different problems, i.e, Couette, Poiseuille and Couette-Poiseuille flows, were analysed and it was observed 
that the velocity increases rapidly from the moving upper plate to the stationary lower plate and the velocity 
of the fluid increases through the two stationary plates as the gravitational parameter increases. Baoku [10] 
presented the effects of suction and thermal radiation on the unsteady convective flow and heat transfer in a 
third grade fluid flow over an infinite vertical plate where the plate is porous to allow possible wall suction. 
The Crank-Nicolson finite difference scheme was empolyed to solve the governing time-based coupled 
partial differential equations where the flow field is appreciably influenced by suction and viscoelastic 
parameters. Gul et al. [11] studied the thin film flow in an MHD third grade fluid on a vertical belt with 
temperature dependent viscosity by using the Adomian decomposition method to solve the governing 
coupled nonlinear differential equations with their boundary conditions. Hayat et al. [12] addressed the 
boundary layer flow and heat transfer in a third grade fluid over an unsteady permeable stretching sheet. The 
transverse magnetic and electric fields in the momentum equation are considered. It is observed that both the 
velocity and temperature profiles increase in the presence of an electric field while the temperature increases 
due to the radiation parameter. The boundary layer thickness increases by increasing the Eckert number. 
Rasheed et al. [13] considered an unsteady magnetohydrodynamic flow of a generalized third grade fluid 
between two parallel plates. The flow is caused by the plate oscillation and movement. The solutions to the 
nonlinear partial differential equations are obtained by using the homotopy perturbation method. It was 
observed that the velocity field decreases by increasing the magnetic term. Shah et al. [14] worked on the 
flow of an unsteady non-Newtonian fluid between stationary and oscillating plates and solved the nonlinear 
partial differential equations using the homotopy perturbation method. It was observed that the velocity 
increases by increasing the pressure gradient parameter. Hayat et al. [15] examined the effects of an inclined 
magnetic field and heat transfer in the flow of a third grade fluid with an exponentially stretching surface. 
The resulting equations are solved for the approximate solutions and effects of fluid parameters on the 
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temperature field are quite similar for heat generation and absorption. Makinde et al. [16] made a 
thermodynamic analysis of variable viscosity hydromagnetic Couette flow in a rotating system with Hall 
effects and showed that the fluid rotation increases the dominant effect of heat transfer irreversibility at the 
upper moving plate region while the entropy production is more at the lower fixed plate region. An unsteady 
MHD flow and heat transfer of a third grade fluid past on oscillating inclined belt was studied by Nasir et al. 
[17] where the analytical solutions of velocity and temperature profiles were obtained by using the optimal 
homotopy asymptotic method and homotopy perturbation method. Ghani et al. [18] examined the motion of 
an incompressible unidirectional magnetohydrodynamics thin film flow of a third grade fluid over an 
oscillating inclined belt embedded in a porous medium and the physical problem was modeled in terms of 
nonlinear partial differential equations solved using two analytical techniques, namely the optimal homotopy 
asymptotic method and homotopy perturbation method. An unsteady two-dimensional MHD flow between 
the infinite parallel plate was investigated by Kumar et al. [19] and the effect of the thermal radiation and 
magnetic field were included in this model. The transformed governing equation was solved numerically by 
using the Runge-Kutta shooting technique and it was noticed that the Nusselt number is an increasing 
function of the squeeze number. However, based on these works, it has been observed that the effects of 
thermal radiation and chemical reaction on an unsteady MHD fluid flow between stationary and oscillating 
plates have not been considered.  
 
2. Mathematical formulation of the problem 
 
 An incompresible simple fluid is defined as a material whose state of present stress is determined by 
the history of the deformation gradient without a preferred reference configuration. As such the fluid flow 
problem is governed by the continuity, momentum and temperature equations, respectively 
 
  . = 0V  (2.1) 
 
where  = u,v,wV  is the velocity vector  

 The velocity field V  for the fluid flow problem under investigation should be of the form  
 

   , , ,= u y t 0 0  V  (2.2) 

 
where  u y ,t  is the velocity field in the x-direction. This velocity field satisfies the continuity Eq.(2.1).  

 The relevant momentum equation is given by  
 

  
22 3 2
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 From the Maxwell equation which has the form  
 

   tr2 r
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qD
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D t y


    


T  (2.4) 

 

where   is the constant fluid density, T is the stress tensor, pC  is the specific heat, k is the thermal 

conductivity,  is the temperature, 
D

D t
 is the material derivative, gradL = V , q  is the radiative heat flux 

according to Rosseland approximation where   
 

  
* 3

r *

16
q =

y3k

  


T T
 (2.5) 



272                                                                   A.S.Idowu and U.Sani 

where *  is the Stefan-Boltzman constant, *k  is the mean absorption coefficient. 
Note that in writing Maxwell’s equation the displacement current is neglected.  
 And also the equation for concentration governing the flow is given by  
 

  
2

r2

C C C C C
u v w = D K C

t x y z y

    
   

    
 (2.6) 

 

where u, v are the velocities in the x, y directions, respectively, C is the concentration, D is the diffusion 
coefficient of the diffusing species and Kr the chemical reaction parameter.  
 
3. Formulation of the plane Couette flow problem 
 

 
Fig.1. Model of the plane Couette flow. 

 

 Consider an unsteady laminar flow of an incompressible third grade fluid between two parallel 
plates. The upper plate is oscillating and moving with constant velocity U relative to the lower plate. The 
upper plate carries along with itself a liquid of a third grade fluid during its motion. The upper and lower 
plates have a uniform distance between them considered to be h. The temperature of the higher and the lower 
plate are 1  and 0 , considering MHD unidirectional flow with zero pressure gradient with a uniform 

applied magnetic field 0B  acting in the y-direction. Thus having  , , ,u y t 0 0  V ,  ,y t  and  ,C y t , 

also the above definition of velocity satisfies the continuity equation. The momentum, energy and 
concentration equations yield  
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with intial and boundary conditions   
 

  

           

   

cos , , cos , ,

, at ,

u h,t =U U h  y >0 u 0,t =U U t  t > 0

u y,t = 0   y   t > 0

   



 (3.4) 

 



Thermal radiation and chemical reaction effects on unsteady ... 273 

  

( , ) ( - ) ( - )cos( ) ,  ( ),

( , ) ( - ) ( - )cos( ) ,  ( ),

1 0 1 0 0

1 0 1 0 0

h t h y 0

0 t t t 0

          

          
 (3.5) 

 

  
( , ) ( - ) ( - ) cos( ) ,   ( ),

( , ) ( - ) ( - ) cos( ) ,   ( ).

1 0 1 0 0

1 0 1 0 0

C h t C C C C y C y 0

C 0 t C C C C t C t 0

    

    

 (3.6) 

 

Here  is the frequency of the oscillating plate. We introduce the non-dimensionless quantities  
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applying Eqs (3.7) to Eqs (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6), where for simplicity we drop the bars of 
the dimensionless quantities yields  
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 The parameters above in Eq.(3.14) encompass the physics of the problem. In particular,  and  are 
the non-Newtonian parameters, *  is a constant parameter, Ec is the Eckert number, M is the magnetic field 

parameter, Pr is the Prandtl number, R is the radiation parameter, Sc is the Schmidt number, *K r  is the 
chemical reaction parameter, Nc is the concentration difference parameter.  
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4. Method of solution 
 

 We employed the method of solution called the He-Laplace method by Hradyesh and Atulya [20], 
where the use of the homotopy pertubation method coupled with the Laplace transformation method to solve 
linear and nonlinear partial differential equations was employed. It is worth mentioning that the method is an 
elegant combination of the Laplace transformation, the homotopy perturbation method and He’s 
polynomials. The use of He’s polynomials in the nonlinear term was first introduced by Ghorbani and 
Saberi-Nadjafi [21] and Ghorbani [22]. To illustrate the basic idea of this method, let us consider a general 
nonlinear nonhomogeneous partial differential equation with initial conditions of the form  
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 are the linear differential operators, N  represents the general nonlinear 

differential operator and ),( txf  is the source term. Taking the Laplace transform (denoted by L) on both 
sides of Eq.(4.1), we have  
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 Applying the initial conditions given in Eq.(4.1), we have  
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  Operating the inverse Laplace transform on both sides of Eq.(4.3) gives 
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where ),( txF  represents the term arising from the source term and the prescribed initial conditions. Now 
we apply the homotopy perturbation method 
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and the nonlinear term can be decomposed as  
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and  
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coupling the Laplace transform and the homotopy perturbation method gives 
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so comparing the coefficients of like powers of p, we have the following approximations 
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Hence, the general solution takes the form  
 

           , , , , ,0 1 2 3y x t = y x t y x t y x t y x t ...    . (4.10) 

 
5. The plane Couette flow solution 
 
 Applying the method to Eqs (4.2)-(4.4) subject to conditions (4.5)-(4.7), we obtain the following 
results  
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 The solution for the velocity profile of the plane Couette flow is given by  
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 For the temperature profile of the plane Couette flow we have 
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 The solution for the temperature profile of the plane Couette flow is given by 
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For the concentration profile of the plane Couette flow we have 
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 The solution for the concentration profile of the plane Couette flow is given by  
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6. Formulation of the plane Poiseuille flow problem 
 

 
 

Fig.2. Model of the plane Poiseuille flow. 
 

 In the plane Poiseuille flow both plates are stationary whereby the flow between the plates is 
maintained due to the pressure gradient. For the plane Poiseuille flow with initial and boundary conditions 
from Eqs (2.2), (3.6) and (3.8) with Eqs (3.12), (3.13) and (3.14) we have 
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  Here  is the frequency of the oscillating plate. The dimensionless forms of Eqs (6.1), (6.2) and 
(6.3) with their initial and boundary conditions (6.4), (6.5) and (6.6) using Eq.(3.7) where for simplicity we 
drop the bars yields 
 

  
22 3 2

* 2 2 2

u u u u u
= 6 Mu

t yy y t y

          
                           

, (6.7) 

 

  Ec Ec Ec
Pr Pr

2 42 3 2
*

*2 2 2

u u u R
=

t y yy y t y

            
                    

, (6.8) 

 

   
Sc Sc

2
* *

2

KrC C
= C Nc

t y

  
     

, (6.9) 

 
           cos , cos , ,u y,0 = y u 0,t = t u ,t = 0    (6.10) 

 
         cos , cos ,y,0 = y 0,t = t     (6.11) 

 
         cos , cos ,C y,0 = y C 0,t = t   (6.12) 
 

where 
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 is the pressure gradient.  

 For the plane Poiseuille flow solution we have 
 

     cos0u y,t = y t  , (6.13) 
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 The solution for the velocity profile of the plane Poiseuille flow is given by  
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For the temperature profile of the plane Poiseuille flow we have 
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 The solution for the temperature profile of the plane Poiseuille flow is given by  
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 For the concentration profile of the plane Poiseuille flow we have  
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 The solution for the concentration profile of the plane Poiseuille flow is given by  
 
    0 1 2 3 4C y ,t = C C C C C     , (6.23) 

 

  

       

     

     

cos cos
cos

Sc Sc Sc Sc

cos cos cos

Sc Sc Sc Sc

cos cos cos cos

Sc Sc Sc

2 2 2
* ** *

2

2 4 2 2 2 2 2 3 3
* * * * *

2 2 2 3

3 6 3 2 4 3 2 2 3 3
* * * * * *

3 3 3

y  t Kr y  tKr Nc t Kr Nc t
C y,t = y

2

y  t Kr y  t Kr y  t Kr Nc t

2 2 6

y  t Kr y  t Kr y  t Kr

6 3 2

   
     

      
    

         
   

 
Sc

.
Sc

3

3

4 4
*

4

y  t

6

Kr Nc t

24





 (6.24) 

 
7. Formulation of the plane Couette-Poiseuille flow problem 
 

 
 

Fig.3. Model of the plane Couette-Poiseuille flow. 
 
 Suppose that the fluid is restricted between two horizontal parallel plates. The motion of the fluid 
depends on the motion of the upper plate and pressure gradient. For the plane Couette-Poiseuille flow with 
initial and boundary conditions from Eqs (2.2), (3.6) and (3.8) with Eqs (3.12), (3.13) and (3.14) yield we 
have 
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  The dimensionless forms of Eqs (7.1), (7.2) and (7.3) with their initial and boundary conditions (7.4), 
(7.5) and (7.6) using Eq.(3.7) where for simplicity we drop the bars yield  
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           cos , cos , ,u y,0 = 1 y u 0,t = 1 t u ,t = 0      (7.10) 

 
         cos , cos ,y,0 = 1 y 0,t = 1 t       (7.11) 

 
         cos , cos .C y,0 = 1 y C 0,t = 1 t     (7.12) 

 
 For the plane Couette-Poiseuille flow solution we have 
 

     cos0u y,t = 1 y t   ,                                                                            (7.13) 
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 The solution for the velocity profile of the plane Couette-Poiseuille flow is given by 
 

*

* *
*

* *

( , ) ...

 
( , ) cos( ) cos( ) (sin( )) cos( )

cos( ) (cos( ))
cos( )(sin( ))

cos( ) cos( ) cos( )(

1 2 3

2
2 2 2

2 4 2 6 3 2
6 2 2

2 2 4 6

0u y t u u u u

M t
u y t 1 y t y 6 y t M y t

2

y t 12 y t
30 y y t

2 2

M y t y t 42 y

     

               

     
      

         

* *
*

sin( ))

(cos( )) cos( ) cos( )(sin( ))

cos( )
cos( )(sin( )) cos( )(sin( ))

cos( ) (cos( ))
cos( )(s

2

6 3 2 2 8 2 2

2 2
2 8 4 2 4 2 2

3 6 3 2 8 3 32 3
2 8

y t

12 y t y t 108 y y t

M y t
162 y y t 12 M y y t

2

y t 156 y tM t
91 y

6 6 6

 

          


           

     
      

*
* *

* *

*
*

*

in( ))

cos( )
cos( ) (cos( ))

cos( )(sin( )) cos( )

(cos( ))
(cos( )) (sin( ))

cos( )(sin( ))

2 3

2 4 3
2 6 2 8 3 2

8 2 2 4 2

2 10 5 3
2 10 3 2 3

2 10 4

y t

M y t
y t 138 y t

2

438 y y t 2 M y t

432 y t
1872 y y t

6

1746 y y t



  
         

         

   
      

   



 *

*
* *

(cos( ))

cos( )
cos( )(sin( )) cos( )

(cos( )) cos( )(sin( )) cos( )

(cos( ))
(cos( )) (sin( ))

3 6 3 3

2 2 3
6 2 3 2 6

2 8 3 2 8 2 2 4

2 10 5 2
2 10 3 2

10 M y t

M y t
56 M y y t y t

2

120 y t 366 y y t M y t

432 y t
4860 y y t

2

     

  
           

            

  
     

cos( )(sin( )) (cos( ))

(cos( )) (sin( ))
cos( )(sin( )) cos( )

(cos( )) (sin( )) cos( )(sin( ))

2

2 10 4 2 6 3 2

3 12 5 2 3
6 2 2 2 2 2

3 12 3 4 3 3 12 6 3

4104 y y t 30 M y t

12960 y y t
114 M y y t M y t

6

84240 y y t 43416 y y t

6 6

324

         

   
       





       
  

 (cos( )) (sin( )) cos( )(sin( ))

cos( )
cos( )(sin( )) .

2 8 3 2 3 2 8 4 3

3 3 3 3 3 4
2 4 2 3

M y y t 486 M y y t

M t M y t M t
13 M y y t

6 6 24

        

 
       

  (7.16) 



Thermal radiation and chemical reaction effects on unsteady ... 285 

 For the temperature profile of the plane Couette-Poiseuille flow we have 
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The solution for the temperature profile of the plane Couette-Poiseuille flow is given by  
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 For the concentration profile of the plane Couette-Poiseuille flow we have 
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 The solution for the concentration profile of the plane Couette-Poiseuille flow is given by  
 
    0 1 2 3 4C y,t = C C C C C     ,                                                (7.23) 
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8. Discussion of results  
 
 Systems of non-linear differential Eqs (4.2)-(4.4), (6.15)-(6.17) and (7.15)-(7.17) subject to the 
conditions (4.5)-(4.7), (6.18)-(6.20) and (7.18)-(7.21) were solved numerically using the He-Laplace method 
where the effects of various important physical parameters such as the second grade parameter , third grade 
parameter , magnetic field parameter M, Prandtl number Pr, Eckert number Ec, thermal radiation parameter 
R, Schmidt number Sc, chemical reaction parameter Kr* and pressure gradient  on non-dimensional 
velocity components, temperature and concentration components for the three unsteady flow problems, 
namely: the Couette flow, Poiseuille flow and Couette-Poiseuille flow, were analyzed and discussed in 
detail. 
 

 
 

Fig.4. Effect of  on the Couette flow velocity profile 

*M = 0.5, t = 1.5, = 0.3, = 1, = 0.2   . 
Fig.5. Effect of M on Couette flow velocity profile 

when *= 0.5, t = 1.5, = 0.3, = 1, = 0.2    . 
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Fig.6. Effect of  on the Couette flow velocity 
profile when =0.5, M=0.5, t=1.5, * = 1, = 0.2  . 

Fig.7. Effect of Ec on the Couette flow temperature 
profile when =0.3, Pr=0.5, t=1.5, R=0.5, 

* = 1, = 0.2  . 

 

 
 

Fig.8. Effect of Pr on the Couette flow temperature 
profile when =0.3, Ec=0.5, t=1.5, R=0.5,  

* = 1, = 0.2  . 

Fig.9. Effect of R on the Couette flow temperature 
profile when =0.3, Ec=0.2, t=1.5, Pr=1,  

* = 1, = 0.5  . 
 

 
 

Fig.10. Effect of Sc on the Couette flow concentration 
profile when Nc=0.01, t=1.5, Kr*=0.05,  

* = 1, = 0.2  . 

Fig.11. Effect of Kr* on the Couette flow 
concentration profile when Nc=0.01, t=1.5, 
Sc=0.62, * = 1, = 0.2  . 
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Fig.12. Effect of  on the Poiseuille flow velocity 
profile when M=0.3, t=1.5, =1, * = 1, = 0.2  , 

=1. 

Fig.13. Effect of M on the Poiseuille flow velocity 
profile when =1, t=1.5, =0.3, * = 1, = 0.2  , 

=1. 
 

 
 

Fig.14. Effect of  on the Poiseuille flow velocity 
profile when =1, M=0.3, t=0.5, * = 1, = 0.2  , 

=1. 

Fig.15. Effect of  on the Poiseuille flow velocity 
profile when =0.5, M=3, t=1.5, =0.6, 

* = 1, = 0.3  . 
 

 
 

Fig.16. Effect of Ec on the Poiseuille flow 
temperature profile when =0.3, t=0.5, Pr=0.5, 
R=1, * = 1, = 0.2  . 

Fig.17. Effect of Pr on the Poiseuille flow 
temperature profile when =0.3, Ec=0.5, R=1, 
t=1.5, * = 1, = 0.2  . 
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Fig.18. Effect of R on the Poiseuille flow temperature 
profile when =3, * = 1 , = 0.5 , t=1.5, 
Ec=0.2, Pr=1. 

Fig.19. Effect of Sc on the Poiseuille flow 
concentration profile when Nc=0.01, t=1.5, 
Kr*=0.05, * = 1, = 0.2  . 

 

 

 
 

Fig.20. Effect of Kr* on the Poiseuille flow 
concentration profile when Nc=0.01, t=1.5, 
Sc*=0.62, * = 1 , = 0.2 . 

Fig.21. Effect of  on the Couette-Poiseuille flow 
velocity profile when M=3, t=1.5, =1, 

* = 1, = 0.2  , =1. 
 

 
 

Fig.22. Effect of M on the Couette-Poiseuille flow 
velocity profile when =1, t=0.5, =0.3, * = 1 , 

= 0.2 , =1. 

Fig.23. Effect of  on the Couette-Poiseuille flow 
velocity profile when =1, M=0.3, t=0.5, 

* = 1, = 0.2  , =1. 
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Fig.24. Effect of  on the Couette-Poiseuille flow 
velocity profile when =0.5, M=0.3, t=1.5, 
=0.6, * = 1 , = 0.3 . 

Fig.25. Effect of Ec on the Couette-Poiseuille flow 
temperature profile when =0.3, Pr=0.5, t=1.5, 
R=0.5, * = 1, = 0.2  . 

 
 

 
 

Fig.26. Effect of Pr on the Couette-Poiseuille flow 
temperature profile when =0.3, Ec=0.5, t=1.5, 
R=0.5, * = 1 , = 0.2 . 

Fig.27. Effect of R on the Couette-Poiseuille flow 
temperature profile when =3, Ec=0.2, t=1.5, 
Pr=1, * = 1, = 0.5  . 

 
 

 
 

Fig.28. Effect of Sc on the Couette-Poiseuille flow 
concentration profile when Nc=0.01, t=1.5, 
Kr*=0.05, * = 1 , = 0.2 . 

Fig.29. Effect of Kr* on the Couette-Poiseuille flow 
concentration profile when Nc=0.01, t=1.5, 
Sc=0.62, * = 1, = 0.2  . 

 

 Figures 4-29 show the effects of various physical parameters on the dimensionless velocity, 
temperature and concentration profiles for the three problems. Figures 4, 12 and 21 show the variations of 
velocity profiles for different values of . It is seen from these figures that an increase in the value of  leads 
to increased velocity distribution for all values of y. Figures 5, 13 and 22 depict the variation of velocity 
profiles for different values of M. They show that as the value M increases, the velocity decreases thereby 
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not reducing the viscosity of the fluid. Figures 6, 14 and 23 show the velocity profiles for different values of 
. It is seen from the figures that as  increases the velocity profiles also increase. Figures 7, 16 and 25 show 
the effects of Ec on the temperature profiles. It is observed that as Ec increases, the temperature of the fluid 
increases with little significance and hence tends to reduce the viscosity of the fluid. Figures 8, 17 and 26 
depict the variation of temperature profiles for different values of Pr. As Pr increases the temperature also 
increases. Figures 9, 18 and 27 show the effects of R on the temperature profile. The temperature of the fluid 
increases as R increases. Figures 10, 19 and 28 show the effects of Sc on the concentration profile. It is 
noticed that as Sc increases there is an increase in the concentration of the fluid. Figures 11, 20 and 29 
present the effects of Kr* on the concentration profile. It is found that the concentration of the fluid reduces 
as Kr* increases. Figures 15 and 24 demostrate the effects of   on the velocity profile. It is found that the 
velocity of the fluid increases with an increase in  . 
 
9. Conclusion 
 
 Effects of thermal radiation and chemical reaction on an unsteady magnetohydrodynamic(MHD) 
third grade fluid flow between stationary and oscillating plates are analyzed by the He-Laplace method. The 
solutions of velocity, temperature and concentration of the Couette flow, Poiseuille flow and Couette-
Poiseuille flow were presented. The following conclusions are drawn from the figures:   
 velocity profiles increased due to an increase in the non-Newtonian parameter, second grade parameter 

and pressure gradient parameter while it decreased due to an increase in the magnetic parameter, hence 
increasing the boundary layer of the fluid; 

 an increase in temperature profiles is a function of an increase in the Eckert number, Prandtl number 
and thermal radiation parameter and also reduces viscosity and boundary layer of the fluid;  

 concentration profile decreased due to an increase in the chemical reaction parameter while it increased 
due to an increase in the Schmidt number.  

 
Nomenclature 
 

iA  (i=1, 2)  Rivline Erickson tensor 

 B  magnetic induction 
  0B    applied magnetic field 

 b  induced magnetic field 
 C  species or concentration 
  pC    specific heat 

 D  mass diffusion coefficient 
 E  imposed electric field 
 Ec  Eckert number 
 I  identity tensor 
 J  current density 
  *Kr    chemical reaction parameter 

  *k    mean absorption coefficient 

  *
2M    magnetic field parameter 

 Nc  concentration difference parameter 
 P  pressure 
 Pr  Prandtl number 
 R  radiation parameter 
 Sc  Schmidt number 
 T  Cauchy stress tensor 
 t  time 
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 u  dimensionless velocity in the y direction 
  rq    radiation heat flux 

 V  velocity vector 
 X  dimensionless coordinate along the surface 
 Y  dimensionless coordinate perpendicular or normal to the surface 
    &    non-Newtonian parameter  

      temperature 
  k    thermal conductivity 
      dynamic viscosity 

      fluid density 

      electrical conductivity 

  *    Stefan-Boltzman constant 
      porosity of the porous medium 
      frequency of the oscillating plate 
 Ω  pressure gradient 
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