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This work investigates a three-dimensional Magnetohydrodynamic (MHD) nanofluid flow with heat and 
mass transfer over a porous stretching sheet. Firstly, partial differential equations are transformed into coupled 
non-linear ordinary differential equations through a similarity variables transformation and solved by Galerkin 
Finite Element Methods (FEM). The effects of thermal radiation, viscous dissipation and chemical reaction on the 
fluid flow are considered. The behaviour and properties of pertinent flow parameters on the velocity, temperature 
and concentration profiles are presented and discussed graphically. The effects of the friction coefficient 
parameter, Nusselt and Sherhood numbers are also shown and considered using tables. The work is in good 
agreement in comparison with the recent work in literature. 
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1. Introduction 

 
The study of MHD boundary layer flow on a continuous stretching sheet has attracted considerable 

attention in recent years due to its enormous applications in industrial manufacturing processes such as the 
aerodynamics, extrusion of plastic sheets, liquid film, hot rolling, wire drawing, glass fibre, paper 
production, drawing of plastic films, metal and metal spinning (Freidoonimehr and Rahimi [1]). 

The main limitation of conventional heat transfer fluids, i.e. 2H O , ethylene glycol, oil, etc., is their 
low thermal conductivity. Since the thermal conductivity of these fluids plays an important role and effects 
the heat transfer coefficient between the medium and the surface, innovative techniques for improving heat 
transfer by using ultra-fine solid particles in the fluids have been used extensively for the last several years 
(Kumar et al.[2]). 

Choi [3] introduced the addition of solid nanoparticles and base fluids to form nanofluids. 
Nanofluids have been found to possess additional thermo-physical properties, such as thermal diffusivity, 
thermal conductivity, viscosity, (Asker et al. [4]; Nadeem et al.[5]; Yu et al. [6]; Xuan and Li [7]). 

Choi et al. [8] proved in their experimental investigation that the thermal conductivity of the base 
fluid is enhanced approximately twice by dispersing nanoparticles with volume fraction of nanoparticles less 
than 1 per cent. 

Oahimire et al. [9] investigated the effects of thermal diffusion and thermal radiation on unsteady 
heat and mass transfer by free convective MHD micropolar fluid flow bounded by a semi – infinite vertical 
plate in a slip – flow regime under the action of a ransverse magnetic field. The results showed that the 
observed parameters have a significant influence on the flow, heat and mass transfer. 
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(iv) the thermal radiation, Soret and first ordered destructive chemical reaction are considered. 
The flow is caused by the stretching of the sheet that moves in its own plane with the surface 

velocity ax and by, where a and b are stretching constants. 
Under the above assumptions, using the Boussinesq and boundary layer approximations, the 

governing equations describing the continuity, momentum, energy and concentration in the presence of 
thermal radiation, viscous dissipation and chemical reaction take the following form 

 

 
 

Fig.2. Physical model and coordinate system. 
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Chemical reaction equation 
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The associated boundary conditions are as follows 
 

  
  , ,  , ,   at  ,0 w w

u v
u ax v bx w u T T c c z 0

z z

 
          

 
  

   (2.6) 

  
, ,  u 0 v 0 T T   ,    as  c c z   . 

 
In order to solve Eqs (2.1)-(2.6), the following similarity variables were employed (Reddy et al. 2017) 

 

           ,  , ,  , , 
1

2 z

w

a T T
u axf v byg w av f g

v T T





            


   

  (2.7) 

 
 

w

C C
h

C C





 


   

 

where     is the dimensionless temperature and  h   is the dimensionless concentration. 

Upon substituting the similarity variables into Eqs (2.2)-(2.5), the following system of ordinary 
differential equations was obtained. 

 

 
                 '( )2

1 r rf f Sg f f f M K G G h 0                   , (2.8) 

 

 
             ( )2

1g f Sg g g g M K 0            , (2.9) 

 

 

           

           

r

'' '
r r c r

P

P P E P ,

2
t

r

2 2

b

3 4R
f g N

3P R

N h f M f 0

 
            

 



  

            

 (2.10) 

 

 
            rLe LeGt

b

N
h f g h h 0

N
              . (2.11) 

 

The corresponding boundary conditions are 
 

 
           , , , f 0 0 f 0 1 f 0 g 0 0 g 0 S g 0           , 

  (2.12) 
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       , , ,f 0 g 0 0 h 0         .            (2.13) 

 
3.1. Variational formulation of the problem 

 
In order to obtain a compatible variational form of the problem, the orders of Eqs (2.8)-(2.13) are 

then reduced using the approach of Reddy (2006), such that the non-linear variables f   and g  are re-
written as 
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 f r  , (3.1) 
 

 g t  .  (3.2) 
 
Hence, the system of Eqs (2.8) – (2.13) becomes 
 

 
                 r r( ) G G2

1r f Sg r r r M K h 0                  ,       (3.3) 

 

 
              2

1t f Sg t t t M K 0             , (3.4) 

 

 

              

       

r
r

'
r r c

P ( )
P

P P E ,

2
t b

2 2
r

3 4R
f g N N h

3 R

r MP r 0

   
 

                
 

       


 (3.5) 

 

 
            rLe LeGt

b

N
h f g h h 0

N
              ,   (3.6) 

 
and the associated boundary conditions become 
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The variational form associated with Eqs (3.1) – (3.6) over a typical element, over a two noded linear 

element  , e e 1X X  , employing the approach used by Swapna et al. (2016), is given by the following; 
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where , , , , 1 2 3 4 5N N N N N  and 6N  are the weight functions and may be viewed as the variations in 

, , , ,  f r g t   and h, respectively. 
 

3.2. Derivation of the finite element equations 
 
The finite element model may be obtained from Eqs (3.9)-(3.14) by using finite element 

approximation of the form 
 

 

ψ ,  ψ ,  ψ ,  ψ , ψ ,
2 2 2 2 2

j j j j j j j j j j
j 1 j 1 j 1 j 1 j 1

f f r r g g t
    

          
  

 ψ
2

j j
j 1

h h


  (3.15) 

 
where     ψ ,1 2 3 4 5 6 jN N N N N N j 1 2         are the interpolation functions for the linear elements 

 , e e 1X X   and , , and e e e e
j j j jf g h  are the velocity, temperature and concentration, respectively, at the thj  

node of a typical the  element  , e e 1X X   and e
j  the shape function for this element  , e e 1X X   is taken as 

 

 
 and , e ee 1 e

1 2 e e 1
e 1 e e 1 e

X X X X
X X X

X X X X



 

 
     

 
.  (3.16) 

 

The finite model of the equations for the the element thus formed is given by 
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where                , ,  , , ,  ,   and  ,  , , , , , ,mn e e e e e e meK f r g t h p m n 1 2 3 4 5 6      are the set of matrices and 

are defined as follows 
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4. Results and discussion 
 
The assembled equations obtained are solved using any of the numerical techniques, namely, the 

Gauss elimination method, LU decomposition method, etc. The shape functions used to approximate actual 
functions is of importance. The entire flow domain is divided into 10.000 quadratic elements of equal size 
and every aspect is two-noded, so the whole field contains 20.001 nodes. We have to evaluate four functions 

, ,  f g   and h  at every node. We obtained 80.004 non-linear equations after the assembly of element 
equations. After applying the given boundary conditions, the remaining system of non-linear equations is 
solved by using the Gauss elimination method with an accuracy of 0.00001 maintained. Gaussian quadrature 
is implemented for solving the integrations. The computer program of the algorithm was executed in 
MATHEMATICA 10.0 running on a PC. To investigate the sensitivity of the solutions to mesh density, we 
have performed the grid invariance test for velocity, temperature and concentration distributions, as shown in 
Tab.1. It is observed from this table that in the same domain, the accuracy is not affected, and even the 
number of elements increased by decreasing the size of the elements. 

Comprehensive numerical computations are conducted for different values of the parameters that 
describe the flow characteristics and the results are illustrated graphically. 

A representative set of computational results is presented in Figs 3-6. The thermo–physical 
properties of water and nanoparticles are shown in Tab.1. A comparison of the present results with the results 
reported by Hayat et al. [16] has been made and found consistent, as is shown in Tab.2. 

 
Table 1. Thermo-physical properties of water and nanoparticles Das and Jana [17]. 

 
Fluid  
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      5 1x10 K   

Pure water  997.1 4,179 0.613 21 
Copper (Cu) 8,933 385 401 167 
Silver (Ag) 10,500 235 429 189 
Alumina (Al2O3) 3970 765 40 0.85 
Titanium Oxide (TiO2) 4,250 686.2 8.9538 0.9 

 
Table 2. Comparison of (-θ (0)) with previously published data. 
 

M  Parameter w    R     0   

Hayat et al. (2015) Present study  
0.1 1.1 0.1 0.74084 0.74081 
0.3 1.1 0.1 0.70977 0.70975 
0.5 1.1 0.1 0.68279 0.69281 
0.1 1.2 0.1 0.74410 0.74413 
0.1 1.3 0.1 0.74775 0.74776 
0.1 1.4 0.1 0.75180 0.75182 
0.1 1.1 0.05 0.73328 0.73329 
0.1 1.1 0.15 0.74802 0.74801 
0.1 1.1 0.2 0.75482 0.75483 
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Table 3. The values of the skin friction coefficient (f(0)׳׳ along the x direction, skin friction coefficient 
(g(0)׳׳ along the y– direction, Nusselt number (–u, h(0) and Sherwood number (–S(0)׳ for different 
values of  , V0 and β. 

 
      0V         ""f 0     g 0     0      S 0   

0.1 0.5 1.0 -0.465405 -0.221279 0.953875 0.538901 

0.4 0.5 1.0 -0.437013 -0.207472 1.018023 0.562917 

0.7 0.5 1.0 -0.399428 -0.189562 1.092812 0.594689 

1.0 0.5 1.0 -0.361674 -0.172096 1.165039 0.625896 

0.1 0.5 1.0 -0.465491 -0.221341 0.750102 0.543008 

0.1 0.2 1.0 -0.485181 -0.232735 0.836987 0.615064 

0.1 0.3 1.0 -0.504933 -0.244038 0.926619 0.692405 

0.1 0.5 1.0 -0.543917 -0.265949 1.112660 0.861667 

0.1 0.5 0.1 -0.949914 -0.429223 1.218382 0.665998 

0.1 0.5 0.3 -0.763691 -0.351956 1.102273 0.608956 

0.1 0.5 0.5 -0.642979 -0.300220 1.024832 0.571745 

0.1 0.5 0.7 -0.557446 -0.262743 0.968601 0.545254 

 
5. Conclusion 

 
This work addressed the three - dimensional Magnetohydrodynamic (MHD) nanofluid flow with 

heat and mass transfer over a porous stretching sheet. The set of basic governing equations has been solved 
numerically using the finite element method. The numerical solutions have been developed for velocity, 
temperature, concentration, skin – friction, rate of heat and mass transfer coefficients. The features of the 
flow characteristics were analyzed by plotting graphs and discussed in detail.  

 The influence of the Grashof number on heat and mass transfer stabilizes the momentum boundary 
layer growth. 

 The concentration reduces with an increase in the Schmidt number. 
 The velocity as well as concentration decrease with an increase in the chemical reaction parameter. 
 The numerical results are obtained and compared with previously reported cases available in the 

literature and they are found to be in very good agreement. 
 
Nomenclature 
 
 a  − stretching rate(constant) 
 Cfx  − skin-friction coefficient in the x-direction 
 Cfx  − skin-friction coefficient in the y-direction 
 Cp  − specific heat at constant pressure 
 f  − nanoparticle volume fraction 
 K  − porous parameter 
 K*  − mean absorption coefficient 
 k0  − rate of chemical reaction 
 ks  − thermal conductivity of nanoparticle 
 M  − magnetic parameter 
 Nux  − Nusselt number 
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 Pr  − Prandtl number 
 R  − radiation parameter 
 Rex  − local Reynolds number in the x –direction  
 Rey  − local Reynolds number in the y-direction 
 Sc  − Schmidt number 
 Shx  − Sherwood number 
 qr  − radiative heat flux 
 T  − temperature of the fluid 
 Tw  − uniform constant temperature 
 T1  − free stream temperature 
 U0  − suction parameter 
 u  − velocity in the x-direction 
 uw  − temperature parameter 
 v  − velocity in the y-direction 
 w  − velocity in the z-direction 
 (x, y, z)  − Cartesian coordinates 
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