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This work aims to find the influence of the liquid viscosity on the shape of an air Taylor bubble, rising up in a 
pipe column which contains the liquid under conditions that the liquid is stagnant and the Froude number is 
approximately equal to 0.35. Five liquid viscosities (from 0.001 to 0.01 Pa s ) were selected for being 
computationally investigated. An appropriate shape of a Taylor bubble, corresponding to each selected viscosity, 
was obtained by considering a pressure distribution of the air inside the bubble. Simulation results showed that 
the Taylor bubble shape would be thicker if the liquid viscosity was decreased. This could be explained by using 
the theory of the log-law velocity profile. 
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1. Introduction and theory 
 
 Over a range of intermediate flow rates of gas-liquid flows, a slug flow is sometimes formed. This 
kind of two-phase flows is interesting due to its unique characteristic, consisting of elongated gas bubbles 
and liquid slugs. It can be found in oil pipelines which connect the wells in seabed to oil refineries, in the 
geometrical power plant of steam, in the boiling or condensing of liquid-vapor power plants, in gas-liquid 
chemical reactors, in cooling systems of nuclear reactors and in very small transporting tubes of cryogenic. 
Because the slug flows can cause damages in the systems, such as the liquid slugs can cause a high 
momentum when the flows change direction in elbows or the low frequencies of the slug flows can induce a 
resonance in piping structures. There are many researchers trying to study behaviors of the slug flows. The 
shape of the elongated gas bubble (the so-called Taylor bubble) is a topic in which they are interested. 
According to [1], shapes of a Taylor may be predicted with 
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 These equations were developed from Dumitrescu’s model [2], derived with the potential flow 
theory. Because the potential flow theory neglects the influence of viscosity, both Eq.(1.1) and Eq.(1.2) 
predict the shape profiles of Taylor bubbles which are different from reality [1, 3-9]. 
 A unit of the slug flow, shown in Fig.1, is usually employed for investigating the shape of a Taylor 
bubble. A slug flow unit is mainly comprised of a Taylor bubble, a liquid slug and a falling film. If an 
observer stands on the ground where a vertical pipeline is installed, he will see a Taylor bubble flowing 
upward in the stagnant liquid with a speed ( bw ) with respect to the pipeline. However, for most of studies, 
the nose of the Taylor bubble is used as a reference frame and the liquid is instead considered as a moving 
part. Hence the liquid is considered to move downward with the speed ( lw ) whose magnitude equals the 

magnitude of the Taylor bubble velocity, rising upward in the vertical pipe ( bw ) in which the stagnant liquid 

is constained. In addition, they both can be related to the Froude number ( DFr ) as follows. 
 
  DFrb t pw w gD  . (1.3) 

 

 
 

Fig.1. Schematic diagram of a liquid flow around a Taylor bubble in a stagnant liquid with respect to the 
Taylor bubble nose and an employed grid in a computational domain. 
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 The Froude number in Eq.(1.3) is a function of ReD  and EoD , namely   
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 The formula was developed by [10] so that it agreed well with the data, obtained from the work of 
[11], and it overcomes inaccuracies at intermediate Morton numbers. According to Eq.(1.4), there are a few 
dimensionless numbers needed to be defined, i.e.  
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 Substitution of Eq.(1.3) into Eq.(1.5) yields 
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 Then, substitution of Eq.(1.6) and Eq.(1.7) into Eq.(1.4) yields 
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 The obtained Eq.(1.8) shows that DFr  is a function of pD  and fluid properties are ( , g , l  and 

l ). In order to investigate the influence of the liquid viscosity, l  will be varied while the other fluid 
properties and pD  must be fixed. Since air-water slug flows are often employed for studying in many 

research studies, the other properties of the fluids are assumed to be equal to those of air and water, namely 
= 60.00 10-3 N/m, g =1.18 kg/m3  and l =1000 kg/m3. In this work, pD  was always equal to 0.05 m. 

This is because air Taylor bubbles rising in stagnant water are found in pipes of which a diameter ranges 
from a very small size as capillary tubes to about 0.1 m [1, 5, 12-17]. As a result, the average pipe diameter is 
approximately 0.05 m and it is the size of the pipe in this work.  
 After substituting the abovementioned pD ,  , g  and l  into Eq.(1.8), DFr  will approach a 

maximum value (  0.350) if l  is less or equal to 0.01 Pa s . Since the viscosity of water approximately 

equals 0.001 Pa s , l  will be varied between 0.001 and 0.01 Pa s  in this work. Therefore, the objective of 
the work is to numerically investigate the influence of the liquid viscosity on the shapes of air Taylor bubbles 
in pipes, containing stagnant liquids under conditions that DFr  is approximately equal to 0.350.  



70  B.Lertnuwat 

2. Methodology and computational setup  
 
 Table 1 shows the 5 investigated conditions together with the corresponding values of the Reynolds 
number in the falling film region, namely 
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 The flow field around a Taylor bubble would be entirely laminar if Re film  is less than 250 in 

accordance with the results of [18]. Since, in this work, it was apparent that Re film > 250 for all cases as 

shown in Tab.1; a computational program code from [19] was employed. This program code was developed 
from the k    model by using the implicit pressure-correction method on the finite volume framework with 
second order spatial accuracy in order to govern turbulent flows. 
 
Table 1. Values of parameters for 5 investigating conditions. 
 

l  
( Pa s ) 

tw  
(m/s)  

DFr  ReD  Re film EoD  M  

0.0100 0.2454 0.3504  1227 307 408.8 1.64 10-9 

0.0075 0.2455 0.3505  1637 409 408.8 5.17 10-10 

0.0050 0.2455 0.3506  2455 614 408.8 1.02 10-10 

0.0025 0.2455 0.3505  4910 1227 408.8 6.39 10-12 

0.0010 0.2454 0.3504  12270 3068 408.8 1.64 10-13 

 
 According to the experimental results described in [5, 13, 20-21]; the averages of the slug length  
( sL ) and the Taylor bubble length ( bL ) were respectively equal to 15 pD  and 5 pD . Therefore, these values 

were used to define the characteristic of the slug flow unit as shown in Fig.1. Besides the axis of symmetry 
along the pipe centerline allowed us to consider just half of the pipe. There were 16 gridlines on the r-axis, 
whereas the gridlines on the z-axis were divided in 2 parts, i.e. 86 gridlines were drawn from the centerline 
of the pipe and 75 gridlines were drawn from the Taylor bubble surface. A velocity inlet boundary condition 
was posed on the top of the domain with a fixed velocity ( tw ), depending on the condition as shown in 
Tab.1. A pressure outlet condition was posed on the bottom of the domain with a fixed constant  
( lp =100kPa). A no-slip condition together with a wall function was posed along the pipe wall on the right 

side of the domain. Herein, the wall velocity ( wallw ) was fixed to be tw . A symmetry boundary condition 
was posed along the pipe centerline on the upper left side of the domain. And a free surface boundary 
condition was posed along the Taylor bubble surface on the lower left side of the domain. According to [22], 
shapes of the Taylor bubble surface ( bR ) were created with  
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 The small constant   was set to be 10-38. It was added to avoid a singular point at z 0  . Both 
Eq.(2.2) and Eq. (2.3) show that the shape of a Taylor bubble could be adjusted with the values of 1  and 

2  if pD  is known.  

 So far, a simulation of a flow around a Taylor bubble surface, created by Eq.(2.2) and Eq.(2.3) with 
specified values of 1  and 2 , could be started. After the simulation, a pressure distribution of the liquid 
along the Taylor bubble surface would be obtained. This liquid pressure can be related to the gas pressure 
inside the Taylor bubble with 
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 The radius of curvature ( bsR ) could be calculated as follows 
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 The distribution of the gas pressure inside a Taylor bubble must be theoretically uniform. Hence, the 
values of 1  and 2  must be varied to adjust the Taylor bubble shape until the uniform pressure distribution 
of the gas inside a Taylor bubble was achieved. The root-mean-square derivation ( RMSD ) of residuals 

between the gas pressure at each data point along the Taylor bubble surface  ,g i bs
p  and the gas pressure at 

the Taylor bubble nose  ,g nose bs
p , i.e.  
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was used to numerically judge how the obtained pressure distribution was uniform. As shown in Fig.1, the 
Taylor bubble nose locates at i 1 . While maxi , which was equal to 75, is the maximum number of the data 

point along the Taylor bubble surface. It was clear that the value of RMSD p  will be equal to zero in the case 

of the uniform pressure distribution. However, the uniform pressure distribution was in practice difficult to 
be obtained so the minimum RMSD p  was chosen instead. 

 Since the values of 1  and 2  must be varied until they could create the appropriate shape of a 

Taylor bubble, the grid search method was exploited to find the appropriate values of 1  and 2 . At the 

initial stage, a searching domain was assigned to be a range, bounded within min, max,1 1 1 1 1      and 

min, max,2 1 2 2 1     . These lower and upper bounds of both 1  and 2  must be properly guessed to ensure 

that the first searching domain was vast enough to cover the appropriate values of 1  and 2 . The first 

searching domain was next discretized with selected values of ,1 1  and ,2 1 , resulting in a coarse 
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searching grid. Next, a pair of 1  and 2  was picked from this coarse searching grid to create the Taylor 
bubble shape for a computational domain with Eq.(2.2) and Eq.(2.3). Next, a flow simulation was begun 
until its steady-state results were obtained. So far a distribution of liquid pressure on the Taylor bubble 
surface, which was a result of the flow simulation, was obtained for being substituted to Eq.(2.4) in order to 
calculate a distribution of the gas pressure inside the Taylor bubble. Next, Eq.(2.6) was used to calculate the 
corresponding RMSD p  of this pair of 1  and 2 . Then, another pair of 1  and 2  was picked from the 

coarse searching grid and the procedure was repeated until all the pairs of 1  and 2  from the coarse 

searching grid were selected. At this point, all the values of RMSD p  in the coarse searching grid were 

known. The minimum RMSD p  would briefly indicate the appropriate pair of 1  and 2  for creating the 

Taylor bubble shape. If more accuracy of the appropriate pair of 1  and 2  was not sufficient, a finer 

searching grid, bounded in min, max,1 2 1 1 2      and min, max,2 2 2 2 2     , would be created with 

, , .1 2 1 10 5    and , , .2 2 2 10 5   . The new lower and upper bounds were set as follows: 

min, , ,1 2 1app 1 1 1     , max, , ,1 2 1app 1 1 1     , min, , ,2 2 2app 1 2 1      and max, , ,2 2 2app 1 2 1     . After 

the finer searching grid was created, the searching process would be repeated. If the accuracy of the 
appropriate pair of 1  and 2  was still not sufficient, another finer searching grid with smaller 1  and 

2 , would be needed. In this work, the accuracy of the appropriate pair of 1  and 2  was accepted when 
their third significant was unchanged. The flow chart of the procedure was the same as the flow chart, 
presented in [23].  
  
3. Results 
 
 Table 2 presents the appropriate values of 1  and 2 , obtained from the simulations for each 

condition of l  in accordance with Tab.1. These values of 1  and 2  can be employed to create the Taylor 

bubble shapes as shown in Fig.2a for comparison. It was apparent that (i) the less l  was, the thicker the 
shape of a Taylor bubble was; and (ii) Dumitrescu’s model gave the thickest shape of the Taylor bubble in 
this work. Figure 2b magnifies the wall region in order to make the comparisons more evident. It was found 
that the obtained result agreed well with the results of [1, 5, 24]. 
 
Table 2. Appropriate values of 1  and 2  for each l . 
 

l  
( Pa s ) 

1  2  

0.0100 2.36 -7.50 

0.0075 2.19 -7.80 

0.0050 1.97 -8.70 

0.0025 1.71 -11.0 

0.0010 1.44 -14.5 
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(a) Whole body                                                (b) Wall region 
 

Fig.2. Influence of l  on shapes of air Taylor bubbles in stagnant liquids with a constant DFr  0.35. 

  
4. Discussion 
 
 The influence of the liquid viscosity on the Taylor bubble shape might be clarified with the theory of 
the log-law velocity profile, which divides a velocity profile close to a wall region to subregions. The u   
within the viscous sublayer and the log-law region could be respectively modelled as follows [9] 
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 The symbol of an absolute value was applied to lw  because the opposite direction of lw  with respect 

to the z-axis was omitted and only the magnitude of lw  was considered. Since the wall  was likely to be 
constant within the viscous sublayer [9], Eqs (4.3) shows that  
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 This meant that the magnitude of lw  would increase more rapidly with respect to n if l  was 
reduced.  
 Similarly as in Eq.(4.2), the velocity profile within the log-law region could be rewritten as 
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 Within this region, u  was modelled to be 1 4
lC k . This led to 
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 It shows that lw  would increase more rapidly with respect to n if either l  was reduced or lk  was 

increased (more turbulent kinetic energy in the liquid region beyond the pipe wall). It, thus, might be 
concluded that the magnitude of lw  would increase more rapidly with respect to n if l  was reduced, 

similar to what happened in the viscous sublayer. As a result of this, the average value of lw  at a cross-

sectional area in the falling film ( lw ) would be increased if l  was reduced.  

 By applying a mass-flux balance between a plane far ahead of the Taylor bubble and a plane located 
at the fully developed film, with respect to the nose of the Taylor bubble, we got 
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 By substituting Eq.(1.3) into Eq.(4.6), we got 
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 Assuming that l , g , PR  and DFr  were constant, the derivative of Eq.(4.6) with respect to bR  
yielded 
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 Equation (4.8) revealed that bR  would increase if lw  increased. Since it was already known from 

Eq.(4.4) and Eq.(4.5) that lw  would be increased if l  was reduced, it could be concluded that bR  would 

increase (the Taylor bubble would be fatter) if l  was reduced. This agreed well with the results in Fig.(2). 

 
5. Conclusion 
 
 Owing to the simulated results and the analysis, regarding to the theory of the log-law velocity 
profile, the influence of the liquid viscosity was eventually found; namely, a higher viscosity made the shape 
of a Taylor bubble to be slenderer when DFr  was approximately equal to 0.35. This was the reason why 
Dumitrescu’s model overestimated the shape of a Taylor bubble because it was derived by assuming that the 
liquid flow around a Taylor bubble was inviscid. The appropriate shape of a Taylor bubble could be created 
by using the proposed model, consisting of Eq.(2.2), Eq.(2.3) and the values of of 1  and 2  in Tab.2. 

 However, the proposed model had a defect when 0< pz D <0.033 because it gave an imaginary 

number. This problem could be solved by employing an interpolation algorithm which gives an acceptable 
error in this narrow interval [22]. 
 
Nomenclature 
 
 D  diameter 
 Eo  Eötvös number 
 Fr  Froude number 
 g   gravity acceleration 

 L   length 

 M  Morton number;    M 4 2 3
l g l lg         

 n  unit normal vector 
 p  static pressure 
 R  radius or radius of curvature 
 r  location on r-axis or correlation coefficient  
 Re  Reynolds number 
 RMSD  Root-mean-square deviation 
 s   slug 
 u  velocity component on r-axis 
 V  total velocity 
 w  velocity component on z-axis 
 w   area-averaged w 
 z   location on z-axis 
 z   distance from bubble nose; nosez z z    

    small constant or film thickness 
    viscosity 

    density 

    surface tension 
 
Superscripts and Subscripts 
 
 app  appropriate 
 b  Taylor bubble 
 bs  Taylor bubble surface 
 D  diameter 
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 film  falling film 
 g  gas 
 l  liquid 
 nose  Taylor bubble nose 
 p  pipe 
 t  terminal 
 wall  pipe wall 
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