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The present paper deals with the study of a fundamental solution in transversely isotropic thermoelastic media 
with mass diffusion and voids. For this purpose, a two-dimensional general solution in transversely isotropic 
thermoelastic media with mass diffusion and voids is derived first. On the basis of the obtained general solution, 
the fundamental solution for a steady point heat source on the surface of a semi-infinite transversely isotropic 
thermoelastic material with mass diffusion and voids is derived by nine newly introduced harmonic functions. 
The components of displacement, stress, temperature distribution, mass concentration and voids are expressed in 
terms of elementary functions and are convenient to use. From the present investigation, some special cases of 
interest are also deduced and compared with the previous results obtained, which prove the correctness of the 
present result.  
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1. Introduction 
 
 Fundamental solutions play a crucial role in the theory of partial differential equations. They can be 
used to derive many analytical solutions of practical problems when boundary conditions are imposed. 
Fundamental solutions play a key role in an integral equation representation of a boundary value problem 
and are more easily solved by analytical methods in comparison to a  differential equation with specified 
initial and boundary conditions. This type of situation (numerical methods technique) makes the subject 
more attractive mainly for these researchers whose interest is in numerical methods. The fundamental 
solution also provides a wonderful platform to overcome the main drawbacks in the boundary element 
method which also uses the fundamental solution to satisfy the governing equation. Consequently, we can 
say that with the latest technological demand, no boundary element method can be made more advanced 
without further developments in the area of fundamental solutions or in other words we can say that 
fundamental solution is the basis for many further works. 
 Ding et al. [1] constructed the general solutions for coupled equations in transversely isotropic 
piezoelectric media by using the operator theory. Dunn and Wienecke [2] derived the half space Green’s 
functions for a transversely isotropic piezoelectric solid and also obtained closed-form expressions for the 
half-space Green's functions. Pan and Tanon [3] presented Green’s functions for a three dimensional problem 
in anisotropic piezoelectric solids and also presented the applications. Chen [4] derived a general solution for 
transverse isotropic thermo-piezo-elastic media in dynamic as well as in static case and derived an exact 
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solution for a penny shaped cracked subjected to uniform temperature load. Chen et al. [5] presented three-
dimensional exact solution for a penny-shaped crack in an infinite piezoelectric medium subjected to an 
arbitrarily point temperature load by using the potential theory method for both impermeable and permeable 
cracks. 
 After consideration of thermal effects, Sharma [6] derived the fundamental solution for a 
transversely isotropic thermoelastic material in an integral form. Ciarletta et al. [7] derived the fundamental 
solution for a micropolar isotropic thermoelastic material with voids by the potential method. Hou et al. [8] 
constructed Green’s function for a three-dimensional problem for transversely isotropic biomaterials by 
using the operator theory. Hou et al. [9] studied Green’s functions for a two dimensional problem for semi-
infinite orthotropic thermoelastic media by introducing new harmonic functions. Xiong et al. [10] discussed 
Green’s functions for a two dimensional problem for orthotropic piezothermoelastic material by trial and 
error method. Hou et al. [12] constructed the general solution and fundamental solution a two dimensional 
problem for orthotropic thermoelastic material. Seremet [13] constructed an exact Green’s function and 
integral formula for a boundary-value problem (BVP) for a thermoelastic wedge in terms of elementary 
functions. Seremet [14] derived a new Green’s function and a new Green-type integral formula for a 
boundary value problem (BVP) in thermoelastic quadrant. Kumar and Kansal [15] studied the plane wave 
propagation and fundamental solution in generalized theory of thermoelastic diffusion.  
 Kumar and Chawla [16, 17] derived the fundamental solution and Green’s function for a two 
dimensional problem in orthotropic thermoelastic diffusion media by using the operator theory and also 
presented the result graphically. Also, Kumar and Chawla [18, 19] derived the fundamental solution and 
Green’s function in orthotropic piezothermoelastic diffusion media by trial and error method. Kumar and 
Chawla [20] discussed the problem of reflection and transmission in thermoelastic media with three-phase-
lag model for isotropic case. Kumar and Vandna [21] derived a Green's function for a three dimensional 
problem in transversely isotropic thermoelastic biomaterial for concentrated heat source. Kumar and Chawla 
[22] presented the fundamental solution for a two-dimensional problem in orthotropic thermoelastic media 
with voids by introducing nine new harmonic functions. Şeremet [23] derived new constructive formulas in 
thermoelastic Green’s functions for a boundary value problem of thermoelasticity in a steady state case and 
also expressed the constructive formulas in terms of Green’s functions for Poisson’s equation. Pan et al. [24] 
derived the general solution and fundamental solution for fluid-saturated, orthotropic, poroelastic materials 
in case of a steady state problem. Chawla et al. [25] constructed a general solution and fundamental solution 
for a two dimensional problem in micropolar thermoelastic material. Dang et al. [26] investigated a planar 
crack of an arbitrary shape embedded in three-dimensional isotropic hygrothermoelastic media by using the 
Hankel transform technique. Zhao et al. [27] derived the three dimensional general solution and fundamental 
solution in hygrothermoelastic media by using the operator theory. Tomar et al. [28] studied plane waves in 
thermo-viscoelastic material with voids under different theories of thermoelasticity. Biswas [29] investigated 
the fundamental solution in steady oscillations equations for nonlocal thermoelastic medium with voids. 
  However, the important general solution and fundamental solution for a two-dimensional problem 
for a steady point heat source in an anisotropic thermoelastic material with mass diffusion and  voids has not 
been discussed so far in the literature.  
 

2. Basic equations 
 
 Following Aouadi [11] the basic equations for an anisotropic thermoelastic material with mass 
diffusion and voids, in the absence of body forces, extrinsic equilibrated body force and heat sources, are 
 

Constitutive relations 
 

  
.ij ijkm km ij ij ijc e B T C                     (2.1)

 
 

Equations of motion 
 

  , , , , .i ijkm km j ij j ij j ij ju c e B T C        (2.2)
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Equilibrated equation   
 

  
* *

, , .ij ij 0 ij i j 1 2A B u b T b C            (2.3) 

 
Equation of heat conduction 
 

  
* *

, ,( ) .0 ij i j 1 0 ij ijC T T u b aT C K T         (2.4)
 

 
(iv) Equation of mass diffusion 
 

  
* *

, ,[ ]ij ij i j 2 iju b aT dC C        . (2.5)  

 

 Here,  ijkm kmij jikmc c c 
 
is the tensor of elastic tensor    * *,ij ji ij jik k     are, respectively, the 

coefficients of thermal conductivity and diffusion tensor, ,ij ij 
 
are, respectively, the tensors of thermal and 

diffusion moduli, * *
, , , , ,ij ij 0 1 2A B b b 

 
are the constitutive coefficients, T  is the temperature distribution from 

the reference temperature 0T ,   is the density,   is the equilibrated inertia,   is the volume fraction field,

, ,i j j i
ij

u u
e

2


  are the components of the strain tensor, iu  are components of the displacement vector, ,a d  

are, respectively, the coefficient describing the measure of thermodiffusion and mass diffusion effects, C  is 

the concentration of diffusive material in the elastic body, *C  is the specific heat at constant strain and the 
above coefficient have the following symmetries. The symbol (“,”) followed by a suffix denotes 
differentiation with respect to the spatial coordinate and a superposed dot (“.”) denotes the derivative with 
respect to time. 
 
3. Formulation of the problem 
 
 We consider a homogenous, transversely isotropic thermoelastic diffusion medium. Let us take Oxyz 
as the frame of reference in Cartesian coordinates. 
 For a two-dimensional static problem, we assume the displacement vector, temperature change and 
mass concentration, volume fraction field, respectively, of the form 
 

  ( , , ),u 0 wu      ( , , ),x z t      ( , , ),C x z t      ( , , ).x z t  (3.1) 
 
 Equations (2.1)- (2.5) for a transversely thermoelastic material with diffusion and voids, with the aid 
ofEqs  (3.1), can be written as 
 

  

( )
2 2 2

11 66 13 44 1 1 12 2

w T C
c c u c c B 0

x z x x xx z

      
        

       
, (3.2) 

 

  

( )
2 2 2

13 44 44 33 3 3 32 2

u T C
c c c c w B 0

x z z z zx z

      
        

       
, (3.3) 
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* *
2 2

1 3 1 3 1 22 2

u w
B B A A b T b C 0

x z x z

    
          

     
, (3.4) 

 

 

* * * * * * *

* * * * .

2 2 2 2 2 2

1 1 3 3 1 3 2 1 32 2 2 2 2 2

2 2 2 2

1 3 1 32 2 2 2

u w b
x zx z x z x z

a T d C 0
x z x z

                 
                                                  

         
                               

(3.5) 

 
 Equations (3.2)-(3.5) can be written as  
 

  , , ,
tr

D u w T 0   (3.6) 

 
where D  is the differential operator matrix given by 
 

 

* *

* * * *

( )

( )

2 2 2

11 66 13 44 1 1 12 2

2 2 2

13 44 11 66 3 3 32 2

2 2

1 3 1 3 2 12 2

2 2 2 2

1 1 3 3 1 32 2 2

c c c c B
x z x x xx z

c c c c B
x z z z xx z

B B A A b b
x z x x

x zx z x z

     
    

     

     
    

     

    
          

       
                 

* * *

* * * *

2 2

2 1 32 2 2

2 2 2 2

1 3 1 32 2 2 2

2 2

1 32 2

b
x z

a T d
x z x z

0 0 0 0 K K
x z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

                       
 

          
                            

          






.

 

(3.7)

 

 Equation (3.6) is a homogeneous set of differential equations in , , , ,u w C T . The general solution by 
the operator theory is as follows 
 

 

, , , ,

, ( , , , , )

i1 i1 i2 i2 i3 i4 i4

i5 i5

u A F A G w A F A G A G C A F A G

T A F A G i 1 2 3 4 5

       

  
 (3.8) 

   
where ijA  are algebraic cofactors of the matrix D, of which the determinant is 
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* * * * *

,

8 8 8 8 8 2 2

38 2 6 4 4 6 2 8 2 2

6 6 6 6 2 2

36 2 4 4 2 6 2 2

D a b c d e
z x z x z x z x x z

a b c d
z x z x z z x z

         
                          

        
                      

 (3.9) 

 

where * * * * *, , , ,a b c d e  and , ,a b c  and d  are given in Appendix A. 
 The functions and in Eq.(3.8) satisfy the following homogeneous equation 
 

  D F 0       and      .D G 0  (3.10)  

 
 It can be seen that if , , ,i 1 2 3 4  are taken in Eqs (3.8), four general solutions are obtained in which
T 0 . These solutions are identical to those without thermal fact and are not discussed here. Therefore if 
i 5  should be taken in Eqs (3.8), the following solution is obtained 
 

       

,

6 6 6 6

1 1 1 16 4 2 2 4 6

4 4 4

1 1 14 2 2 4

F
u p q r v

xx x z x z z

G
p q r

xx x z z

     
             
    

         

 (3.11a) 

  

  ,

6 6 6 6

2 2 2 26 4 2 2 4 6

4 4 4

2 2 24 2 2 4

F
w p q r v

zx x z x z z

G
p q r

zx x z z

     
             
    

         
 

(3.11b) 

 

  

6 6 6 6

3 3 3 36 4 2 2 4 6
p q r v G

x x z x z z

    
            

, (3.11c) 

 

  ,

8 8 8 8 8

4 4 4 4 48 6 2 4 4 2 6 8

6 6 6 6

4 4 4 46 4 2 2 4 6

C p q r v w F
x x z x z x z z

p q r v G
x x z x z x

     
               
    

           
 

(3.11d) 

 

  

* * * * *
8 8 8 8 8

8 2 6 4 4 6 2 8

6 6 6 6

6 4 2 2 4 6

T a b c d e F
z x z x z x z x

a b c d G
z z x z x x

     
               
    

           
 

(3.11e)  

 

F G
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where * * * * *, , , ,a b c d e  and , ,a b c  and d  are given in Appendix A. 
 Equation (3.10) can be rewritten as 
  

  

,
5 2 2

2 2
jj 1

F 0
x z

    
   

  (3.12) 

 

  

4 2 2

2 2
jj 1

G 0
x z

  
  

   
  (3.13) 

where 

, 1
j j 5

3

K
z s z s

K
 

 
and ( , , , )js j 1 2 3 4

 
are four roots (with positive real part) of the following algebraic 

equation 
 

  
* * * * * .8 6 4 2a s b s c s d s e 0      (3.14) 

and 

, 1
j j 4

3

K
z s z s

K
   and ( , , )js j 1 2 3

 
are three roots (with positive real part) of the following algebraic 

equation 
 

  .6 4 2as bs cs d 0     (3.15) 
 
 As known from the generalized Almansi (proved by Ding et al. [1]) theorem, the function F  and G
can be expressed, respectively, in terms of five and four harmonic functions 
 
(i)  1 2 3 4 5F F F F F F          for distinct     ( , , , , )js j 1 2 3 4 5 ,

   
   (3.16a) 

  1 2 3 4G G G G G         for distinct     ( , , , ),js j 1 2 3 4
 

 
(ii)  1 2 3 4 5F F F F F zF          for     ,1 2 3 4 5s s s s s   

 
   (3.16b) 

  1 2 3 4G G G G zG         for     ,1 2 3 4s s s s  
 

 

(iii)   2
1 2 3 4 5F F F F zF z F          for     ,1 2 3 4 5s s s s s   

 
   (3.16c) 

  
2

1 2 3 4G G G zG z G         for     ,1 2 3 4s s s s  
   

  

(iv)  2 3
1 2 3 4 5F F F zF z F z F          for     ,1 2 3 4 5s s s s s     (3.16d) 

 

(v)  2 3 4
1 2 3 4 5F F zF z F z F z F          for     ,1 2 3 4 5s s s s s   

 
   (3.16e) 

  
2 3

1 2 3 4G G zG z G z G         1 2 3 4s s s s  
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where ( , , , , )jF j 1 2 3 4 5

 
and ( , , , )jG j 1 2 3 4

 
satisfies the following harmonic equation 

 

  

, ( , , , )
2 2

j2 2
j

F 0 j 1 2 3 4
x z

     
   

, (3.17a) 

 

  

, ( , , ).
2 2

j2 2
j

G 0 j 1 2 3
x z

     
   

 (3.17b)
 

 
 The general solution for the case of distinct roots, can be derived as follows 
 

  

, ;
7 5 7 55 4 5 4

j j j j
1 j 1 j j 2 j j 2 j6 4 7 5

j j j jj 1 j 1 j 1 j 1

F G F G
u p p w s p s p

x z x z z z   

   
   

        
 

 

  

, , ,
6 8 64 5 4 8 6

j j j 5 4
3 j 4 j 4 j 55 546 8 6 8 6

j j j 5 4j 1 j 1 j 1

G F G F G
p C p p T p p

z z z z z  

    
     

      
 (3.18) 

 

  
, ( , , & , , , , );2 4 6

kj k k j k j k jp p q s r s v s k 1 2 3 j 1 2 3 4 5      
 

 

  
,2 4 6 8

4 j 4 4 j 4 j 4 j 4 jp p q s r s v s w s    
 

 

  
* * * * *,8 6 4 2

55 5 5 5 5p a s b s c s d s e      
 

  
, ( , & , , , ),2 4

kj k k j k jp p q s r s k 1 2 j 1 2 3 4    
 

 

  
, ( , & , , , ),2 4 6

kj k k j k j k jp p q s r s v s k 3 4 j 1 2 3 4        

 

  
6 4 2

54 4 4 4p a s bs cs d    . 
 
 In a similar way, the general solution for the four three cases can be derived. 
Equation (3.18) can be further simplified by taking 
 

  

,
6

j
1 j j6

j

F
p

z


 


 

(3.19a) 

and 

  

.
4

j
1 j j4

j

G
p

z


 


 

(3.19b) 
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, ,
5 4 5 4

j j j j
j 1 j j 1 j

j jj 1 j 1 j 1 j 1

u w s P s P
x x z z   

   
   

      
 

 

  

, , ,
2 4 24 5 4 4 2

j j j 5 4
2 j 3 j 3 j 45 442 4 2 2 2

j j j 5 4j 1 j 1 j 1

P C P P T P p
z z z z z  

         
     

      
 

(3.20)

 
where 

  
, , , .1 j 2 j 1 j 2 j 3 j 1 j 3 j 4 j 1 j 45 55 15P p p P p p P p p P p p     

 

  
, , .1 j 2 j 1 j 23 33 13 34 44 14P p p P p p P p p      

 
 The functions ( , , , , )j j 1 2 3 4 5   and ( , , , )j j 1 2 3 4 

 
satisfy the harmonic equations 

 

  

, , , , ,
2 2

j2 2
j

0 j 1 2 3 4 5
x z

      
   

, (3.21a) 

 

  

, , , ,
2 2

j2 2
j

0 j 1 2 3 4
x z

  
    

   
 (3.21b) 

 

  

 

  ,

25
j2

xx 11 13 j 1 j 1 3 j 1 4 j 2
jj 1

24
j2

11 13 j 1 j 1 2 j 1 3 j 1 4 j 2
jj 1

c c s P b P a P
z

c c s P B P b P a P
z





 
      



 
     





  

(3.22 a)

 

 

  

 

  ,

25
j2

zz 13 33 j 1 j 3 3 j 3 4 j 2
jj 1

24
j2

13 33 j 1 j 3 2 j 3 3 j 3 4 j 2
jj 1

c c s P b P a P
z

c c s P B P b P a P
z





 
      



 
     






 (3.22 b)

 

 

  

( ) ( ) ,
2 25 4

j j
zx 44 1 j j 44 1 j j

j jj 1 j 1

c 1 P s c 1 P s
x z x z 

   
    

      (3.22c) 

 

  
( )2 2

11 13 j 1 j 1 3 j 1 4 j 44 1 j jc c s P b P a P c 1 P s     , (3.23a) 

 

  
( )2 2

11 13 j 1 j 1 2 j 1 3 j 1 4 j 44 1 j jc c s P B P b P a P c 1 P s      , (3.23b) 

 

  
( )2

13 33 j 1 j 3 3 j 3 4 j 44 1 jc c s P b P a P c 1 P      , (3.24a) 
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( )2

13 33 j 1 j 3 2 j 3 3 j 3 4 j 44 1 jc c s P B P b P a P c 1 P       . (3.24b)
 

 
 The general solution Eqs (3.22a)-(3.22c) with the help of Eqs (3.23a, b) and (3.24a, b) can be 
simplified as 
 

  , ,
2 2 2 25 4 5 4

j j j j2 2
xx j 1 j j 1 j zz 1 j 1 j2 2 2 2

j j j jj 1 j 1 j 1 j 1

s w s w w w
z z z z   

       
      

      
 

  

 

(3.25) 

  

,
25

j
zx j 1 j

jj 1

s w
x z

 
 

 
 

 

where

 

  

( ) .
2

11 13 j 1 j 1 3 j 1 4 j 2
1 j 44 1 j 13 33 j 1 j 3 3 j 3 4 j2

j

c c s P b P a P
w c 1 P c c s P b P a P

s

  
         (3.26) 

  

( )

.

2
11 13 j 1 j 1 2 j 1 3 j 1 4 j

1 j 44 1 j2
j

2
13 33 j 1 j 3 2 j 3 3 j 3 4 j

c c s P B P b P a P
w c 1 P

s

c c s P B P b P a P

   
   

       (3.27) 

 
4.  Fundamental solution for a point heat source in a semi-infinite orthotropic thermoelastic 

material with voids 
 
 We consider a semi-infinite orthotropic thermoelastic material with diffusion and voids z 0 . A 
point heat source H is applied at the origin and the surface z 0  is free, equilibrated thermally insulated. 
The complete geometry of the problem is shown in Fig.1. The general solution given by Eqs (3.20) and 
(3.25) is derived in this section. 
 

 
 

Fig.1. Geometry of the problem. 
 

Introduce the harmonic functions as 
 

 

               -              H                       x  
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( ) log tan2 2 1
j j j j j

j

1 3 x
A z x r xz

2 2 z
        

   
, , , ,j 1 2 3 4 5  (4.1) 

 
where jA  (j=1, 2, 3, 4, 5) are arbitrary constants to be determined and  

 

  
,2 2

j jr x z 
 

(4.2) 

and 

  
  log tan , , , ,2 2 1

j j j j j
j

1 3 x
A z x r xz j 1 2 3 4

2 2 z
         

   
 (4.3) 

 
where ( , , , )jA j 1 2 3 4  are arbitrary constants to be determined and  

 

  
.2 2

j jr x z   (4.4a) 

 
Here, 4A  can be written as a linear combination of 5A  i.e. 4 3A A   (4.4b) 

where   is some arbitrary constant. 

 The boundary conditions on the surface z 0  are  
 

  
, , , .zz zx

T C
0 0 0 0

z z z

  
      

  
 (4.5)

 
 
 When the volume fraction field, concentration and thermal condition for a rectangle of 0 z   and 

( )x b 0      are considered [Fig.1], the following equations can be obtained 
 

  

 ( , ) ( , ) ( , ) ,zz zx zx

0

x dx z z dz 0
 



           (4.6a) 

 

  ( , ) ( , ) ( , ) ,
0

x dx z z dz 0
z x x

 



               (4.6b) 

 

  

( , ) ( , ) ( , ) .
0

C C C
x dx z z dz 0

z x x

 



                   
 

(4.6c)

 
 

  

( , ) ( , ) ( , ) .3 1

0

T T T
a x dx a z z dz H

z x x

 



                    
 

(4.6d) 

 
 Substituting the values of j  and j  from Eqs (4.1) and (4.3) in Eqs (3.20) and (3.25), we obtain 

the expressions for components of displacement, temperature change, volume fraction field and stress 
components as follows 
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  (log ) tan (log ) tan ,
5 4

1 1
j j j j j j

j jj 1 j 1

x x
u A x r 1 z A x r 1 z

z z
 

 

   
         

      
   (4.7a) 

 

  (log ) tan (log ) tan ,
5 4

1 1
j 1 j j j j j 1 j j j j

j jj 1 j 1

x x
w s P A z r 1 x s P A z r 1 x

z z
 

 

   
        

      
   (4.7b) 

 

  log ,
4

j 2 j j
j 1

A P r


   (4.7c) 

 

  log log ,
5 4

j 2 j j j 2 j j
j 1 j 1

C A P r A P r
 

    (4.7d) 

 
  log log ,5 45 5 4 44 4T A P r A P r   (4.7e)  
 

  log log ,
5 4

2 2
xx j 1 j j j j 1 j j j

j 1 j 1

s w A r s w A r
 

      (4.7f) 

 

  log log ,
5 4

zz 1 j j j 1 j j j
j 1 j 1

w A r w A r
 

     (4.7g) 

 

  tan tan .
5 4

1 1
zx j 1 j j j 1 j j

j jj 1 j 1

x x
s w A s w A

z z
 

 

      (4.7h) 

 
 Making use the values of , , ,zz zx C    and T  from Eqs (4.7 c, d, e, g, h) in Eq.(4.5), we obtain 
 

  ,
5

1 j j
j 1

w A 0


  (4.8a) 

 

  ,
5

1 j j
j 1

w A 0


  (4.8b) 

 

  ,
4

j 1 j j
j 1

s w A 0


  (4.8c) 

 

  ,
4

j 1 j j
j 1

s w A 0


  (4.8 d) 
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,
C T

z z

 
 

 and 
z




 are automatically satisfied at the surface .z 0  

 Making use of the values of zz  and zx  from Eqs (4.7 f, g) in Eq.(4.6a), we obtain 
 

  ,
5 4

1 j j 3 1 j j 4
j 1 j 1

w A I w A I 0
 

    (4.9) 

where 

   log tan

x

2 2 2 1
3 j j

j x

x
I x x s 1 s

s






 
       

  
 

  - tan log (log ),

z

1 2 2 2
j j

j z 0

2 z b s z 2 1
s z






 
       

  
 (4.10a) 

and  

   log tan

x

2 2 2 1
4 j j

j x

x
I x x s 1 s

s






 
       

  
 

  tan log (log ).

z

1 2 2 2
j j

j z 0

2 z s z 2 1
s z






 
        

  
 (4.10b)  

 
 By virtue of Eqs (4.10 a, b), Eq.(4.9) degenerate to Eqs (4.8 a, b) i.e., Eqs (3.6a) and (4.9) are 
satisfied automatically. 
 Some useful integrals are given as follows 
 

  tan ,
4 5

2 1
j j 2 j j j 2 j2 2 2

jjj 1 j 1

z x
A s P dx A s P

z zx s z


 


 

     (4.11a) 

 

  tan ,
4 4

j 1
j 2 j 2 j2 2 2

j jjj 1 j 1

Ax x
dz A P dz P

x s zx s z


 


  

     (4.11b) 

 

  

tan tan ,

5 4
2 2

j j 2 j j j 2 j2 2 2 2 2 2
j jj 1 j 1

5 4
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  tan tan ,1 15 4
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 Making use of Eq.(4.7e) in Eq.(4.6d), with the aid of 1
5 4

3

K
s s

K
   and the integrals (4.11 e, f), we obtain 
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5A  can be determined from Eqs (4.12) and (4.13 a, b), as follows 
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5
45 44 3 1

H
A

P P K K
 

  
 (4.14) 

 
 Substituting the value of   from Eq.(4.7c) in Eq.(4.6b) and with the aid of the integrals (4.11 a, b), 
we obtain 
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where 

  tan tan .

x z

2 1 1
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x
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  (4.16) 

 
On simplifying, we obtain 
 

    tan .2 1
j j

j

r 2 s 1
s

  
      

   

 
 Substituting the value of C from Eq.(4.7d) in Eq.(4.6c) and with the aid of the integrals (4.11 c, d), 
we obtain 
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  ,
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where 

    tan .2 1
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j
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s

  
      

 

 
 Thus the nine constants jA ( , , , , ), ( , , , )jj 1 2 3 4 5 A j 1 2 3 4   can be determined by nine equations 

including Eqs (4.8a) - (4.8d), (4.14) and (4.15), (4.17) and (4.18) and by the relation given in Eq. (4.4b). 
 
5. Special cases 
 
Case I: In the absence of diffusion effect 
 
 In the absence of voids effect Eqs (4.7a)-(4.7h) reduce to  
 

  

(log ) tan (log ) tan ,
4 3

1 1
j j j j j j

j jj 1 j 1

x x
u A x r 1 z A x r 1 z

z z
 

 

   
         

      
   (5.1 a) 

 

  

(log ) tan (log ) tan ,
4 3

1 1
j 1 j j j j j 1 j j j j

j jj 1 j 1

x x
w s P A z r 1 x s P A z r 1 x

z z
 

 

   
        

      
 

 

(5.1 b)
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(5.1g) 

 
 The above results are similar to those obtained by Kumar and Chawla [14]. 
 
Case II: In the absence of voids and diffusion effects 
 
 In the absence of voids and diffusion effects Eqs (4.7a)-(4.7h) reduce to  
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  log ,3 23 3T A P r  (5.2c) 
 

  log
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   . (5.2f) 

 
 The above results are similar to those obtained by Hou et al. [12]. 
 
Case III: In the absence of voids, thermal and diffusion effects 
 
 In the absence of voids, thermal and diffusion effects, we obtain the corresponding results for a 
transversely isotropic elastic medium. 
 
6. Conclusion  
 
 The general solution and fundamental solution for a two-dimensional problem in transversely 
isotropic thermoelastic media with mass diffusion and voids have been constructed. The two-dimensional 
general solution in transversely isotropic thermoelastic media with mass diffusion and voids is derived first 
by using the operator theory. On the basis of the obtained general solution, the fundamental solution for a 
steady point heat source on the surface of a semi-infinite transversely isotropic thermoelastic material with 
mass diffusion and voids is derived by nine new introduced harmonic functions. The components of 
displacement, stress, temperature change, mass concentration and voids are expressed in terms of elementary 
functions, so it is convenient to use them. From the present investigation, some special cases of interest are 
also deduced and compared with the previous results.  
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 Applications: fundamental solutions for two dimensional in anisotropic media are important for the 
solution of inclusion problems and of the boundary integral equations. This type of solution technique 
(which, has been used in this research paper) is very useful for finding the general solution and fundamental 
solution in anisotropic media for different theories, i.e. micropolar thermoelastic material with voids, 
micropolar thermoelastic material with mass diffusion and voids, microstretch thermoelastic material, 
microstretch thermoelastic material with mass diffusion, etc. This type of solution technique provides a 
wonderful platform for new researcher studies to construct the general solution in thermoelasticity with 
double porosity and triple porosity. Also, this type of solution technique will be very useful to construct 
fundamental solution for three dimensional problems and Green’s function in different symmetries which 
will be very useful for solving boundary value problems as well as for the study of cracks, defects and 
inclusions. 
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Nomenclature  
 

 ,a d   − are, respectively, coefficients describing the measure of thermodiffusion and mass diffusion effects 

 C  − concentration of diffusive material in the elastic body 

 
*C  − specific heat at constant strain 

 
( )ijkm kmij jikmc c c 

 
− tensor of elastic tensor 

 

, ,i j j i
ij

u u
e

2




 
− components of the strain tensor 

 
( )ij jik k

 
− coefficients of thermal conductivity

 
 T  − temperature distribution from the reference temperature 0T  

 iu  − components of displacement vector 

 
* *( )ij ji  

 
− coefficients of diffusion tensor 

 ij
 
− tensors of thermal moduli 

 ij   − tensors of diffusion moduli 

   − density 

   − equilibrated inertia 

   − volume fraction field 
 
The symbol (“,”) followed by a suffix denotes differentiation with respect to the spatial coordinate and a superposed dot 
(“.”) denotes the derivative with respect to time. 
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