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This paper is focused on the study of two dimensional steady magnetohydrodynamics heat and mass transfer 
by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium by taking 
into account of the Soret/Dufour effects. The boundary layer equations, which are parabolic in nature, are 
normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable 
Keller–Box finite-difference scheme. Numerical results are obtained for the velocity, temperature and 
concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several 
values of the parameters, namely the buoyancy ratio parameter, Prandtl number, Forchheimer number, 
magnetohydrodynamic body force parameter, Soret and Dufour numbers. The dependency of the thermophysical 
properties has been discussed on the parameters and shown graphically. Increasing the Forchheimer inertial drag 
parameter reduces velocity but elevates temperature and concentration. Increasing the Soret number and 
simultaneously reducing the Dufour number greatly boosts the local heat transfer rate at the cylinder surface. A 
comparative study of the previously published and present results in a limiting sense is made and an excellent 
agreement is found between the results. 
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1. Introduction 
 
 Transport phenomena in porous media are used in many branches of engineering and applied 
physics. These include foam flooding of gas-saturated petroleum reservoirs, perfusion in poroelastic 
myocardium tissue, drug delivery in the cerebral zone, heat transfer in the human skin system (Escobar and 
Civan [1], Ng et al. [2], Nicholson [3]), biporous heat pipe flows for high power electronic device cooling, 
porous media semiconductor heat sink design, forest fire dynamics, geothermal energy systems, oil recovery 
(Jinliang Wang  Catton [4], Douglas et al. [5]), geological contamination simulation (Cheng and Yeh [6]), 
metallic foam modelling in materials processing (Laschet et al. [7]) and solar energy cells (Becker et al. [8]). 
The vast majority of models have considered isotropic, homogenous porous media, usually employing the 
Darcy law, which is valid for low velocity, viscous-dominated transport. However, porous media are 
generally heterogeneous and exhibit variable porosity. An early study of flow through variable porosity 
media was conducted by Roblee et al. [9] for the case of radial variation in chemical engineering systems. 
Much later, a seminal theoretical and experimental study was presented by Vafai [10] who studied the 
influence of variable porosity and also inertial forces (Forchheimer drag) on thermal convection flow in 
porous media, with the channeling effect being studied in detail. He elucidated the qualitative aspects of 
variable porosity in generating the channeling effect with an asymptotic analysis.  
 These studies have all assumed the fluid to be electrically non-conducting. Many industrial fluids have 
this property owing to the presence of ions in the fluid and will therefore respond to a magnetic field. Zueco et 
al. [11] used network simulation to investigate the hydromagnetic heat transfer of a micro-structural liquid 
material in a vertical pipe containing a Darcy-Forchheimer porous medium. Makinde et al. [12] analyzed, using 
MAPLE software, the hydromagnetic Darcian flow in a rotating annular porous regime. Damsehet al. [13] used 
a difference technique to study the magneto-hydrodynamic thermophoretic particle deposition in mixed 
convection through a porous medium adjacent to a non-isothermal wall. These studies did not consider the 
cylindrical geometry which arises frequently in for example the manufacture of conducting polymers, 
composites, liquids with metallic intrusions etc. An important study of natural convection boundary layers in 
Darcian porous media was presented by Minkowycz and Cheng [14], although they did not consider the 
magnetic case. Recently, Hamzeh et al. [15]investigated the effect of radiation on magnetohydrodynamic free 
convection boundary of a solid sphere with Newtonian heating. Recently, Kumari and Gorla [16] presented 
solutions for the MHD boundary layer flow past a wedge in a non-Newtonian nanofluid. 
 Both Darcian and Darcy-Forchheimer (inertial) models have been employed extensively in radiative-
convection flows in porous media. Takhar et al. [17] used an implicit difference scheme and the Cogley-
Vincenti-Giles non-graymodel to simulate the radiation-convection gas flow in a non-Darcy 
porousmediumwith viscous heating effects. Takhar et al. [18] employed a Runge-Kutta-Merson shooting 
quadrature and the Rosseland diffusion algebraic radiation model to analyze the mixed radiation-convection 
flow in a non-Darcy porous medium, showing that temperature gradients are boosted with radiative flux. 
Hossain and Pop [19] studied radiation effects on free convection over a flat plate embedded in a porous 
medium with high-porosity. Pal and Chatterjee [20] developed a numerical model and studied the MHD 
mixed convection with the combined action of Soret and Dufour effects on heat and mass transfer of a 
power-law fluid over an inclined plate in a porous medium in the presence of variable thermal conductivity, 
thermal radiation, chemical reaction and Ohmic dissipation and suction/injection. 
 In all the above studies Soret/Dufour effects have been neglected. Such effects are significant when 
density differences exist in the flow regime. Soret and Dufour effects are important for intermediate 
molecular weight gases in coupled heat and mass transfer in fluid binary systems, often encountered in 
chemical process engineering. Both free and forced convection boundary layer flows with Soret and Dufour 
effects have been addressed by Abreu et al. [21]. Recently, Bég et al. [22] used the local non-similarity 
method with a shooting procedure to analyze mixed convective heat and mass transfer from an inclined plate 
with Soret/Dufour effects with applications in solar energy collector systems. Bhargava et al. [23] also 
studied oscillating hydromagnetic heat and mass transfer with Soret and Dufour effects. Seddeek [24] studied 
thermo-diffusion and diffusion-thermo effects on mixed convection flow over an accelerating surface with a 
heat source with suction/blowing for the case of variable viscosity. El-Kabeir and Chamkha [25] focused on 
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the study of heat and mass transfer by mixed convection over a vertical slender cylinder in the presence of 
chemical reaction and thermal-diffusion and diffusion-thermo effects. Bhattacharyya et al. [26] presented a 
mathematical model for the Soret and Dufour effects on the convective heat and mass transfer in a 
stagnation-point flow of a viscous incompressible fluid towards a shrinking surface.  
 The objective of the present paper is to investigate the effects of Soret (thermo-diffusion) and Dufour 
(diffusion-thermal) on the hydromagnetic convective boundary layer on a horizontal permeable cylinder 
embedded in a non-Darcy porous regime where radiation is included by assuming Rosseland diffusion 
approximation. An implicit numerical solution is obtained to the transformed boundary layer equations.  
 
2. Mathematical analysis 
 
 A steady, laminar, two-dimensional, viscous, incompressible, electrically-conducting, buoyancy-
driven convection boundary layer heat and mass transfer from a horizontal permeable cylinder embedded in 
a non-Darcy saturated regime with radiation and Soret/Dufour effects is analyzed. A uniform magnetic field 
B0, is applied in the radial direction, i.e. normal to the cylinder surface. Figure 1a shows the flow model and 
physical coordinate system.  
 

 
 

Fig.1a. Physical model and coordinate system. 
 

 The x-coordinate is measured along the circumference of the horizontal cylinder from the lowest 
point and the y-coordinate is measured normal to the surface, with ‘a’ denoting the radius of the horizontal 
cylinder. x a  , is the angle of the y-axis with respect to the vertical ( )0     . The gravitational 
acceleration g, acts downwards. The magnetic Reynolds number is assumed to be small enough to neglect 
magnetic induction effects. Hall current and ionslip effects are also neglected since the magnetic field is 
weak. We also assume that the Boussinesq approximation holds, i.e. that density variation is only 
experienced in the buoyancy term in the momentum equation. Additionally, the electron pressure (for weakly 
conducting fluids) and the thermoelectric pressure are negligible. Both the horizontal cylinder and the fluid 
are maintained initially at the same temperature and concentration. Instantaneously they are raised to a 
temperature wT  ( ,T the ambient temperature of the fluid) and concentration wC  ( ,C  the far-field 
concentration) which remain unchanged. The fluid properties are assumed to be constant except the density 
variation in the buoyancy force term. In line with the approach of Yih [27] and introducing the boundary 
layer approximations, the governing conservation equations can be written as follows 
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 The boundary conditions are prescribed at the cylinder surface and the edge of the boundary layer 
regime, respectively, as follows 
 

  , , , atw w wu 0 v V T T C C y 0     , 
   (2.5) 

  , , asu 0 T T C C y      
 

where u  and v  are the velocity components in the x  - and y - directions, respectively, K and Г - the 

respective permeability and the inertia coefficient of the porous medium,   is the kinematic viscosity of the 

conducting fluid,   and * - the coefficients of thermal expansion and concentration expansion, respectively, 

T  and C - the temperature and concentration, respectively,  - the electrical conductivity, 0B - the 

externally imposed magnetic field in the y -direction,  - the density, mD - the mass diffusivity, pc - the 

specific heat capacity, sc - the concentration susceptibility,  - the thermal diffusivity,  mT - the mean fluid 

temperature, TK - the thermal diffusion ratio, T - the free stream temperature, C - the free stream 

concentration and wV  - the uniform blowing/suction velocity.  
 The Rosseland diffusion flux model is used and is defined following Modest [28] as follows 
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where *k  is the mean absorption coefficient and *  is the Stefan-Boltzmann constant. Following Raptis 
and Perdikis [29] we can express the quadratic temperature function in Eq.(2.6) as a linear function of 

temperature. The Taylor series for 4T , discarding higher order terms can be shown to give 
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 Substituting of this expression into Eq.(2.6) and then the heat conservation Eq.(2.3), eventually leads 
to the following form of the energy equation 
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 The stream function   is defined by u y    and v x   , and therefore, the continuity 
equation is automatically satisfied. In order to write the governing equations and the boundary conditions in 
dimensionless form, the following non-dimensional quantities are introduced. 
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 In view of Eq.(2.9), Eqs (2.1),(2.2),(2.8) and (2.4), reduce to the following coupled, nonlinear, 
dimensionless partial differential equations for momentum, energy and species conservation for the regime 
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 The transformed dimensionless boundary conditions are 
 

  , , , atwf 0 f f 1 1 0          
   (2.13) 

  , , asf 0 0 0       
 

where, the primes denote the differentiation with respect to , the dimensionless radial coordinate,   is the 

dimensionless tangential coordinate and  the azimuthal coordinate,  - the local inertia coefficient 
(Forchheimer parameter), Da -the Darcy parameter, N - concentration to thermal buoyancy ratio parameter, k 
- thermal conductivity, Pr - the Prandtl number, Sc - the Schmidt number, Du - the Dufour number, Sr - the 
Soret number, M - the magnetic parameter, wf  - the blowing/suction parameter and Gr- the Grashof (free 

convection) parameter, F is the radiation parameter. fw<0 for wV 0 (the case of blowing), and wf 0  for 

wV 0 (the case of suction). Of course, the special case of a solid cylinder surface corresponds to fW = 0. The 
engineering design quantities of physical interest include the skin-friction coefficient, Nusselt number and 
Sherwood number, which are given by 
 

  
Gr ( , )4

f
1

C f 0
2

   , (2.14a) 

 



162                                                                 B.Vasu, R.S.R.Gorla, P.V.S.N.Murthy, V.R.Prasad, O.A.Beg and S.Siddiqua 

 

  

Nu
( , )

Gr4
0   , (2.14b) 

  

Sh
( , )

Gr4
0   . (2.14c) 

 

3. Results and discussion 
 

 The system of Eqs (2.10) – (2.12) subject to the boundary conditions (2.13) constitute a well-posed 
seven-first-order non-linear two-point boundary value problem. A numerical code developed and employed 
the efficient Keller-Box implicit finite difference method described by Cebeci and Bradshaw [30]. Further 
details of the solution procedure are documented in for example Rama Gorla and Vasu [31],and omitted here 
for conservation of space. 
 A representative set of numerical results is presented graphically to illustrate the influence of 
hydromagnetic parameter (M), Forchheimer inertial drag parameter (),tangential coordinate (), Dufour 
number (Du), Soret number (Sr), buoyancy ratio parameter (N) and radiation parameter (F) on velocity, 
temperature, concentration, shear stress, local Nusselt number and Sherwood number profiles. In all cases we 
have assumed the following default values (unless otherwise stated) for the parameters: Pr = 0.71 (air),  = 
0.1 (weak second order Forchheimer drag), F = 0.5, M = 1.0 (equivalent hydromagnetic and viscous forces), 
Da= 0.1 (very high permeability of regime), fw = 0.5. In order to verify the accuracy of our present method, 
we have compared our results with those of Merkin [32] and Yih [27]. Table 1 shows the comparisons of the 
values of ( , )0  . 
 

Table 1. Values of the local heat transfer coefficient (Nu) for various values of with Da  ,  =0,  

Pr = 1, N = 0, fw = 0, Sc = 0, F  , Sr = Du = 0. 
 

 


( , )0   

Merkin [32] Yih [27] Present results 

0.0 
0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 


0.4212 
0.4182 
0.4093 
0.3942 
0.3727 
0.3443 
0.3073 
0.2581 
0.1963 

0.4214 
0.4184 
0.4096 
0.3950 
0.3740 
0.3457 
0.3086 
0.2595 
0.1962 

0.4214 
0.4185 
0.4097 
0.3952 
0.3741 
0.3460 
0.3087 
0.2597 
0.1964 

 

 Figures 2a-b show the temperature and concentration distributions with collective variation in the 
Soret number (Sr) and Dufour number (Du). Sr represents the effect of temperature gradients on mass 
(species) diffusion. Du simulates the effect of concentration gradients on thermal energy flux in the flow 
domain. It is observed from Fig.2a that a decrease in Du from 5.0 through to 0.01 (simultaneously Sr 
increases from 0.01 to 5.0, so that the product of Sr and Du remains constant i.e.,0.05) leads to a significant 
decrease in temperature values in the regime. Decreasing Du clearly reduces the influence of species 
gradients on the temperature field, so that  values are clearly lowered and the boundary layer regime is 
cooled. From Fig.2b, it is noticed that  (concentration function) in the boundary layer regime increases as 
Du decreases from 5.0 to 0.01 (and Sr simultaneously increases from 0.01 to 5.0). Mass diffusion is 
evidently enhanced in the domain as a result of the contribution of temperature gradients. Unlike the 
temperature response (Fig.2a) a concentration overshoot accompanies the highest value of Sr, and arises in 
close proximity to the cylinder surface. In all other cases, the concentration profiles descend smoothly from a 
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maximum at the cylinder surface to the free stream. The influence of the Soret and Dufour terms will be 
relatively weak on the velocity fields, and these are therefore not plotted. 

 
 

Fig.2a. Effect the Sr and Du on the temperature profiles. 
 

 
 

Fig.2b. Effect Sr and Du on the concentration profiles. 
 

 Figure 3 adepicts the velocity  f  response for different values of the Forchheimer inertial drag 

parameter (), with radial coordinate (). The Forchheimer drag force term,  2f   in the dimensionless 

momentum conservation Eq.(2.10) is quadratic and with an increase in  (which is infact related to the 
geometry of the porous medium) this drag force will increase correspondingly. As such the impedance 
offered by the fibers of the porous medium will increase and this will effectively decelerate the flow in the 
regime, as testified to by the evident decrease in velocities shown in Fig.3a. The Forchheimer effect serves to 
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7. Conclusions 
 

 Hydromagnetic boundary layer heat and mass transfer flow from a horizontal cylinder immersed in a 
non-Darcy saturated porous medium is studied taking account of radiation and Soret/Dufour effects. A 
robust, validated implicit finite difference scheme has been employed. The results in summary have shown 
that, 
i. Increasing the magnetic field parameter  M  reduces velocity but increases temperature and 

concentration. 
ii. Increasing the Forchheimer inertial drag parameter    reduces velocity but elevates temperature and 

concentration. 
iii. Increasing the radiation parameter  F  decreases velocity and temperature but increases concentration. 

iv. Increasing the Soret number and simultaneously decreasing Dufour number enhance the local heat 
transfer rate (local Nusselt number) at the cylinder surface with the opposite effect sustained for the mass 
transfer rate (local Sherwood number). 

 

Nomenclature 
 

 a − radius of the cylinder 
 0B  − externally imposed radial magnetic field 

 C − concentration 
 Cf − skin friction coefficient 
 Da − Darcy parameter 
 Dm − mass diffusivity 
 F − radiation parameter 
 f − non-dimensional steam function 
 Gr − Grashof number 
 g − acceleration due to gravity 
 K − thermal diffusivity 
 *k  − mean absorption coefficient  
 M − magnetic parameter 
 N − buoyancy ratio parameter 
 Nu − local Nusselt number 
 Pr − Prandtl number 
 qr − radiative heat flux 
 Sc − Schmidt number 
 Sh − local Sherwood number 
 T − temperature 
 u, v − non-dimensional velocity components along the x- and y- directions, respectively 
 x, y − non-dimensional Cartesian coordinates along the surface and its normal, respectively 
   − thermal diffusivity 

  , *  − coefficients of thermal expansion and concentration expansion, respectively 

   − azimuthal coordinate 
   − non-dimensional concentration 

   − the Forchheimer inertial drag coefficient 
   − dimensionless radial coordinate  

   − dynamic viscosity 

   − kinematic viscosity 
   − non-dimensional temperature 
   − density 

   − electrical conductivity 
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 *  − the Stefan-Boltzmann constant 
   − dimensionless tangential coordinate 

   − dimensionless stream function 
 

Subscripts 
 

 w − conditions on the wall 
   − free stream conditions 
 

Superscripts 
 

 ‘− differentiation with respect to   
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