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The governing equations of an electrohydrodynamic oscillatory flow were simplified, using appropriate non-
dimensional quantities and the conversion relationships between fixed and moving frame coordinates. The 
obtained system of equations is solved analytically by using the regular perturbation method with a small wave 
number. In this study, modified non-dimensional quantities were used that made fluid pressure in the resulting 
equations dependent on both axial and vertical coordinates. The current study is more realistic and general than 
the previous studies in which the fluid pressure is considered functional only in the axial coordinate. A new 
approach enabled the author to find an analytical form of fluid pressure while previous studies have not been able 
to find it but have found only the pressure gradient. Analytical expressions for the stream function, electrical 
potential function and temperature distribution are obtained. The results show that the electrical potential function 
decreases by the increase of the Prandtl number, secondary wave amplitude ratio and width of the channel. 
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1. Introduction 

 
 Studying the movement of a viscous liquid through a channel with moving walls is one of the 

important topics that have attracted the attention of scientists for a long time due to many applications in 
different areas of life. This movement appears in transporting many physiological fluids in the body in 
various situations such as transport of urine through the ureter, transport of spermatozoa, transport of 
contents of the gastrointestinal passage and blood pumps in heart-lung machines. Latham [1] was the first to 
introduce the experimental study of this movement in which he studied the movement of urine passing 
through the ureter from kidneys to the bladder. He determined the critical value of the gradient in pressure 
(the value at which the urine moves in the opposite direction from the bladder to the kidney). A year after 
this study, Fung and Yih [2] presented the theoretical framework for this study. They examined the 
movement of a viscous fluid inside a channel with periodically contracting and expanding walls. The 
expansion and contraction of the walls generate successive sine waves that move the fluid inside the channel. 
They considered the amplitude of the channel wave to be much less than half the width of the channel and 
were able by this approximation to use the perturbation method to find the critical value of the pressure 
gradient. They also found that it depends on both the Reynolds number and wave number. In the same year, 
Shapiro et al. [3] studied the same problem, but assumed that the wavelength of the wave generated on the 
wall is large and the Reynolds number is small. They described the problem using two sets of coordinates; 
one fixed in the vacuum and the other moving at the same speed of the wall. They were able to set the 
equations of conversion between these coordinates and were able to study the issue using this new type of 
coordinates, where the problem does not depend on time, and using the long wavelength approximation. 
They studied new natural phenomena that were not studied before such as the phenomenon of trapping and 
the pressure rise. The studies were then diversified and new studies emerged as a generalization of this study 
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lower wall is grounded and the upper wall is kept at the electrical potential 10 . If we assume that the 

density of the fluid   is constant (corresponding to the assumption that the vertical flow due to buoyancy is 
neglected), the continuity equation is 
 

 .V 0                                                                                             (2.1) 
 

The equation of motion is 
 

 
,2

e
V

V V P V V f
t k1

            
              (2.2) 

 
where P is the pressure, μ  is the viscosity, k1  is the permeability of the medium, V =(U, V, 0)is the 

velocity of the fluid and ef is the body force of electrical origin per unit volume which may be expressed as 

[13] 
 

 
 

2 2
e e

1 1
f E E E

2 2

 
        


                                                     (2.3) 

 
where E  is the electric field,  e  is the free charge density and   is the dielectric constant. The first term in 
(3) has been neglected, since the free charge density can be assumed to be zero and the last term can be 
included in the pressure term. 
 The equation of energy, neglecting the dissipation terms [14], is 
 

 

2T
V T k T

t


   


                                                                                      (2.4) 

 
where T  is the temperature and k  is the thermometric conductivity. 
 Since there is no free charge, Maxwell's equations are 
 

   ,E 0                                                                     (2.5) 

 

 E 0         or        ,E       (2.6) 
 

where   is the electrical potential function. The dielectric constant   is assumed to be a function of 
temperature as follows [15] 
 

 
  .0 001 e T      

 
                                     (2.7) 

 
Substituting into (2.3) and (2.5) we get 
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  ,
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2 0U U U 1 P e T
U V U U

t X Y X k1 2 Y X

                        


                (2.8) 
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

                   (2.9) 
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,2T T T

U V k T
t X Y

  
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                               (2.10) 

  

 
  ,001 e T 0

Y Y

              
                                                       (2.11) 

 

where * 21
P P E

2

 
    


 is the modified pressure. 

The compliant wall is modelled as a spring-backed plate, it is constrained to move only in the 
vertical direction. Letting the vertical displacement of the compliant wall be  ,X t , the equation of motion 

of the compliant wall can be written as [16]. 
 

 
 ,  .

2 4 2

w w w w w 002 4 2
m d b t k X t P P

tt X X

    
           

              (2.12) 

 
The vertical movement of the compliant wall will result in a progressive wave of area contraction or 

expansion along the length of the flexible channel containing the fluid. This will generate sine waves along 
the channel walls. Therefore, the vertical displacement of the compliant wall  ,X t  is assumed to be in the 

form of a sinusoidal wave of amplitude a , wavelength   and wave speed C . Thus,  ,X t  may be 

expressed as 
 

 
   , cos CX t a X t

     
.                                                                          (2.13) 

 
The horizontal displacement will be assumed to be zero. Hence the boundary conditions are 
 

  ,       ,          ,        ,          at           , 10 10U 0 V T Y d
t


       


 

 (2.14) 

 
,       ,      ,        ,             at           . 00U 0 V T 0 Y d

t


         


 

 
We shall carry out this investigation in a coordinate system moving with the wave speed, in which 

the boundary shape is stationary. The coordinates and velocities in the laboratory frame  ,X Y  and the wave 

frame  ,x y  are related by 

 

 C ,       ,          ,       and        x X t y Y u U C v V                          (2.15) 
 

where  ,u v  and  ,U V are velocity components in the wave and fixed frame of reference respectively. We 

employ these transformations in the governing equations of motion and then introduce the following 
dimensionless variables and parameters 
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Using the stream function  ,x y , the governing equations become    
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    (2.17) 
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           (2.18) 
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2
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r

1

y x x y RRP x y
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                                  (2.19) 
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                                (2.20) 

 
with the boundary conditions 
 

 
 ,        ,        ,         ,         at       ,10 10

0

1 y h x
y x x d E d
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   
 (2.21) 

 

 
 ,        ,        ,         ,         at       ,001 0 y h x

y x x d
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    (2.22) 
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(2.23)  
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where    Γ ,
5 3 2

w w w w w5 3 2
D BB M T D K

xx x x

    
         

    h x 1 x   and , ,w wBB M  

,  and   w w wT D K  are the non-dimensional wall compliance parameters.  

 
3. Method of solution 
 

We assume that the stream function  , the modified pressure *p , the temperature  , the electric 

potential   and the wall vertical displacement   can be expanded as [17] 
 

  * * * ,           ,           ,   0 1 0 1 0 1p p p               
   (3.1) 

  ,             .   0 1 0 1           
 
Substituting Eq.(3.1) into Eqs (2.17)-(2.20) and the boundary conditions (2.21)-(2.23) and collecting 

terms of like powers of  , and then solving the resulting systems up to first order of   we get the solutions 
of the following form: 
 
Zeroth-order solution 
 
 The solution of the problem at this order is given by  
 

    ,  , 0 x y R01 S1 x y                                (3.2) 
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x y S11 x y
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                                (3.3) 

 

 
       ,  , 0 x y S5 x Log y S2 x S6 x                                             (3.4) 
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(3.6)
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 (cont. 3.6) 
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The non-dimensional pressure rise per wavelength at this order is defined as 
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First-order solution 
 
 The solution of the problem at this order is given by 
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where  Shi Z  is the hyperbolic sine integral function,   Chi Z  is the hyperbolic cosine integral function, 

   Ei Z is the exponential integral function 
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The non-dimensional pressure rise per wavelength at this order is defined as 
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The constants ,  R06 R13 d1 d13   and the functions    S12 x S118 x were obtained and are not 

regarded here. 
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Fig.2.  Variation of  u y  with  y  for various values of L1  when ,  , d 1 L 1000  . , . ,A0 0 5 A1 0 1 
 , . , .  . RR 50 0 1 k1 0 24     

 

4. Discussion of the results  
 

 In this paper, we take  ,    . ,    ,   ,   . ,   ,    .w w w w w 00BB 20 M 0 01 T 10 K 10 D 0 5 P 1 x
3


        The 

effects of the temperature parameter L1  and electrical Rayleigh number L  on the axial velocity  u y  are 

shown in Figs 2-3. It is observed that the axial velocity increases with an increase in the electrical Rayleigh 
number, whereas it decreases with an increase of the temperature parameter. Figures 4-6 depict the variation 
of the electrical potential function   with y  for various values of the permeability of the medium K1 , 

primary amplitude ratio A0  and secondary amplitude ratio A1 . As illustrated in these figures, the electrical 
potential increases by increasing K1  and A0  while it decreases with an increase of A1 . 
 

 
 

Fig.3. Variation of  u y  with  y  for various values of L  when ,  . , d 1 L1 0 08  . , . ,A0 0 5 A1 0 1 
 , . , .  . RR 50 0 1 k1 0 24     
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Fig.4.  Variation of  y  with  y  for various values of k1  when ,  . , rd 1 P 0 7  . , . ,A0 0 3 A1 0 1 

 , .  . RR 50 0 1    
 

The pressure rises against the flow direction P  are illustrated in terms of the dimensionless wave 

number   with various values of the temperature parameter L1  (Fig.7) and the electrical Rayleigh number 
L  (Fig.8), respectively. It is obvious that increasing the wave number causes an increase of the pressure 
rises. The pressure rises P for different values of the temperature parameter L1  are illustrated in Fig.7. It 

is shown that P  increases with an increase in L1  for small values of  .0 0 34     and after that P  

decreases. The graphs of P for different values of the electrical Rayleigh number L  are presented in Fig.8. 

It is observed that the pressure rise decreases for small values of  .0 0 36     with an increase in the 

electrical Rayleigh number L  and for large  . .0 36 0 50    , the pressure rise increases.  
 

 
Fig.5. Variation of  y  with  y  for various values of A0  when ,  Pr . , d 1 0 7  . , . ,k1 0 3 A1 0 1 

 , .  . RR 50 0 1    
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Fig.6. Variation of  y  with  y  for various values of A1  when ,  Pr . , d 1 0 7  . , . ,k1 0 3 A0 0 3 

. , . ,k1 0 3 A0 0 3   , .  . RR 50 0 1    
 

The formation of an internally circulating bolus of fluid by closed streamlines is called trapping and 
this trapped bolus is pushed ahead along with the peristaltic wave. The effects of the temperature parameter 
L1  and the electrical Rayleigh number L  on trapping are illustrated in Fig.9. It is observed that the bolus 
decreases in size with an increase of the temperature parameter L1 , whereas it increases in size with an 
increase of the electrical Rayleigh number L . Also, it is observed that the trapped bolus in the case of a 
channel with compliant walls is less than these for a channel with no compliant walls. 
 

 
Fig.7. Pressure rise per wavelength P  plotted against the dimensionless wavenumber   for different 

values of L1  when  ,  Pr . , . ,  . , . ,d 1 0 01 A0 0 02 A1 0 01 k1 0 1     ,  . RR 150 L 500   
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Fig.8. Pressure rise per wavelength P  plotted against the dimensionless wavenumber   for different 

values of L  when  ,  Pr . , . ,  . , . ,d 1 0 01 A0 0 02 A1 0 01 k1 0 1     , .  . RR 150 L1 0 08   
 

 
 
Fig.9.  Streamlines at ,  Pr . , . ,  . , . , , .d 1 0 7 A0 0 3 A1 0 1 k1 0 3 RR 50 0 01         for different L : (a) 

. , ;L1 0 01 L 1000   (b) . , ;L1 0 01 L 1100   for different L1 : (c) . , ;L1 0 5 L 10000   (d) 

. , ;L1 0 8 L 10000   
 
5. Conclusions  
 

We have presented a new technique to study the influence of the electrical Rayleigh number and 
temperature parameter on an oscillatory flow through a porous medium in the presence of compliant walls. 
In the current study, we considered modified non-dimensional quantities that made fluid pressure in the 
resulting equations dependent on both axial and vertical coordinates. The current study seens to be more 
realistic and more comprehensive than the previous ones which considered the fluid pressure to be function 
only in the axial coordinate. The following interesting observations are made: 
(1)  The axial velocity increases with an increase in the permeability of the medium and the electrical 

Rayleigh number, whereas it decreases with an increase of the temperature parameter. 
(2)  The electrical potential increases by increasing the permeability of the medium and the primary 

amplitude ratio, while it decreases with an increase of the Prandtl number, thermal expansion 
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coefficient, the root mean square value of the electric field (at  Y 0 ), the channel half width and the 
secondary amplitude ratio . 

(3)  For small values of  , the pressure rise decreases with an increase in the electrical Rayleigh number, 
whereas it increases with an increase in the temperature parameter. 

(4)  The bolus decreases in size with an increase of the temperature parameter, whereas it increases in size 
with an increase of the electrical Rayleigh number. 

(5)  The trapped bolus, in the case of a channel with compliant walls, is less than these for a channel with no 
compliant walls. 

 
Nomenclature 
 
 A0   primary amplitude ratio 
 A1   secondary amplitude ratio 
 wb   flexural rigidity of the plate 

 wd   wall damping coefficient 

 e   thermal expansion coefficient of dielectric constant 
 K1   permeability of the medium 
 wk   spring stiffness 

   L   electrical Rayleigh number 
 1L   temperature parameter 

 wm   plate mass per unit area 

 0    permittivity at vacuum 

 00P   pressure on the outside surface of the wall 

 Pr  Prandtl number 
 RR   Reynolds number 
 wt   longitudinal tension per unit width 

    adverse temperature gradient 
    wave number 
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