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This paper is focused on the study of two dimensional steady magnetohydrodynamics heat and mass transfer
by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium by taking
into account of the Soret/Dufour effects. The boundary layer equations, which are parabolic in nature, are
normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable
Keller—Box finite-difference scheme. Numerical results are obtained for the velocity, temperature and
concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several
values of the parameters, namely the buoyancy ratio parameter, Prandtl number, Forchheimer number,
magnetohydrodynamic body force parameter, Soret and Dufour numbers. The dependency of the thermophysical
properties has been discussed on the parameters and shown graphically. Increasing the Forchheimer inertial drag
parameter reduces velocity but elevates temperature and concentration. Increasing the Soret number and
simultaneously reducing the Dufour number greatly boosts the local heat transfer rate at the cylinder surface. A
comparative study of the previously published and present results in a limiting sense is made and an excellent
agreement is found between the results.
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1. Introduction

Transport phenomena in porous media are used in many branches of engineering and applied
physics. These include foam flooding of gas-saturated petroleum reservoirs, perfusion in poroelastic
myocardium tissue, drug delivery in the cerebral zone, heat transfer in the human skin system (Escobar and
Civan [1], Ng et al. [2], Nicholson [3]), biporous heat pipe flows for high power electronic device cooling,
porous media semiconductor heat sink design, forest fire dynamics, geothermal energy systems, oil recovery
(Jinliang Wang Catton [4], Douglas et al. [5]), geological contamination simulation (Cheng and Yeh [6]),
metallic foam modelling in materials processing (Laschet ef al. [7]) and solar energy cells (Becker ef al. [8]).
The vast majority of models have considered isotropic, homogenous porous media, usually employing the
Darcy law, which is valid for low velocity, viscous-dominated transport. However, porous media are
generally heterogeneous and exhibit variable porosity. An early study of flow through variable porosity
media was conducted by Roblee ef al. [9] for the case of radial variation in chemical engineering systems.
Much later, a seminal theoretical and experimental study was presented by Vafai [10] who studied the
influence of variable porosity and also inertial forces (Forchheimer drag) on thermal convection flow in
porous media, with the channeling effect being studied in detail. He elucidated the qualitative aspects of
variable porosity in generating the channeling effect with an asymptotic analysis.

These studies have all assumed the fluid to be electrically non-conducting. Many industrial fluids have
this property owing to the presence of ions in the fluid and will therefore respond to a magnetic field. Zueco et
al. [11] used network simulation to investigate the hydromagnetic heat transfer of a micro-structural liquid
material in a vertical pipe containing a Darcy-Forchheimer porous medium. Makinde et al. [12] analyzed, using
MAPLE software, the hydromagnetic Darcian flow in a rotating annular porous regime. Damsehet al. [13] used
a difference technique to study the magneto-hydrodynamic thermophoretic particle deposition in mixed
convection through a porous medium adjacent to a non-isothermal wall. These studies did not consider the
cylindrical geometry which arises frequently in for example the manufacture of conducting polymers,
composites, liquids with metallic intrusions etc. An important study of natural convection boundary layers in
Darcian porous media was presented by Minkowycz and Cheng [14], although they did not consider the
magnetic case. Recently, Hamzeh et al. [15]investigated the effect of radiation on magnetohydrodynamic free
convection boundary of a solid sphere with Newtonian heating. Recently, Kumari and Gorla [16] presented
solutions for the MHD boundary layer flow past a wedge in a non-Newtonian nanofluid.

Both Darcian and Darcy-Forchheimer (inertial) models have been employed extensively in radiative-
convection flows in porous media. Takhar et al. [17] used an implicit difference scheme and the Cogley-
Vincenti-Giles non-graymodel to simulate the radiation-convection gas flow in a non-Darcy
porousmediumwith viscous heating effects. Takhar et al. [18] employed a Runge-Kutta-Merson shooting
quadrature and the Rosseland diffusion algebraic radiation model to analyze the mixed radiation-convection
flow in a non-Darcy porous medium, showing that temperature gradients are boosted with radiative flux.
Hossain and Pop [19] studied radiation effects on free convection over a flat plate embedded in a porous
medium with high-porosity. Pal and Chatterjee [20] developed a numerical model and studied the MHD
mixed convection with the combined action of Soret and Dufour effects on heat and mass transfer of a
power-law fluid over an inclined plate in a porous medium in the presence of variable thermal conductivity,
thermal radiation, chemical reaction and Ohmic dissipation and suction/injection.

In all the above studies Soret/Dufour effects have been neglected. Such effects are significant when
density differences exist in the flow regime. Soret and Dufour effects are important for intermediate
molecular weight gases in coupled heat and mass transfer in fluid binary systems, often encountered in
chemical process engineering. Both free and forced convection boundary layer flows with Soret and Dufour
effects have been addressed by Abreu er al. [21]. Recently, Bég et al. [22] used the local non-similarity
method with a shooting procedure to analyze mixed convective heat and mass transfer from an inclined plate
with Soret/Dufour effects with applications in solar energy collector systems. Bhargava et al. [23] also
studied oscillating hydromagnetic heat and mass transfer with Soret and Dufour effects. Seddeek [24] studied
thermo-diffusion and diffusion-thermo effects on mixed convection flow over an accelerating surface with a
heat source with suction/blowing for the case of variable viscosity. El-Kabeir and Chamkha [25] focused on
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the study of heat and mass transfer by mixed convection over a vertical slender cylinder in the presence of
chemical reaction and thermal-diffusion and diffusion-thermo effects. Bhattacharyya et al. [26] presented a
mathematical model for the Soret and Dufour effects on the convective heat and mass transfer in a
stagnation-point flow of a viscous incompressible fluid towards a shrinking surface.

The objective of the present paper is to investigate the effects of Soret (thermo-diffusion) and Dufour
(diffusion-thermal) on the hydromagnetic convective boundary layer on a horizontal permeable cylinder
embedded in a non-Darcy porous regime where radiation is included by assuming Rosseland diffusion
approximation. An implicit numerical solution is obtained to the transformed boundary layer equations.

2. Mathematical analysis

A steady, laminar, two-dimensional, viscous, incompressible, electrically-conducting, buoyancy-
driven convection boundary layer heat and mass transfer from a horizontal permeable cylinder embedded in
a non-Darcy saturated regime with radiation and Soret/Dufour effects is analyzed. A uniform magnetic field
By, is applied in the radial direction, i.e. normal to the cylinder surface. Figure 1a shows the flow model and
physical coordinate system.

. Magnetic field, By
Electrically-

conducting fluid-

saturated > > >

isotropic — Transpiration, Vu

mmmmemmm Al

Permeable
cylinder:
Tw,surface
conditions

Fig.la. Physical model and coordinate system.

The x-coordinate is measured along the circumference of the horizontal cylinder from the lowest
point and the y-coordinate is measured normal to the surface, with ‘a’ denoting the radius of the horizontal
cylinder. @ =x/a, is the angle of the y-axis with respect to the vertical (0 <® < r). The gravitational

acceleration g, acts downwards. The magnetic Reynolds number is assumed to be small enough to neglect
magnetic induction effects. Hall current and ionslip effects are also neglected since the magnetic field is
weak. We also assume that the Boussinesq approximation holds, i.e. that density variation is only
experienced in the buoyancy term in the momentum equation. Additionally, the electron pressure (for weakly
conducting fluids) and the thermoelectric pressure are negligible. Both the horizontal cylinder and the fluid
are maintained initially at the same temperature and concentration. Instantaneously they are raised to a
temperature T,, (>7,,the ambient temperature of the fluid) and concentration C,, (>C,, the far-field

concentration) which remain unchanged. The fluid properties are assumed to be constant except the density
variation in the buoyancy force term. In line with the approach of Yih [27] and introducing the boundary
layer approximations, the governing conservation equations can be written as follows
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The boundary conditions are prescribed at the cylinder surface and the edge of the boundary layer
regime, respectively, as follows

(2.4)

u=0, v=V,6, T=T, C=C, at y=0,

w w w
2.9
u—>0, T->T,, C>C, as y—>w

where u and v are the velocity components in the x - and y - directions, respectively, K and I" - the
respective permeability and the inertia coefficient of the porous medium, v is the kinematic viscosity of the
conducting fluid, f and B* - the coefficients of thermal expansion and concentration expansion, respectively,
T and C- the temperature and concentration, respectively, ©- the electrical conductivity, B,- the

externally imposed magnetic field in the y -direction, p- the density, D,, - the mass diffusivity, ¢, - the

specific heat capacity, c, - the concentration susceptibility, o - the thermal diffusivity, 7,,- the mean fluid
temperature, K- the thermal diffusion ratio, 7 - the free stream temperature, C, - the free stream
concentration and ¥, - the uniform blowing/suction velocity.

The Rosseland diffusion flux model is used and is defined following Modest [28] as follows

_46*8T4
=30 gy

(2.6)

where £ * is the mean absorption coefficient and ¢* is the Stefan-Boltzmann constant. Following Raptis
and Perdikis [29] we can express the quadratic temperature function in Eq.(2.6) as a linear function of

temperature. The Taylor series for T’ ‘4 discarding higher order terms can be shown to give

77 =413 - 317 . (2.7)

Substituting of this expression into Eq.(2.6) and then the heat conservation Eq.(2.3), eventually leads
to the following form of the energy equation
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The stream function y is defined by u=0y/dy and v=-0y/0x, and therefore, the continuity

equation is automatically satisfied. In order to write the governing equations and the boundary conditions in
dimensionless form, the following non-dimensional quantities are introduced.
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In view of Eq.(2.9), Egs (2.1),(2.2),(2.8) and (2.4), reduce to the following coupled, nonlinear,
dimensionless partial differential equations for momentum, energy and species conservation for the regime
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The transformed dimensionless boundary conditions are

f'=0, f=f, 0=1 ¢é=1 at n=0
(2.13)
f'>0, 0650, ¢—>0 as nNow®

where, the primes denote the differentiation with respect ton , the dimensionless radial coordinate, & is the

dimensionless tangential coordinate and @ the azimuthal coordinate, A - the local inertia coefficient
(Forchheimer parameter), Da -the Darcy parameter, N - concentration to thermal buoyancy ratio parameter, k
- thermal conductivity, Pr - the Prandtl number, Sc - the Schmidt number, Du - the Dufour number, Sr - the
Soret number, M - the magnetic parameter, f,, - the blowing/suction parameter and Gr- the Grashof (free
convection) parameter, F is the radiation parameter. f,<0 for V,, >0 (the case of blowing), and f,, >0 for
V., <0 (the case of suction). Of course, the special case of a solid cylinder surface corresponds to fr = 0. The

engineering design quantities of physical interest include the skin-friction coefficient, Nusselt number and
Sherwood number, which are given by

écfi’/& =Ef"(£,0), (2.142)



162 B.Vasu, R.S.R.Gorla, P.V.S.N.Murthy, V.R.Prasad, O.A.Beg and S.Siddiqua

Nu ,
Tor - -0'(€,0),

Sh Y
T ¢'(&,0) .

3. Results and discussion

(2.14b)

(2.14c)

The system of Eqs (2.10) — (2.12) subject to the boundary conditions (2.13) constitute a well-posed
seven-first-order non-linear two-point boundary value problem. A numerical code developed and employed
the efficient Keller-Box implicit finite difference method described by Cebeci and Bradshaw [30]. Further
details of the solution procedure are documented in for example Rama Gorla and Vasu [31],and omitted here
for conservation of space.

A representative set of numerical results is presented graphically to illustrate the influence of
hydromagnetic parameter (M), Forchheimer inertial drag parameter (A),tangential coordinate (&), Dufour
number (Du), Soret number (Sr), buoyancy ratio parameter (N) and radiation parameter (F) on velocity,
temperature, concentration, shear stress, local Nusselt number and Sherwood number profiles. In all cases we
have assumed the following default values (unless otherwise stated) for the parameters: Pr = 0.71 (air), A =
0.1 (weak second order Forchheimer drag), F = 0.5, M = 1.0 (equivalent hydromagnetic and viscous forces),
Da= 0.1 (very high permeability of regime), f,, = 0.5. In order to verify the accuracy of our present method,
we have compared our results with those of Merkin [32] and Yih [27]. Table 1 shows the comparisons of the
values of —0'(€,0).

Table 1. Values of the local heat transfer coefficient (Nu) for various values of §withDa — o, A =0,
Pr=I,N=0,f,=0,Sc=0, F > o,Sr=Du=0.

-0'(&,0)
g
Merkin [32] Yih [27] Present results

0.0 0.4212 0.4214 0.4214
0.4 0.4182 0.4184 0.4185
0.8 0.4093 0.4096 0.4097
1.2 0.3942 0.3950 0.3952
1.6 0.3727 0.3740 0.3741
2.0 0.3443 0.3457 0.3460
2.4 0.3073 0.3086 0.3087
2.8 0.2581 0.2595 0.2597

T 0.1963 0.1962 0.1964

Figures 2a-b show the temperature and concentration distributions with collective variation in the
Soret number (Sr) and Dufour number (Du). Sr represents the effect of temperature gradients on mass
(species) diffusion. Du simulates the effect of concentration gradients on thermal energy flux in the flow
domain. It is observed from Fig.2a that a decrease in Du from 5.0 through to 0.0/ (simultaneously Sr
increases from 0.01 to 5.0, so that the product of Sr and Du remains constant i.e.,0.05) leads to a significant
decrease in temperature values in the regime. Decreasing Du clearly reduces the influence of species
gradients on the temperature field, so that 6 values are clearly lowered and the boundary layer regime is
cooled. From Fig.2b, it is noticed that ¢ (concentration function) in the boundary layer regime increases as
Du decreases from 5.0 to 0.01 (and Sr simultaneously increases from 0.0/ to 5.0). Mass diffusion is
evidently enhanced in the domain as a result of the contribution of temperature gradients. Unlike the
temperature response (Fig.2a) a concentration overshoot accompanies the highest value of Sr, and arises in
close proximity to the cylinder surface. In all other cases, the concentration profiles descend smoothly from a
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maximum at the cylinder surface to the free stream. The influence of the Soret and Dufour terms will be

relatively weak on the velocity fields, and these are therefore not plotted.
1
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Fig.2a. Effect the Sr and Du on the temperature profiles.
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Fig.2b. Effect Sr and Du on the concentration profiles.

Figure 3 adepicts the Velocity( f ’)response for different values of the Forchheimer inertial drag
parameter (A), with radial coordinate (1). The Forchheimer drag force term, (—@Af 2 ) in the dimensionless

momentum conservation Eq.(2.10) is quadratic and with an increase in A (which is infact related to the
geometry of the porous medium) this drag force will increase correspondingly. As such the impedance
offered by the fibers of the porous medium will increase and this will effectively decelerate the flow in the
regime, as testified to by the evident decrease in velocities shown in Fig.3a. The Forchheimer effect serves to
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superseed the Darcian body force effect at higher velocities, the latter is dominant for lower velocity regimes
and is a linear body force. The former is dominated at lower velocities (the square of a low velocity yields an
even lower velocity) but becomes increasingly dominant with increasing momentum in the flow, i.e. when
inertial effects override the viscous effects (Fig.3a).

Figure 3b shows that temperature 0 is increased continuously through the boundary layer with
distance from the cylinder surface, with an increase in A, since with flow deceleration, heat will be diffused
more effectively via thermal conduction and convection. The boundary layer regime will therefore be
warmed with increasing A and boundary layer thickness will be correspondingly increased, compared with
velocity boundary layer thickness, the latter being reduced.

0.16

Pr=071, M=10,
Da=0.1, fw=05,

N=10, Sc=025, 2=10,
I3 5,

=1
=05,Du=02Sr=025

0.12 4

A=001,01, 05, 1.0, 50,10, 50, 100, 150, 200.

0.08 A

0.04

0 5 n 10 15 20 25

Fig.3a. Effect of A on the velocity profiles.
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Fig.3b. Effect of A on the temperature profiles.

Figure 4a shows the influence of the magnetic parameter M, on the velocity field. An increase in M,
strongly decelerates the flow. In all profiles a peak arises near the surface of the cylinder and this peak is
displaced progressively closer to the wall with increasing M values. For M = [ the magnetic drag force will be
of the same order of magnitude as the viscous hydrodynamic force. For M > [ hydromagnetic drag will
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dominate and vice versa for M < /. In magnetic materials processing, the flow can therefore be very effectively
controlled with a magnetic field. Comparing with Fig.3a, it is observed that smaller increases in M have a more
pronounced influence in decelerating the flow than very large changes in the Forchheimer parameter, despite
the quadratic nature of the Forchheimer drag, indicating that the magnetic field has a greater effect on flow
retardation than nonlinear porous drag. This is of immense importance in materials processing operations
involving steady magnetic fields where even slight changes in field strength can be used to regulate flow.

0.16

Pr=0.71, N=1.0,A=0.1,£=1.0, Da=0.1,
Sc=025F=055r=025 Du=02 fw=05

0.12 1

7

0.08 4

M=00,05,10,20, 30, 50, 100

0.04 1

0 5 n 10 15 20 25

Fig.4a. Effect of M on the velocity profiles.
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M=00,05 1020 30 50100
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Fig.4b. Effect of M on the temperature profiles.

The temperature distribution in the boundary layer transverse to the cylinder surface is shown in
Fig.4b for various values of the magnetic parameter. A marked increase in temperature is accompanied by a
rise in M, i.e., temperatures are maximized with a strong magnetic field. The supplementary work expended
in dragging the fluid in the boundary layer against the action of the Lorentzi an hydromagnetic drag is
dissipated as thermal energy which heats the fluid. This induces a rise in temperatures.
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Figures Sa-c illustrates the effect of the buoyancy ratio parameter, &, on velocity, temperature and
concentration distributions through the boundary layer regime. For N < 0 velocity is strongly decelerated and
the reverse effect is observed for N > 0, i.e. aiding buoyancy forces act to accelerate the flow, whereas
opposing buoyancy forces effectively retard the flow. When N=0, the species buoyancy term vanishes and
the momentum boundary layer Eq.(2.10) is a de-coupled the species diffusion (concentration) boundary layer
Eq.(2.12). An increasing N from -0.5 to 5, clearly accelerates the flow, i.e., induces a strong escalation in
stream wise velocity, /' close to the wall; thereafter velocities decay to zero in the free stream. Figure 5b
indicates that with a rise in &, the temperature throughout the boundary layer is strongly reduced. Figure 5¢
shows that concentration ¢ exhibits the reduction to a positive increase in the buoyancy ratio, N; it is also
reduced with increasingly negative values (opposing buoyancy forces). For all values of N there is a smooth
decay in¢ profiles from a maximum at the cylinder surface to the free stream. The buoyancy effect can
clearly be exploited to control concentration distributions in laminar flow from a cylinder.

04
Pr=071, M=10,A=01 £=10 Da=01,
035 Sc=025F=05fw=055=025 Du=02.
03
025
N=-0500,05 1020 50
02 1
015 A
01
0.05
0 T "
0 7 10 20 30
Fig.5a. Effect of NV on the velocity profiles.
1
Pr=54 M=10:=05A=10 &=
10,Da=01, Sc=025 F=05 fw=05, Sr=
075
05
N=-050005 102050
025
0

Fig.5b. Effect of N on the temperature profiles.
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Fig.5c. Effect of N on the concentration profiles.
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Figures 6a-c depict the velocity, temperature and species concentration distributions transverse to the
cylinder wall for various stream wise coordinate values, &. Velocity is clearly decelerated with increasing
migration from the leading edge, i.e., larger & values (Fig.6a) for some distance into the boundary layer,
transverse to the wall (n ~ &). However, closer to the free stream, this effect is reversed and the flow is
accelerated with increasing distance along the cylinder surface. Conversely, a very strong increase in
temperature (0) and concentration (¢), as shown in Figs 6b and 6c, occurs with increasing & values.
Temperature and concentration are both minimized at the leading edge and maximized with the greatest
distances along the cylinder surface from the leading edge.

0.16

012 A

0.08 q

0.04 4

£=0.0,001,05,1015 20

Fig.6a. The velocity profiles at various & .

30
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Fig.6b. The temperature profiles at various & .
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Fig.6¢. The concentration profiles at various & .

Figures 7a-c illustrate the influence of wall transpiration on the velocity, temperature and species
concentration functions with distance, n. With an increase in suction (f,>0) the velocity is clearly decreased,
i.e., the flow is decelerated. Increasing suction causes the boundary layer to adhere closer to the flow and
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destroys momentum transfer; it is therefore an excellent control mechanism. Conversely, with increased
blowing, i.e. injection of fluid via the cylinder surface into the porous medium regime, for which (f,<0), the
flow is accelerated i.e. velocities are increased. Temperature, O and concentration ¢, are also markedly
enhanced with increased blowing at the cylinder wall and depressed with increased suction. The strong
influence of wall transpiration on all the flow variables is impressively identified and again such a
mechanism discussed earlier is greatly beneficial in allowing flow control and regulation of heat and mass
transfer characteristics in, for example, materials processing from a cylindrical geometry.

018
Pr=071 A=01N=10Sc=0252=10
Da=01, fw=05 F=05Du=02 $r=025
0.12
- fw=-10,-05 00,0510
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Fig.7a. Effect of fw on the velocity profiles.
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Pr=07 A=01N=10Sc=025 2=1.0
Da=0.1, fw=05 F=05 Du=02 Sr=025
0.75 1
fw=-1.0,-05,00 05 1.0
05
0.25 A
0

0 10 N 20 30

Fig.7b. Effect of fw on the temperature profiles.
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Fig.7c. Effect of fw on the concentration profiles.

The effect of the conduction radiation parameter, F' on the cylinder surface shear stress, the local
Nusselt number and local Sherwood number variations are presented in Figs 8a-c. With an increasing F,
corresponding to progressively lower contributions of thermal radiation, the wall shear stress is consistently
reduced, i.e., the flow is decelerated along the cylinder surface. With an increasing F, the local Nusselt
number is considerably increased. Also, with an increasing F, local Sherwood number is decreased.

075
Pr=071 M=10,A=01 562025 £=30 “01 08 :
Da=01,N=10,fw=05 Du=02 Sr=025 F=01,05,10,30,5.0,100.0
05 A
025
0 ‘
0 05 1 15 2 25

Fig.8a. Skin friction coefficient results for various values of F.
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Fig.8b. Local Nusselt number results for various values of F.
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Fig.8c. Local Sherwood number results for various values of F.

Figure 9a shows the variation of the local Nusselt number, -0’ (&, 0) with the combined effects of the
Soret and Dufour number. Increasing the Soret number (Sr) and simultaneously reducing the Dufour (Du)
number greatly boost the local heat transfer rate at the cylinder surface. With increasing distance from the
leading edge (§ = 0), however, the profiles all decrease.

Figure 9b depicts the local Sherwood number distribution along the cylinder periphery (x coordinate)
for various values of the Soret number (Sr) and Dufour number (Du). Sh is observed to strongly decrease
with an increase in Sr and a simultaneous rise in Du. The largest decrease arises near the lower stagnation
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point and the profiles tend to converge some distance thereafter, i.e., with progression along the cylinder
periphery, while increasing Sr and decreasing Du still inhibit surface mass transfer rate, the effect is less

pronounced.

Pr=071, M=1.0, A=01, Sc=1025,
Da=01,F=05fw=05N=10 =30

Fig.9a. Local Nusselt number results for various values of Sr and Du.

0.25
Pr=071, M=1.0 A=01, Sc=025,

Da=0.1, fw=05 N=1.0,2=30.

Fig.9b. Local Sherwood number results for various values of Sr and Du.
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7. Conclusions

Hydromagnetic boundary layer heat and mass transfer flow from a horizontal cylinder immersed in a
non-Darcy saturated porous medium is studied taking account of radiation and Soret/Dufour effects. A
robust, validated implicit finite difference scheme has been employed. The results in summary have shown
that,

i. Increasing the magnetic field parameter (M ) reduces velocity but increases temperature and
concentration.

ii. Increasing the Forchheimer inertial drag parameter (A) reduces velocity but elevates temperature and
concentration.

iii. Increasing the radiation parameter (F ) decreases velocity and temperature but increases concentration.

iv. Increasing the Soret number and simultaneously decreasing Dufour number enhance the local heat
transfer rate (local Nusselt number) at the cylinder surface with the opposite effect sustained for the mass
transfer rate (local Sherwood number).

Nomenclature
a  —radius of the cylinder
B,  — externally imposed radial magnetic field
C  — concentration
Cf — skin friction coefficient
Da  — Darcy parameter
Dm  — mass diffusivity
F  —radiation parameter
f  —non-dimensional steam function
Gr  — Grashof number
g —acceleration due to gravity
K —thermal diffusivity
k*  —mean absorption coefficient
M — magnetic parameter
N  — buoyancy ratio parameter
Nu  —local Nusselt number
Pr  — Prandtl number
g, —radiative heat flux
Sc  — Schmidt number
Sh  —local Sherwood number
T — temperature
u, v —non-dimensional velocity components along the x- and y- directions, respectively
x, ¥ —non-dimensional Cartesian coordinates along the surface and its normal, respectively
o — thermal diffusivity
B,p°  — coefficients of thermal expansion and concentration expansion, respectively
®  —azimuthal coordinate
¢  —non-dimensional concentration
' — the Forchheimer inertial drag coefficient
n  — dimensionless radial coordinate
p  — dynamic viscosity
v — kinematic viscosity
6  —non-dimensional temperature
p  —density
o  — electrical conductivity
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o*  — the Stefan-Boltzmann constant
¢  — dimensionless tangential coordinate
v — dimensionless stream function
Subscripts
w  — conditions on the wall
o  — free stream conditions
Superscripts

‘— differentiation with respect to n
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