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An analysis was carried out for an unsteady magnetohydrodynamic(MHD) flow of a generalized third grade
fluid between two parallel plates. The fluid flow is a result of the plate oscillating, moving and pressure gradient.
Three flow problems were investigated, namely: Couette, Poiseuille and Couette-Poiseuille flows and a number
of nonlinear partial differential equations were obtained which were solved using the He-Laplace method.
Expressions for the velocity field, temperature and concentration fields were given for each case and finally,
effects of physical parameters on the fluid motion, temperature and concentration were plotted and discussed. It is
found that an increase in the thermal radiation parameter increases the temperature of the fluid and hence reduces
the viscosity of the fluid while the concentration of the fluid reduces as the chemical reaction parameter increases.

Key words: third grade fluid, plane Couette, Poiseuille and Couette-Poiseuille flow, magnetohydrodynamics
flow, stationary and oscillating plate, thermal radiation and chemical reaction.

1. Introduction

A fluid is a substance which is capable of flowing or on the other hand we can say that a fluid is a

substance which deforms continously when subjected to an external shearing force. Fluids may be of the
following types: Newtonian, Non-Newtonian, plastic and ideal. Thus, considering Non-Newtonian fluids,
which are fluids that do not obey the Newton law of viscosity and the relation between shear stress and rate
of shear strain is nonlinear. Non-Newtonian fluids are increasingly considered as more important and
appropriate in technological applications in several industrial manufacturing processes such as in the drilling
of oil and gas wells, polymer and petroleum industries, power generators, pumps as well as accelerators.
A large class of real fluids does not exibit a linear relationship between stress and the rate of strain, so
because of their nonlinear dependence, the analysis of the behaviour of fluid motion of non-Newtonian fluids
tends to be more complicated in comparison with that of a Newtonian fluid. Due to the complexity of these
fluids several constitutive equations have been proposed which are complicated and contain some special
cases of these fluids. The constitutive equations of viscoelastic fluids are usually classified under the
categories of differential, rate and integral models. The fluid under consideration falls under the category of
the differential model with a very short history of the deformation gradient which has an influence on the
stress. However, there is no model which can alone predict the behavior of all non-Newtonian fluids and
governing equation due to the complexity of these fluids.

In view of this type of fluid and its applications, many researchers have studied steady and unsteady
magnetohydrodynamic(MHD) third grade fluids flow between parallel plates with different configurations.
Hayat et al. [1] developed a set of differential equations describing the steady flow of an Oldroyd 6-constant
magnetohydrodynamic fluid and found that the obtained solutions for the steady flow are strongly dependent
on the material constant (non-Newtonian parameter) and it differs from the model of Oldroyd 3-constant
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fluid. Closed form solutions for the velocity and temperature profiles were obtained for a particular
viscoelastic fluid between two oscillatory walls in the presence of transverse magnetic field by Ajadi [2],
where the flow is due to the continous movement of the oscillatory wall and the time dependent pressure
gradient and there is a monotonic decrease in velocity with time in the domain while the viscoelastic fluid
velocity decreases as the distance from the wall decreases while it is on the contrary for the non-viscoelastic
fluid (E #0). Aksoy and Pakdemili [3] investigated the flow of a non-Newtonian fluid through porous media

between two parallel plates at different temperatures. The governing momentum equation of a third grade
fluid with modified Darcy’s law and energy equation were derived. The approximate analytical solutions
obtained by using perturbation techniques were within the validity range, the analytical and numerical
solutions are same. The heat transfer analysis on the laminar flow of an incompressible third grade fluid
through a porous flat channel was studied by Ellahi et al. [4] where the lower plate was assumed to be at a
higher temperature than the upper plate. The obtained analytical solutions were compared with the numerical
solutions and showed that accuracy is remarkable. Hayat and Nawaz [5] investigated the effects of heat
transfer on a magnetohydrodynamic(MHD) axisymetric flow of a viscous fluid between two radially
stretching sheets and the solutions presented by using the homotopy analysis method show that the magnetic
field slows down the motion of the fluid while the dimensionless radial velocity decreases when the porosity
parameter increases. Danish ef al. [6] obtained the exact analytical solutions for the velocity profiles and
flow rates in an explicit form for the Poiseuille and Couette-Poiseuille flow of a third grade fluid flow
between two parallel plates. The exact solutions match well with their numerical counterpart and better than
the recently developed approximate analytical solutions. Radiation and heat transfer effects on an MHD non-
Newtonian unsteady flow in a porous medium with slip condition were investigated by Gbadeyan and Dada
[7] where the fluid is assumed not to absorb its own emitted radiation but that of the boundaries. Crank
Nicolson type of the finite difference method was used to solve the resulting governing equations.

An unsteady MHD thin film of a third grade fluid down an inclined plane with no slip boundary
condition was studied by Aiyesimi et al. [8] and it was found that the magnetic field decreases the viscous
and Joule dissipation, while it decreases the velocity profile and its gradient. Aiyesimi et al. [9] investigated
the combined effects of the magnetic field on the MHD flow of a third grade fluid through an inclined
channel in the presence of a uniform magnetic field with the consideration of heat transfer. Also, three
different problems, i.e, Couette, Poiseuille and Couette-Poiseuille flows, were analysed and it was observed
that the velocity increases rapidly from the moving upper plate to the stationary lower plate and the velocity
of the fluid increases through the two stationary plates as the gravitational parameter increases. Baoku [10]
presented the effects of suction and thermal radiation on the unsteady convective flow and heat transfer in a
third grade fluid flow over an infinite vertical plate where the plate is porous to allow possible wall suction.
The Crank-Nicolson finite difference scheme was empolyed to solve the governing time-based coupled
partial differential equations where the flow field is appreciably influenced by suction and viscoelastic
parameters. Gul et al. [11] studied the thin film flow in an MHD third grade fluid on a vertical belt with
temperature dependent viscosity by using the Adomian decomposition method to solve the governing
coupled nonlinear differential equations with their boundary conditions. Hayat et al. [12] addressed the
boundary layer flow and heat transfer in a third grade fluid over an unsteady permeable stretching sheet. The
transverse magnetic and electric fields in the momentum equation are considered. It is observed that both the
velocity and temperature profiles increase in the presence of an electric field while the temperature increases
due to the radiation parameter. The boundary layer thickness increases by increasing the Eckert number.
Rasheed et al. [13] considered an unsteady magnetohydrodynamic flow of a generalized third grade fluid
between two parallel plates. The flow is caused by the plate oscillation and movement. The solutions to the
nonlinear partial differential equations are obtained by using the homotopy perturbation method. It was
observed that the velocity field decreases by increasing the magnetic term. Shah et al. [14] worked on the
flow of an unsteady non-Newtonian fluid between stationary and oscillating plates and solved the nonlinear
partial differential equations using the homotopy perturbation method. It was observed that the velocity
increases by increasing the pressure gradient parameter. Hayat ef al. [15] examined the effects of an inclined
magnetic field and heat transfer in the flow of a third grade fluid with an exponentially stretching surface.
The resulting equations are solved for the approximate solutions and effects of fluid parameters on the
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temperature field are quite similar for heat generation and absorption. Makinde et al. [16] made a
thermodynamic analysis of variable viscosity hydromagnetic Couette flow in a rotating system with Hall
effects and showed that the fluid rotation increases the dominant effect of heat transfer irreversibility at the
upper moving plate region while the entropy production is more at the lower fixed plate region. An unsteady
MHD flow and heat transfer of a third grade fluid past on oscillating inclined belt was studied by Nasir et al.
[17] where the analytical solutions of velocity and temperature profiles were obtained by using the optimal
homotopy asymptotic method and homotopy perturbation method. Ghani et al. [18] examined the motion of
an incompressible unidirectional magnetohydrodynamics thin film flow of a third grade fluid over an
oscillating inclined belt embedded in a porous medium and the physical problem was modeled in terms of
nonlinear partial differential equations solved using two analytical techniques, namely the optimal homotopy
asymptotic method and homotopy perturbation method. An unsteady two-dimensional MHD flow between
the infinite parallel plate was investigated by Kumar et al. [19] and the effect of the thermal radiation and
magnetic field were included in this model. The transformed governing equation was solved numerically by
using the Runge-Kutta shooting technique and it was noticed that the Nusselt number is an increasing
function of the squeeze number. However, based on these works, it has been observed that the effects of
thermal radiation and chemical reaction on an unsteady MHD fluid flow between stationary and oscillating
plates have not been considered.

2. Mathematical formulation of the problem

An incompresible simple fluid is defined as a material whose state of present stress is determined by
the history of the deformation gradient without a preferred reference configuration. As such the fluid flow
problem is governed by the continuity, momentum and temperature equations, respectively

VIV =0 2.1)

where V' = (u,v,w) is the velocity vector
The velocity field V' for the fluid flow problem under investigation should be of the form

V=[u(y.1),0,0] (2.2)

where u ( v, t) is the velocity field in the x-direction. This velocity field satisfies the continuity Eq.(2.1).
The relevant momentum equation is given by

2 3 2 42
'y oy~ ot oy

From the Maxwell equation which has the form

Do 2 6q
C —=kVO0+tr(T.L)-—L 24
Pr oy (TL)=7 24)

g y

where p is the constant fluid density, T is the stress tensor, Cp is the specific heat, &k is the thermal

conductivity, 0 is the temperature, oy is the material derivative, L = gradV , ¢ is the radiative heat flux
t

according to Rosseland approximation where
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where o is the Stefan-Boltzman constant, £* is the mean absorption coefficient.
Note that in writing Maxwell’s equation the displacement current is neglected.
And also the equation for concentration governing the flow is given by
oc eCc oC oC __d°C

— tu— +w—=D—5-K,C
ot Ox oy 0z ayz

(2.6)

where u, v are the velocities in the x, y directions, respectively, C is the concentration, D is the diffusion

coefficient of the diffusing species and Kr the chemical reaction parameter.

3. Formulation of the plane Couette flow problem
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Fig.1. Model of the plane Couette flow.

Consider an unsteady laminar flow of an incompressible third grade fluid between two parallel
plates. The upper plate is oscillating and moving with constant velocity U relative to the lower plate. The
upper plate carries along with itself a liquid of a third grade fluid during its motion. The upper and lower
plates have a uniform distance between them considered to be 4. The temperature of the higher and the lower
plate are 6, and 0, , considering MHD unidirectional flow with zero pressure gradient with a uniform

applied magnetic field B, acting in the y-direction. Thus having V|:u( y,1),0, 0] , 0 ( v, t) and C(y,1),

also the above definition of velocity satisfies the continuity equation. The momentum, energy and

concentration equations yield

2 3 2 2
ot oy oy~ ot ) oy

2 2 3 4 *n3 A2
C ﬁzkiﬁj+u(&j +a,—au +2B3[8_uj +16G*906—?,
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P ot o’ oy oy ot oy 3k oy
2
oc _ D oc -K,.C,
ot 8y2

with intial and boundary conditions

u(h,t)=U+Ucos(oh), (y>0), u(0t)=U+Ucos(wt), (t>0),

u(y,t)=0, at y—ow (1>0),

(3.1)

(3.2)

(3.3)

34
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0(h,t)=(0,-0,)+(0;-0,)cos(wh)+0,, (y>0),

(3.5)
0(0,1)=(8,-69) +(8, -6p)cos(wt) +6,,  (t>0),
C(h,1)=(C;-Cy)+(C; - Cy)cos(my) + Cp, (y>0),
(3.6)
C(0,0)=(C;-Cy)+(C,;-Cp)cos(wt)+Cy, (t>0).
Here o is the frequency of the oscillating plate. We introduce the non-dimensionless quantities
— - 06-6 - C-C
i=t y=2 Tl peT0, Ce—b (3.7)

applying Eqgs (3.7) to Egs (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6), where for simplicity we drop the bars of
the dimensionless quantities yields

2 3 202
a—MZS* al; +a azu +6B[6_MJ 8_1; _Mu’ (38)
ot Oy oy~ ot Jy Oy

2 2 3 4 2
X _5.[06 +8+Ec ou +oaEc Ou +BEc ou +£ﬁ, (3.9)
ot Pr 8y2 ayzat oy Pr 8y2

2
0C 81 0°C | K5 oy Ney, (3.10)
ot Sc ayz Sc
u(y,0)=1+cos(mwy), u(0,t)=1I1+cos(wt), u(oo,t)=0, 3.11)
0(y,0)=1+cos(wy), 6(0,1) =1+ cos(w), (3.12)
C(y,0)=1+cos(wy), C(0,t)=1+cos(wt) G.13)

where
252 262 2 2
Ot=a—12, B:B3U45 ’ M=GB()6 ’ 8*=8—2, Ec=U—,
ph wh 1 h Cp(6,-9y)
(3.14)
26203 2
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The parameters above in Eq.(3.14) encompass the physics of the problem. In particular, o and 3 are
the non-Newtonian parameters, d. is a constant parameter, Ec is the Eckert number, M is the magnetic field

parameter, Pr is the Prandtl number, R is the radiation parameter, Sc is the Schmidt number, K« is the
chemical reaction parameter, Nc is the concentration difference parameter.
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4. Method of solution

We employed the method of solution called the He-Laplace method by Hradyesh and Atulya [20],
where the use of the homotopy pertubation method coupled with the Laplace transformation method to solve
linear and nonlinear partial differential equations was employed. It is worth mentioning that the method is an
elegant combination of the Laplace transformation, the homotopy perturbation method and He’s
polynomials. The use of He’s polynomials in the nonlinear term was first introduced by Ghorbani and
Saberi-Nadjafi [21] and Ghorbani [22]. To illustrate the basic idea of this method, let us consider a general
nonlinear nonhomogeneous partial differential equation with initial conditions of the form

o° y
?+R1y(x,t)+R2y(x,t)+Ny(x,t) = f(x,t) ,
4.1

y(e0)=a().  Z(x0)=p()

Ox
differential operator and f(x,7) is the source term. Taking the Laplace transform (denoted by L) on both
sides of Eq.(4.1), we have

0 . . . .
where R, =§ and R, = — are the linear differential operators, N represents the general nonlinear

2
L{%}rL[R,y(x,t)JrRzy(x,t)]JrL[Ny(x,t)]:L[ ol
4.2)
0
sTL{y(x,0)] - sy (x.0)- a—i(x,0)= L[ Ry (x0)+ Ryy (x.)]+
-L [Ny (x,t):l + L [f(x,t)}.
Applying the initial conditions given in Eq.(4.1), we have

L[y(x,t)] = %X)Jr @— S%(L[R]y(x,t)Jr Rzy(x,t)] + L[Ny(x,t)])-l—

(L1 (v)))

Operating the inverse Laplace transform on both sides of Eq.(4.3) gives

(4.3)

y(x,t) = F(x,t) - [S%(L[Rly(x,t) + Rzy(x,t)] + L[Ny(x,t)})} 4.4)

where F(x,t) represents the term arising from the source term and the prescribed initial conditions. Now
we apply the homotopy perturbation method

y(x,t)= ZP” v, (x,1), 4.5)
n=0
and the nonlinear term can be decomposed as

Ny(x,t)=) P"H,(y) (4.6)
n=0
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and

] an n
H,(y)=— (ZP" ykj : 4.7)
nlop"  \iD =0

coupling the Laplace transform and the homotopy perturbation method gives

[ee]

ZP”yn (x,t)= F (x,t)+

_p[ {—L{(RNRZ ZP wu (vit)+ ZP " (”m

so comparing the coefficients of like powers of p, we have the following approximations

Py, (x,t) = F(x,t),

(4.8)

(o)== (R4 R )+ 1.0)]

1

P o2 )=~ [ SR R )y () 1,)] |

(4.9)

p3 1Y3 (x,t) = —SizL[(RI +R, )y2 (x,t) +H, (y)ﬂ

Hence, the general solution takes the form

y(x,t) = (x,t) +y; (x,t) +; (x,t) +3 (x,t) +.... (4.10)
5. The plane Couette flow solution

Applying the method to Eqgs (4.2)-(4.4) subject to conditions (4.5)-(4.7), we obtain the following
results

uo(y,t)=]+c0s(oay), 5.1

uy (y,t)=—0’ cos((oy)[& +6Bw’ (sin(wy))z}t—M[1+cos(ooy)]t , (5.2)

8:00” cos(awy)t’

+308.pe’ cos(wy)(sin(my))z £+

uy(y,t)=

~ 128:p° (cos(my)f i
2
+42ap e’ cos(wy)(sin(wy))2 t—120Bw’ (cos(coy))3 t+ oo’ cos(wy)t + (5.3)

+8:M o’ cos(wy)t” + a0’ cos(my)t +

~108p%’ cos(oay)(sin((oy))2 £ +162p%°w° cos((oy)(sin(oay))4 £+

2
+12PM * cos((oy)(sin(oay))z i +M7[1 + cos((oy)]tz.
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The solution for the velocity profile of the plane Couette flow is given by

u(p,t) =y +1u; + 1y +1uz +...= 1 +cos(wy) — o cos(wy)[8: + 6B’ (sin(wy))? |t — M1 + cos(wy)]t +

1 28*[3036 (cos(coy))3 r
2
+8.007 cos(my)t + 42(1B036 cos(ooy)(sin((ny))2 t—1 2(1B(D6 (cos(u)y))3 t+ OLB(D2 cos(@y)t +

-1 08[32 o’ cos(wy)(sin((x)y))z 41 6262 o’ cos(wy)(sin(ooy))4 £ +1 2BM o’ cos((oy)(sin(u)y))2 o+

N 870 cos(coy)t2

+ 308*[30)6 cos(ooy)(sin((ny))2 - +8:Mw’ cos(ooy)tz +

2 3 6 3 20,8 3.3

+M—[1+c0s(oay)]t2 _ ke cos(wp)t + 1363: B (cos(wy))"t —9185{3038 cos(my)(sin(my))2t3 +

2 6 6

20g. 4 3
%Mo czos(oay)t - 80w’ cos(coy)tz +136’8*0([3&)8(cos(coy))3t2 —4388*043(08 cos(ooy)(sin(ooy))ztz +

210 5.3

28.aM o’ cos(ay) — B20BO ;COS(“W D | 18726,8%0" (cos(ey))’ (sin(ey))’F + (5.4)
—1746 S*BZ o'’ cos(wy)(sin(wy))* £+l 08pM o’ (cos(ooy))3 256 O«pM o’ cos((oy)(sin(my))z 2+
M 2w’ cos(oay)t3

— 8.0’ cos(@y)t + ]20&2[3038 (cos((oy))3t - 366a2Bc08 cos(wy)(sin(my))zt +

2
432aB2(o]0(cos(oay))5 r
2
—4104aB’ o'’ cos(oy)(sin(oy)) £ + 30aBM e’ (cos(wy))’ 12 — 1140BM 6 cos(wy)(sin(wy))? 1 +

—aM’w’ cos(coy)tz +

129608 0" (cos(@y))’ (sin(wy))” .\ 84240B° " (cos(wy))’ (sin(wy))’t’  43416B’w" cos(wy)(sin(wy))’ .\
6 6 6

+324 [32 Mo® (cos((oy))3 (sin(wy))z - 486 [32 Me® cos(oay)(sin(wy))4 -1 3PM 2w? cos((oy)(sin((oy))z £+

2
_MT[] + cos(oay)]t3 +...

—a’ Mo’ cos(oy) - +4860ap’ '’ (cos(wy))’ (sin(wy))’ £ +

For the temperature profile of the plane Couette flow we have

0 (t) = 1+cos(wy)+8.Ec o’ (sin(coy))2 t +PEc o (sin(coy))4 t, (5.5

0)2 [6* + R]cos(a)y)t B 206«Ec 034 [8* + R](sin(wy))z t2

0 - _
1(3:1) Pr 2Pr ’
N 28.Ec o’ [8. + R](cos(wy))2 i _ 4BEc @ 8. + R](sin((oy))4 i .\ (5.6)
2Pr 2Pr

N 12BEc o [3. + R](cos(o)y))2 (sin(my))z i
2Pr

b
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o [8. + R]2 cos(wy)t’  83.Ec @’ [8. + R]2 (cos(o)y))2 r
2Pr 6Pr’
88+Ec 0’ [+ + R]2 (sin(my))z r N 24BEc o 8. + R]Z (cos(my))4 £
6Pr’ 6Pr’
192BEc o [8: + R]” (cos(wy))’ (sin(wy))’ 7
- 6P’
40BEc o’ [5. + R]’ (sin(oy))"
6Pr? '

The solution for the temperature profile of the plane Couette flow is given by

+

eg(y,t) =

+ +

(5.7)

+

9(y,t)=90 +91+92 +93 +eey

0(y,¢)=1+cos(wy)+8.Ec @’ (sin(ooy))2 1 +PEc o’ (sin(a)y))4 t+
@[5 + RJcos(ap)r _ 28.Ee 0[5 + R](sin(0y))" ¥ |
Pr 2Pr
28.Ec o’ [8. + R](cos(wy))z * 4PEc o’ [8. + R](sin(wy))4 t
2Pr 2Pr
. 12BEc o’ [8:+ R](cos((oy))z (sin(my))z £
2Pr
o [5. + R cos(wy)® 88.Ec o [3. + R] (cos(aw))’ ¢
2Pr 6Pr’
. 88.Ec o’ [8* + R]Z (sin(oay))2 r s 24BEc o’ [8* + R]2 (cos(coy))4 r
6Pr 6Pr’
192BEc 0* [8. + R’ (cos((oy))z (Sin((D)’))z £ N
6Pr’
40BEc 0[5, + R]2 (sin((oy))4 o [8:+ R]3 cos(@y)r’ .\
6Pr? 6Pr’
168.Ec 0’ [3. + R]3 (cos((oy))z ! 168.Ec o’ [5. + R]3 (sin((oy))z ¢!
’ 24pPr° B 24P
480BEc o'’ [8. + R]3 (cos(my))4 ¢!
- 24Pr’
3072BEc o'’ [8. + R]3 (cos(coy))2 (sin(ooy))z t* 544BEc o'’[5. + R]3 (sin(wy))4 r*
24pr? ) 24pr

+ +

+

+

+

(5.8)

+

+

For the concentration profile of the plane Couette flow we have

C, (y,t)=]+cos(my)—Kr;]ZCt , (5.9
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e’ cos(wy)r  Kncos(wy)t _Knt Kr’ Ne t?

C/(y,t)=- - + , 5.10

! (y ) Sc Sc Sc 2S¢? 610

8:0” cos(wy)t®  8.Knw’ cos(wy)r’
CZ (ya t) = 2 + 2
2Sc 2Sc (5.11)
. 8. K’ cos(wy) i s K i . Ki? cos(wy)  KiNet’
2S¢? 2S¢? 2S¢? 6S¢®
The solution for the concentration profile of the plane Couette flow is given by

KnNet 8.’ cos(wy) ¢ _Kn cos(wy)? _Knt Ki?Net? .

C(y,t)=1+cos(wy)-

Sc Sc Sc Sc 25¢?
. 8:0” cos(wy) £’ . 8.Knw’ cos(wy) ¢’ . Ki? 1 . Kri cos(wy)t’ ~ KilNe i
2S¢’ Sc’ 2S¢’ 2S¢’ 6Sc’ 5.13)
80 cos(ay)r’  diKno’cos(wy)t’  8.Krw’ cos(wy)t’
6ese 38¢ B 2S¢
KWt K73 cos(wy) £’ s KrdNet?
6S¢’ 6Sc? 248¢*

6. Formulation of the plane Poiseuille flow problem

l

Upper Stationary Plate

g
TTTE

(=0
|||\||§|\
9
e
]
g
=]
£
gl

Pressure — — —
Gradient — — —

villl
11
11111

LY

Lower Stationary Plate

Fig.2. Model of the plane Poiseuille flow.

In the plane Poiseuille flow both plates are stationary whereby the flow between the plates is
maintained due to the pressure gradient. For the plane Poiseuille flow with initial and boundary conditions
from Egs (2.2), (3.6) and (3.8) with Eqs (3.12), (3.13) and (3.14) we have

2 3 2 2
pa_u:_a_P+H ou +a 52u +6B3(6—uj a—Z—GBgu, (6.1)
dy* ot ) oy

2 2 3 4 *n3 A2
1
pC —ae=k[—a e}ru —gqu +a1—;22t+2[33(%J + 1609 00 (6.2)



Thermal radiation and chemical reaction effects on unsteady ... 279
2
Qimfc}ma 63
ot ayz
u(h,t)=Ucos(wy),(y>0), u(0.)=Ucos(wt),(1>0),
(6.4)
u(y,t)=0, at y > o (t>0),
0(h,t)=(6;,-6,)cos(wy)+6,,(y>0),
(6.5)
0(0.1)=(6,-6,)cos(wt)+86,, (1>0),
C(h,t) = (C1 - Co)cos(coy)Jr Gy, (y > 0),
(6.6)

C(0,t)=(C; - Cy)cos(wt)+Cy, (t>0).

Here o is the frequency of the oscillating plate. The dimensionless forms of Eqgs (6.1), (6.2) and
(6.3) with their initial and boundary conditions (6.4), (6.5) and (6.6) using Eq.(3.7) where for simplicity we

drop the bars yields

2 3 20 A2
ou _ x —Zl +a 8214 +6B(a—uj 8_? -Mu-Q,
ot oy oy~ ot oy ) \ oy

2

0y

ot

2 2 3 4 2
0 _5:(%0) ; pfou) | g, Pu g ) RO
Pr 5)}2

oy

2
a_c:g(a_cj_m (C+No),
Sc

u(y,0)=cos(wy), u(0,t)=cos(wr), u(wt)=0,
8(y.0)=cos(wy), 6(0,t)=cos(wt),

C(y,O) = cos(coy), C(O,t) = cos(mt),

2

where Q= o op is the pressure gradient.
wUh oy
For the plane Poiseuille flow solution we have

ug (.t)=cos(wy)—-Qr,

u;(y,t)= —o’ cos(my)[é* + 6[30)2 (sin(my))z} —Mcos(o)y)t +

b

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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6 35
1 305.pef cos(oy)sin(ay) ¢ 20 (st

+8:M &’ cos(o)y)t2 +8.am cos(oay)t + 420([3&)6 cos(coy)(sin(coy))2 t+ (6.15)

8:0” cos(ay)t’

+

MZ(yat)

—12&B0)6(cos(my))3t+oc[30)2 cos(coy) ]OSB () cos(coy)(sin((ny)) i +16ZB ® cos(my)(sin(coy))4t2+

M?cos(oy)  M2QF
+12BM &* cos(coy)(sin(oay))z 2+ 2( y)t° —— T

The solution for the velocity profile of the plane Poiseuille flow is given by
u(y,t)=uy+u; +u, +uz +...=

MO

u(y,t) = cos(wy) — Qf — o’ cos(coy)[& + 6B’ (sin(ooy))z} — M cos(wy)t +

X

_128.pw (cos((oy))3 i’
2
+8:M &’ cos((;)y)t2 +8.a0m” cos(oy)f + 420LB0)6 cos(my)(sin(my))zt +

2 4
(0T OSN30 608 cos(an)sin(@m)

—12cho (cos(oay)) t+ocho cos(coy)t—IOSBZo) cos(o)y)(sm(coy))

+1 6252 ® cos(wy)(s1n(wy))4 2 +1 2BM o’ cos(oay)(sin(oay))z £+ MT[] + cos((oy)]t2 +

B 8w? cos((oy)t3 N 15687 Bcog (cos(ooy))3 P
6 6
Mo’ cos(coy)t3
2
8 . 2,2 4 2
—4388«af o’ cos(wy)(sin(wy)) t” — 26.0M ®" cos(wy)t” +
_ 4325.p° 0"’ (cos(y))’
6
-1 7468*[32 10 cos(my)(sin(my))4 £+ IOS*BM(D6 (cos(coy))3 -
oM 2w? cos(coy)13
2
+1200L2[3038 (cos((oy))3t - 366&2[3038 cos(wy)(sin(wy))zt —o’Mo* cos(wy)t +
432aB2 Io(cos(my))j
2
—41040p° 0"’ cos(wy)(sin(wy))* £ + 30aBM o’ (cos(wy))’ - (6.16)
1140pMw cos(ooy)(sin(wy))2 > — oMo’ cos((oy)t2 -
12960B° '’ (cos(wy))’ (sin(wy))’ 2 84240;33 2 (cos(ay))? (sin(wy))? .\
6 6
4341 6B3 2 cos(coy)(sin(coy))6 7
6

~918:Be” cos(wy)(sin(wy))’ £ +

— &7 aw’ cos(o)y)t2 + ]388*0L[3c08 (cos(coy))3 2+

+18728.p° o’ (cos(wy))’ (sin(wy))* £ +

568.,pM &’ cos(wy)(sin(wy))’ 1 — 8.0 0’ cos(wy)r +

+4860ap’ o'’ (cos(wy))’ (sin(wy))?£* +

+ 324 B2 Me® (cos(coy))3 (sin(coy))2 £+

2
—486B° M ®® cos(wy)(sin(wy))*+* — 13pM o’ cos(wy)(sin(wy))’ —MT[I +cos(p)]f +...
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For the temperature profile of the plane Poiseuille flow we have
0y (,1)=cos(y)+8.Ec o’ (sin(ooy))z t +BEc o (sin(coy))4 t, (6.17)

o7 [8. + Rloos(@y)t _ 25.Ec o’ [5. + R](sin(wy))’ ¢
Pr 2Pr
28.Ec o [3. + R](cos(my))z * 4BEc o’ [8. + R](sin(wy))4 r .
2Pr 2Pr
. 12BEc o’ [8* + R](cos(o)y))2 (sin(my))z ’
2Pr

e](yat)z_ +

N (6.18)

The solution for the temperature profile of the plane Poiseuille flow is given by

0(y,t)=0)+60,+6,+0;+:
0(y.t)=cos(wy)+8.Ec o’ (sin ((oy))2 t+BEc o’ (sin (wy))4 t+
®” [8+ + R]cos(wy)t  28:Ec o’ [3, + R](sin ((’DJ’))Z a N
Pr 2Pr
. 28.Ec o [8. + R](cos((ny))2 * 4BEc o’ [8. + R](sin(my))4 r
2Pr 2Pr
. 12BEc &’ [3. + R](cos((oy))2 (sin(o)y))2 I .\ o [8. + R]2 cos(wy)t’ .
2Pr 2Pr
_ 88:Ec ®° [84 + R]Z (cos(o)y))2 I . 88.Ec o’ [3. + R]2 (sin(o)y))2 r .
6Pr’ 6P’
ke o [5. + BT (cos(on)' 19285 5.+ AT (cos(en)’ (s (o))"
i 6Pr’ - 6Pr’
40BEc o° [8. + R]2 (sin(wy))4 @ [8+ + R]3 cos(o)y)t3 . 168+Ec ° [8+ + R]3 (cos(coy))z t? .
6Pr’ 6Pr’ 24Pr’
168.Ec o° [8. + R]3 (sin(ooy))2 ! 480BEc o'’ [5. + R]3 (cos(wy))4 t* .
24Pr° 24Pr° (6.19)
3072BEc o'’ [3. + R]3 (cos((x)y))2 (sin(u)y))2 ! 544BEc o'’ [5. + R]3 (sin ((oy))4 *
24Pr B 24Pr '

+

For the concentration profile of the plane Poiseuille flow we have

Cy(y.t)=cos(wy)- KV*S]Z” ) (6.20)

8.0 cos(w@y)t _Kkn cos(wy)t . Kr’Ne t?
Sc Sc 28¢?

Ci(y.t)=- , (6.21)
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8:0’ cos(wy) s’ . 8. Kno’ cos(wy) ¢’

C,(y,t +
2(11)= 2S¢? 2S¢? 622)
. 8 K’ cos((oy) £ . Kr’ cos((oy) *  Ki'Net®
28¢? 28¢? 6Sc®
The solution for the concentration profile of the plane Poiseuille flow is given by
C(y,t):C0+C1+C2+C3+C4 + ey (623)
Kr. 8.0° cos(wy)t  Krn cos(wy)t Ki 2
C(y.t)=cos(wy)— et () A () K Net
Sc Sc Sc 2S¢?
8*0) cos(my) 1 N 8 Krw’ cos(wy) r . Kr? cos(coy) £ Kri'Net
2S¢? Sc? 2S¢? 6Sc’
(6.24)
8*(9 cos(a@y)t’ SfKr*of cos(wy)t’  8.Ki o’ cos(wy)t’  Ki cos(wy)t’
6Sc? 38¢? 25¢° 6Sc?
Kr!Net?
t—
24Sc

7. Formulation of the plane Couette-Poiseuille flow problem

L

Oscillatory and Moving Plate
| |

Kl

=P
JIHg
H
]
=P
&
1
.l
gl
e
—):-‘—‘

villl

Stationary Plate

Fig.3. Model of the plane Couette-Poiseuille flow.

Suppose that the fluid is restricted between two horizontal parallel plates. The motion of the fluid
depends on the motion of the upper plate and pressure gradient. For the plane Couette-Poiseuille flow with
initial and boundary conditions from Eqs (2.2), (3.6) and (3.8) with Egs (3.12), (3.13) and (3.14) yield we
have

ou oP (o o3u ouY o?u
L. SN AL P AL NPT (—j " 5Bu, 7.1)
2] ](@2&] Nov) g2

2 2 3 2
1650
oc B _yfo0), (o), 62 4 2p, au) 0*08?’ 72
oy oy~ ot 3k oy
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2
9% _plZC k.,
ot 8y2

u(ht)=U+Ucos(wy),(y>0), u(0.)=U+Ucos(wt),(t>0),

u(y,1)=0, at y—>ow (t>0),

0(r.1)=(06,-6,)+(8,-6y)cos(wr)+6,, at y=h (y>0),

0(r.1)=(0,-6,)+(6,-6,)cos(wr)+6,, at y=0 (t>0),

C(ht)=(C;—Cy)+(C; =Cy)cos(wy)+C,, at y=h (y>0),

C(y.1)=(C,—Cp)+(C;—Cy)cos(wy)+Cy, at y=0 (t>0).

(7.3)

7.4

(7.5)

(7.6)

The dimensionless forms of Eqgs (7.1), (7.2) and (7.3) with their initial and boundary conditions (7.4),

(7.5) and (7.6) using Eq.(3.7) where for simplicity we drop the bars yield

2 3 20 A2
LR N A s i +6B[6—u] T\ mu-0,
ot oy dy“ot ) \ oy

2 2 3 4 2
@=8—* ﬂ +0«Ec 8_u + oEc Ou +BEc a_u +£ﬁ,
o Pr| oy’ oy’or ) Pro’

2
a_CIS_* aC —Kr*(C+NC),
ot Sc 6y2 Sc

u(3,0)=1+cos(wy), u(0.0)=1+cos(or), u(wt)=0,
0(y,0)=I+cos(wy),  0(0.t)=1+cos(wr),
C(».0)=1+cos(wy), C(0.)=1+-cos(wt).

For the plane Couette-Poiseuille flow solution we have

Uy (y,t)= ]+cos((oy)—Qt ,

MQF

u;(y,1) = -’ cos(o)y)[éi* +6Pw’ (sin(coy))z]t—Mt—Mcos(oay)tJr 5

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)
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2 2 128.80° Ve
B0 cos(ay): +308.Bo’ cos(wy)(sin(coy))ztz— bo (c;)s(my))

+

uZ(yat) =

+8.M w0’ cos(coy)tz + 8007 cos(wy)t+ 22apo’ cos(coy)(sin(oay))z t+ (7.15)

—12aB’ (cos(my))3 f+ofo’ cos(wy)t — 108w cos(my)(sin(coy))2 2+

2.2 2 2 20y,3
M~* cos(my)t
+162B%w cos(my)(sin(ooy))4 £+ 12PM o’ cos(ooy)(sin(ooy))2 2+ M2t + 2( v)© M 6Qt .
The solution for the velocity profile of the plane Couette-Poiseuille flow is given by
u(y,t)=uy+u; +u, +uz +...=

MO

X

u(y,t)=1+cos(wy)—Qt— o’ cos((oy)[é* + 6[3032 (sin(ooy))2 }t — M cos(wy)t +

2,2 _ 128w (cos((oy))3 7
2
+8:M &’ cos(my)12 + 800’ cos(oy)f + 420LB(D6 cos(my)(sin(my))2 t+

2 4
XM + 305*[3(0 cos(my)(sin(wy))“ ¢

—120B0° (cos(wy))’ 1 + apw’ cos(wy)t — 10837 w® cos(wy)(sin(wy))’t
2

+1 6252 o’ cos((;)y)(sin((oy))4 £+ 1 2BM w? cos((oy)(sin(oay))2 £+ M +
_MZQt 83w? cos(coy)t 15665[3038 (cos((oy))3z3

6 6 6
B §M o’ cos(coy)t3
2
438&01{30)8 cos(oay)(sin(oay))2 = 28.0Mw’ cos(oay)tz -
4328 0"’ (cos(wy))’ 1
6
1746 S*BZ 10 cos(my)(sin(wy))? £ +1 08.pM &’ (cos(my))3 7

~918:Be” cos(wy)(sin(wy))’r +

— 8o’ cos(oay)t2 + ]386*(1[3(08 (cos((oy))3 i

+ 18728 0"’ (cos(wy))’ (sin(wy))

_8M 2w’ cos(oay)t3
2
+[200L2[30)8 (cos(my))3t - 3660(2[30)8 cos(coy)(sin(my))zt —a’ Mo’ cos(wy)t +
_ 432ap’ 0"’ (cos(wy))’
2
—4104a B’ o'’ cos(wy)(sin(oy))* £ + 30apM &’ (cos(wy))’ 1 - (7.16)
12960B° v (cos(wy))’ (sin(wy))? 2
6
84240[33 12 (cos(oay))3 (sin(oay))4 43416 B3 12 cos(coy)(sin(coy))6 r
6 6
+324B° M 6 (cos(wy))’ (sin(wy))’ 17 — 486B° M o’ cos(wy)(sin(wy))*
M7 3 M3 cos(coy)t3 N M3Qr
6 6 24

560.fM o’ cos(coy)(sin(coy))z t3 — 8.0’ cos(y)t +

+ 48600 B’ o'’ (cos(wy))’ (sin(wy))? 2 +

1140pM o’ cos(ooy)(sin(ooy))2 - oM e’ cos(coy)tz

—13pM 2w? cos(coy)(sin(coy))z -
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For the temperature profile of the plane Couette-Poiseuille flow we have

0y (1) =1+cos(wy)+8Ec o (sin(ooy))z t+BEc o’ (sin(ooy))4 t, (7.17)
8, (3.1 = o’ [8«+ Ié]cos(u)y)t _ 28:Ec o’ [8+ + R](sin(wy))2 i
T 2Pr
4 2 2 6 : 4.2
s 28+Ec ® [8* +R](cos(ooy)) o 4BEc [8* +R](s1n(o)y)) t s (7.18)
2Pr 2Pr
12BEc &° [8« + R](cos(my))2 (sin(my))2 i’
+ .
2Pr

+

The solution for the temperature profile of the plane Couette-Poiseuille flow is given by
0(1,1)=6)+6,+6,+6;+--
0(y.t)=1+cos(wy)+8:Ec o’ (sin(my))2 ¢ + BEc o (sin(my))4 t+
~ o [8. + R]cos(ay)t _ 28.Ec o [8. + R](sin((oy))2 t
Pr 2Pr
28.Ec o’ [8. + R](cos(coy))2 £ 4BEc o’ [8. + R](sin(coy))4 i
+ - +
2Pr 2Pr
N 12BEc &’ [8. + R](cos(my))2 (sin(wy))2 7 o [8«+ R]2 cos(wy)t’
2Pr 2Pr
88.Ec o’ [8* + R]2 (cos(coy))z r 88.Ecw’ [8* + R]2 (sin(coy))2 £
- +
6Pr’ 6Pr’
24BEc o* [5. + R] (cos(ooy))4 £ 192BEc o’ [5. +R]’ (cos((oy))2 (sin(my))2 £
" 6Pr? B 6Pr’

40BEc o [8. + R]Z (sin((oy))4 i B o’ [8. + R]3 cos(wy)t’ . 168.Ec 0’ [3. + R]3 (cos(ooy))2 t*
6Pr’ 6Pr’

+

+

+
24Pr?

168.Ec o’ [3. + R]3 (sin(wy))z t* 480BEc o'’ [5. + R]3 (COS((’W))4 !
24pr’ 24pr?

3072BEc o'’ [8* + R]3 (cos(my))z (sin(my))2 t* 544BEc o'’ [8* + R]3 (sin(coy))4 t*

24Pr’

+
(7.19)

24Pr?

For the concentration profile of the plane Couette-Poiseuille flow we have

C, (y,z)=1+cos(coy)— KF*SJZCt , (7.20)

Se? cos(my)t Kr cos(my)t Knt Kr’Nci?
C,(y,t)=- - - , 7.21
101 Sc Sc Sc ’ 28¢? (72D




286 A.S.Idowu and U.Sani

80’ cos(wy) £ .\ 8.Knw’ cos(wy)t’ . 8.Kn’ cos(wy)t’

C,(yt)= 2 2 2
2Sc 2Sc 2Sc (1.22)
. Kil 1 . K7 cos(wy)t? _ KiNet’
2S¢? 28¢? 68¢°
The solution for the concentration profile of the plane Couette-Poiseuille flow is given by
C(yt)=Cy+C,+Cy+C3+Cy+--, (7.23)
KnNct S’ cos(wy)t Krncos(wy)t Krn t
C(y.t)=1+cos(wy)— LIS (@) _ K cos(oy)t _Kr -
Sc Sc Sc Sc
KrZNct’ s 87w cos(oay)t2 . 8. Krew? cos((oy)l‘2 s Kr? ¢’
2S¢’ 2S¢? Sc? 2S¢?
2 2 3.6 3 2 4 3 (7.24)
+Kr* cos(coy)t KiiNct® dio cos(coy)t 0x K cos(coy)t N
2S¢’ 6Sc? 6Sc? 3s¢?
S K1 o’ cos(o)y)t3 Kk ® Ki cos((oy)t3 . Kr' Ne t?
2s¢? 6Sc’ 6Sc’ 248c*

8. Discussion of results

Systems of non-linear differential Eqs (4.2)-(4.4), (6.15)-(6.17) and (7.15)-(7.17) subject to the
conditions (4.5)-(4.7), (6.18)-(6.20) and (7.18)-(7.21) were solved numerically using the He-Laplace method
where the effects of various important physical parameters such as the second grade parameter a, third grade
parameter 3, magnetic field parameter M, Prandtl number Pr, Eckert number Ec, thermal radiation parameter
R, Schmidt number Sc, chemical reaction parameter Kr= and pressure gradient QO on non-dimensional
velocity components, temperature and concentration components for the three unsteady flow problems,

namely: the Couette flow, Poiseuille flow and Couette-Poiseuille flow, were analyzed and discussed in
detail.

— - — p—ows — — M—0.08
um _———

=08 M—U.15

0 728 H o =022

p oz M0 02

0 746

0.745%

Fig.4. Effect of B on the Couette flow velocity profile Fig.5. Effect of M on Couette flow velocity profile
M=05t=150=030:=10=0.2. when f=0.5,t=1.5,a=0.3,6:=1,0=0.2.
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Fig.6. Effect of o on the Couette flow velocity Fig.7. Effect of Ec on the Couette flow temperature
profile when B=0.5, M=0.5,t=1.5,8. = 1,0 =0.2.. profile when B=0.3, Pr=0.5, t=1.5, R=0.5,
S+ =1,0=0.2.
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Fig.8. Effect of Pr on the Couette flow temperature Fig.9. Effect of R on the Couette flow temperature

profile when =0.3, Ec=0.5, t=1.5, R=0.5, profile when 3=0.3, Ec=0.2, t=1.5, Pr=1,
6*:1,(,0:02 6*:],0):05
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Fig.10. Effect of Sc on the Couette flow concentration Fig.11. Effect of Kr~ on the Couette flow
profile when Nc=0.01, t=1.5, Kr-=0.035, concentration profile when Nc=0.01, t=1.5,
S =10=0.2. Sc=0.62, 6. =1,0=10.2.
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Fig.12. Effect of B on the Poiseuille flow velocity Fig.13. Effect of M on the Poiseuille flow velocity
profile when M=0.3, t=1.5, a=1, 8. =1,0=0.2, profile when =1, r=1.5, 0=0.3, 6+ =1,0=0.2,
Q=1. Q=].
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Fig.14. Effect of a on the Poiseuille flow velocity Fig.15. Effect of Q on the Poiseuille flow velocity
profile when B=1, M=0.3, t=0.5, 8. =1,0=0.2, profile when p=0.5, M=3, =15, o=0.6,
O=]. 8*21,0):0.3.

Fig.16. Effect of Ec on the Poiseuille flow Fig.17. Effect of Pr on the Poiseuille flow
temperature profile when B=0.3, t=0.5, Pr=0.5, temperature profile when B=0.3, Ec=0.5, R=1,
R=1, 6:=1,0=0.2. t=1.5, 8« =1,0=0.2.
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Fig.18. Effect of R on the Poiseuille flow temperature Fig.19. Effect of Sc on the Poiseuille flow
profile when p=3, 8.=1, =05, (=15, concentration profile when Nc=0.01, t=1.5,
Ec=0.2, Pr=1. Kr+=0.05, 8+ =1,0=0.2.
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Fig.20. Effect of Krs on the Poiseuille flow Fig.21. Effect of B on the Couette-Poiseuille flow
concentration profile when Nc=0.01, t=1.5, velocity profile when M=3, t=1.5, o=I,
Sc+=0.62, 8« =1, ®=0.2. S =10=0.2,0Q=I.
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Fig.22. Effect of M on the Couette-Poiseuille flow Fig.23. Effect of o on the Couette-Poiseuille flow
velocity profile when p=1, t=0.5, a=0.3, 6. =1, velocity profile when p=I, M=0.3, t=0.5,
®0=02,0=]. 0+ =1Lw=02,0=].
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Fig.24. Effect of Q on the Couette-Poiseuille flow Fig.25. Effect of Ec on the Couette-Poiseuille flow
velocity profile when [B=0.5, M=0.3, t=1.5, temperature profile when P=0.3, Pr=0.5, t=1.5,
0=0.6, 0+ =1, ®=0.3. R=0.5, 8+ =1,0=0.2.

Fig.26. Effect of Pr on the Couette-Poiseuille flow Fig.27. Effect of R on the Couette-Poiseuille flow
temperature profile when B=0.3, Ec=0.5, t=1.5, temperature profile when =3, Ec=0.2, t=1.5,
R=0.5, =1, ®=0.2. Pr=1, 8+ =1,0=0.5.
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Fig.28. Effect of Sc on the Couette-Poiseuille flow Fig.29. Effect of K7+ on the Couette-Poiseuille flow
concentration profile when Nc=0.01, t=1.5, concentration profile when Nc=0.01, t=1.5,
Kr«=0.05, 8. =1, ®=0.2. Sc=0.62, 6+ =1,0=0.2.

Figures 4-29 show the effects of various physical parameters on the dimensionless velocity,
temperature and concentration profiles for the three problems. Figures 4, 12 and 21 show the variations of
velocity profiles for different values of B. It is seen from these figures that an increase in the value of 3 leads
to increased velocity distribution for all values of y. Figures 5, 13 and 22 depict the variation of velocity
profiles for different values of M. They show that as the value M increases, the velocity decreases thereby
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not reducing the viscosity of the fluid. Figures 6, 14 and 23 show the velocity profiles for different values of
a. It is seen from the figures that as o increases the velocity profiles also increase. Figures 7, 16 and 25 show
the effects of Ec on the temperature profiles. It is observed that as Ec increases, the temperature of the fluid
increases with little significance and hence tends to reduce the viscosity of the fluid. Figures 8, 17 and 26
depict the variation of temperature profiles for different values of Pr. As Pr increases the temperature also
increases. Figures 9, 18 and 27 show the effects of R on the temperature profile. The temperature of the fluid
increases as R increases. Figures 10, 19 and 28 show the effects of Sc on the concentration profile. It is
noticed that as Sc increases there is an increase in the concentration of the fluid. Figures 11, 20 and 29
present the effects of Kr+ on the concentration profile. It is found that the concentration of the fluid reduces

as Kr» increases. Figures 15 and 24 demostrate the effects of €2 on the velocity profile. It is found that the
velocity of the fluid increases with an increase in €2 .

9. Conclusion

Effects of thermal radiation and chemical reaction on an unsteady magnetohydrodynamic(MHD)
third grade fluid flow between stationary and oscillating plates are analyzed by the He-Laplace method. The
solutions of velocity, temperature and concentration of the Couette flow, Poiseuille flow and Couette-
Poiseuille flow were presented. The following conclusions are drawn from the figures:

e velocity profiles increased due to an increase in the non-Newtonian parameter, second grade parameter
and pressure gradient parameter while it decreased due to an increase in the magnetic parameter, hence
increasing the boundary layer of the fluid;

e an increase in temperature profiles is a function of an increase in the Eckert number, Prandtl number
and thermal radiation parameter and also reduces viscosity and boundary layer of the fluid,

e concentration profile decreased due to an increase in the chemical reaction parameter while it increased
due to an increase in the Schmidt number.

Nomenclature

4; (i=1, 2) — Rivline Erickson tensor
B — magnetic induction
By —applied magnetic field

b — induced magnetic field
C - species or concentration

C, — specific heat

D — mass diffusion coefficient
E —imposed electric field
Ec — Eckert number
I — identity tensor
J — current density
Kr* — chemical reaction parameter

k" — mean absorption coefficient
M,> - magnetic field parameter

Nc - concentration difference parameter
P —pressure
Pr — Prandtl number
R - radiation parameter
Sc — Schmidt number
T - Cauchy stress tensor
t —time
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u — dimensionless velocity in the y direction
g, — radiation heat flux

V —velocity vector

X - dimensionless coordinate along the surface

Y — dimensionless coordinate perpendicular or normal to the surface

o & B —non-Newtonian parameter

6 - temperature

k — thermal conductivity

p  — dynamic viscosity

p — fluid density

o - electrical conductivity
o — Stefan-Boltzman constant
® - porosity of the porous medium

o — frequency of the oscillating plate

Q - pressure gradient
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