
 

Int. J. of Applied Mechanics and Engineering, 2020, vol.25, No.3, pp.212-218 
DOI: 10.2478/ijame-2020-0044 

 

 

Brief note  
 

STRESS AND DISPLACEMENT INTENSITY FACTORS OF CRACKS IN 
ANISOTROPIC MEDIA 

 

S. KUZNETSOV* 
Ishlinsky Institute for Problems in Mechanics, Moscow, RUSSIA 
Bauman Moscow State Technical University, Moscow, RUSSIA 

Moscow State University of Civil Engineering, Moscow, RUSSIA 
E-mail: kuzn-sergey@yandex.ru 

 

A. KARAKOZOVA 

Moscow State University of Civil Engineering, Moscow, RUSSIA 
 
 

A relation connecting stress intensity factors (SIF) with displacement intensity factors (DIF) at the crack front 
is derived by solving a pseudodifferential equation connecting stress and displacement discontinuity fields for a 
plane crack in an elastic anisotropic medium with arbitrary anisotropy. It is found that at a particular point on the 
crack front, the vector valued SIF is uniquely determined by the corresponding DIF evaluated at the same point.  
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1. Introduction 
 

 The stress intensity factors (SIF) along with the displacement intensity factors (DIF) for a plane crack 
of arbitrary shape placed in homogeneous anisotropic media with arbitrary elastic anisotropy, are analyzed 
by constructing a pseudodifferential operator that connects asymptotes of the outer stress field (out of crack) 
evaluated at a particular point on the crack front with the inner asymptote of the displacement discontinuity 
field. A closed form relation between two intensity factors, SIF and DIF at the crack front, is derived by 
solving the corresponding pseudodifferential equation. The method is developed for a plane crack with a 
smooth crack front of Lyapunov type. 

 The crack occupying plane region   with smooth Lyapunov type boundary , ,1C 1   , is 

shown in Fig.1, where n  denotes the unit outward normal to  , and dashed arrows indicate directions for 
evaluating SIF and DIF. The plane with unit normal  supporting  is denoted by  . 
 

 
 

Fig.1. Plane crack Ω with smooth Lyapunov type boundary ∂Ω. 
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2. Stresses acting on the  - plane 
 
 The displacement field produced by the crack discontinuity can be represented by the following 
double-layer potential; see Kupradze et al. [13], Duduchava et al. [14] 
 

  ( ) ( ) ( , ) ( )y y dy


     u x b y T E x y ,   (2.1) 

 

where y ; b is the crack discontinuity field; E is the Green tensor in 3R ; and T is the surface traction 
operator 
  
  ( , )y y y y   T C  .   (2.2) 

 
In Eq.(2.2) C is the fourth-order elasticity tensor, assumed to be strongly elliptic 
 

  
,

,
0

0


      
m n

m n m n C n m .  (2.3) 

 

 In Eq.(2.3) ,m n  are arbitrary non-zero vectors in 3R . Strong ellipticity condition (2.3) ensures 
ellipticity of the fundamental solution E  [16]. Properties and methods of construction of the elasticity tensor 
at the case of general elastic anisotropy are discussed in [15, 16] and for wave dynamics in [18].  
 Now, the surface traction field on the  - plane can be defined by applying operator (2.2) to the 

potential (2.1) and transition to the non-tangential limits to   
 

  ( ) lim ( , ) ( ) ( , ) ( ) ,x x y yv dy 


           x x
t x T b y T E x y x . (2.4) 

 
 These limits are correctly defined due to the Lyapunov – Tauber theorem for elastic potentials; see 
Kupradze et al. [13], Duduchava et al. [14].  
 
3. Operator of the theory of cracks 
 
 Application of the Fourier transformation to expression (2.4) gives an amplitude (Trev [10]) of the 
corresponding integro-differential operator as  
 

  ~ ~( ) ( ) ( )2
y x2        G C E C       (3.1) 

 
where symbol “~” stands for the integral Fourier transform; and ,x y   correspond to the same unit normal 

 .  
 Restricting amplitude (3.1) on the  - plane yields the (principal) symbol of the desired operator that 

depends on   variable only 
 

  ~ ~( ) ( ) F.P. ( )22 d




   Z G 

 

 (3.2) 
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where , Pr , Pr3R
          , and thus       ; in Eq.(3.2) F.P. stands for the Finite Part of the 

divergent improper integral, this can be evaluated by a regularization technique (Kuznetsov [3]). The 

following properties of symbol ~Z  immediately follow from its definition: 

 PROPOSITION 3.1. a) Symbol ~Z  is symmetric and strongly elliptic; b) Symbol ~Z  is positively 

homogeneous of degree 1 with respect to  ; c) Symbol ~G  is real-analytic in \2R 0 . 

 The symbol ~Z  can be written in the form 
 

  ~ ~( ) ( )
2

2      Z K   (3.3) 

 

where symbol ~ ( )K  is of the order -1, and hence corresponds to a smoothing integral operator in 2R .  
 Now, integral Fourier transform inversion of expression (3.3) yields 
 
  ( ) ( ),x     Z x K x x   (3.4) 
 
where x  is Laplacian in   and ( )K x  is the homogeneous 3 3 -matrix kernel of degree -1 (with respect 

to x ) of the corresponding matrix integral operator in  . In Eq.(3.4) symbol “  ” denotes composition of 

two matrix operators.  
 
4. Relation between SIF and DIF: preliminary results  
 
 Decomposition (3.4) of the operator G  yields  
 
   

( )

x

x





 
Z

t K b .  (4.1) 

 
Restriction of the operators in Eq.(4.1) onto the crack domain   yields 
 
   x  t K b  .  (4.2) 

 
Now, inverting the latter formula yields 
 

   1r 
  b K t   (4.3) 

 

where r  is Green’s function for the Dirichlet problem in  ; 1
K  denotes restriction on   of the inverse 

operator 1K , in view of Eq.(3.4) the latter is an integro-differential operator with the corresponding symbol 
of the order +1.  
 
5. Relation between SIF and DIF: final expression 
 
 In view of Eq.(4.3), the Wave Front (WF) of the crack discontinuity field b at a particular point 

0 x  takes the form (Trev [10]) 
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  WF( ) ( , )0   b x n   (5.1) 
 
where, as before n  denotes the (outward) unit normal to   at 0 x . Now, Fourier integral transform of 

the (inner) asymptote of the field bat 0x , yields 
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0
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0
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x

x

x x n D

n x n n D
 (5.2) 

 
 At the same time the wave front of the surface traction field at the same point 0 x  in view of 
Eq.(4.1) takes the form (Trev [10]) 
 
  WF( ) ( , )0   Zb x n .   (5.3) 
 

Multiplying both sides of Eq.(5.2) by symbol ~Z  yields the desired asymptote for the outer stresses 
 

    / ~( ) ~ ( ) (( ) ) ( )
0

1 1 2
0 04  

         xt x x n x x n Z n D .  (5.4) 

 
Equation (5.4) yields the desired equation between SIF and DIF 
 

  / ~( ) ( )
0 0

1 1 22 2   x xS Z n D .   (5.5) 

 
 The constructed relation between vector-valued SIF (

0xS ) and vector-valued DIF (
0xD ) reveals that 

up to the invariant with respect to elastic properties multiplier /( )1 1 22 2   the SIF and DIF are connected by 

the matrix symbol ~ ( )Z n , solely dependent upon elastic properties of a medium. Finally, in view of Eqs 

(1.4), (5.5), matrix ( )M n  takes the form 
 

  / ~( ) ( ) ( )1 1 22 2  M n Z n .   (5.6) 

 
6. Application to isotropic medium 
 
 For the case under consideration, the elasticity tensor denoted by C  in terms of its6 6
representation takes the form [17] 
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C ,  (6.1) 

 
or in tensorial form  
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in Eq.(6.2) summation convention over repeated indices is used. Now, taking into account (6.2), Eq.(3.1), for 
the case under consideration takes the form  
 

  ~ ~( ) ( ) ( )2
t y t t t x2        Z C E C      . (6.3) 

 
7. Concluding remarks 
 
  A closed form relation between stress intensity factor (SIF) and displacement discontinuity at the 
crack front, called displacement intensity factor (DIF), is found by applying the method of integro-
differential (pseudodifferential) operators connecting the inner asymptote of the displacement discontinuity 
field with the outer asymptote of the (outer) stress field at the crack front. The constructed relation is valid 
for an arbitrary shaped plane crack in a medium with arbitrary elastic anisotropy.  
  Moreover, relations (5.5), (5.6) reveal that the vector-valued SIF (

0xS ) and DIF(
0xD ) are connected 

up to a scalar invariant multiplier /( )1 1 22 2   by the matrix symbol ~ ( )Z n , which is solely dependent upon 
elastic properties of the considered medium and direction of the unit normal to the plane crack front.  
  From the point of view of a researcher it is much more convenient to measure the displacement 
discontinuity field that does not have infinite values, and whose asymptotic value at the crack tip is finite 
(actually it is zero), thus considerably simplifyingthe computation procedure. According to the developed 
methodology, evaluating DIF (

0xD ) and applying formula (5.6) immediately yields the questioned SIF. 
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