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This article deals with a 2-D problem of quasi-static deformation of a multilayered thermoelastic medium due to 
surface loads and heat source. The propagator matrix is obtained for the multilayered formalism of thermoelastic 
layers. Analytical solutions, in terms of the displacements, stresses, heat flux and temperature function, are obtained 
for normal strip and line loads, shear strip and line loads and strip and line heat sources. Numerical computation of 
the obtained analytical expressions is also done. The effects of layering have been studied. For the verification of the 
results, results of earlier studies have been obtained as particular cases of the present study. 
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1. Introduction 
 
Multilayered structures exist in the nature frequently and are relevant to numerous engineering and 

geophysical problems (Yang et al. [1]). The Earth’s structure may be considered as a multilayered half-
space. In addition to the above, there are various manmade materials or structures that can be regarded as 
multilayered structures for modelling applications in different fields, viz. civil, mechanical and 
biomechanical engineering, microelectronics and optics. The multilayered structure is assumed to be 
composed of homogeneous parallel layers. 

Multilayered Earth’s model has been considered by many researchers while studying the source 
problems. Singh [2] studied 3D problems of the static deformations of a multilayered elastic medium 
containing internal dislocation sources. Bache and Harkrider [3] considered the Earth as a layered model and 
formulated the theory of body waves due to a general seismic source. To investigate the two and three 
dimensional static deformations of an elastic medium, due to various surface loads (strip, circular and 
rectangular surface loads), Small and Booker [4] applied the finite layer method. Singh and Garg [6] studied 
two dimensional elastic dislocations in an isotropic multilayered half-space. Garg and Singh [7] studied two 
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dimensional static deformation of a transversely isotropic multilayered half-space due to surface loads. Pan [8] 
considered a transversely isotropic and layered half-space to investigate its static deformation by general 
surface loads and dislocation sources. Garg et al. [10] discussed the static deformation of a stratified elastic 
half-space due to two dimensional surface loads. Pan et al. [12] developed an algorithm to calculate surface 
deformation due to circular loading on the surface of a layered elastic half-space. Recently, Ai et al. [13] and 
Zhang et al. [14] studied the deformation of a multilayered transversely isotropic elastic half space subjected to 
axisymmetric and nonaxisymmetric loading. Ai et al. [15] investigated the transient response of a transversely 
isotropic multilayered elastic half-space due to vertical loading. 

The theory of thermoelasticity studies the effect of temperature on the distribution of stress and 
strain and the inverse effect of elastic change on temperature distribution. The thermoelastic parameters 
inside the Earth are generally functions of depth Dziewonski and Anderson [16]. Rundle [17] and Small and 
Booker [18] considered the Earth as an isotropic, horizontally layered thermoelastic half-space and studied 
the deformation caused by a decaying heat source. Using equations of quasi-static thermoelasticity, Pan [19] 
studied the transient deformation in a transversely isotropic and layered thermoelastic half-space by internal 
sources and surface loads. The analytical solutions in the form of displacements and stresses in multi-layered 
thermoelastic media due to varying temperature and concentrated loads were determined by Ghosh and 
Kanoria [20]. A number of problems related to the analysis of heat sources in multilayered thermoelastic 
media have been studied by Kolyano et al. [21], Jane and Lee [22], Lee et al. [23] , Lee [24], Ai et al. [25], 
Ai  and Wang [26], Ai et al.[27], Wang and Ai [28] etc. Hou et al. [29] derived two dimensional general and 
fundamental solutions for a line heat source acting on the surface of a semi-infinite orthotropic thermoelastic 
medium. Hou et al. [30] derived three-dimensional Green’s function for a point heat source acting on the 
surface of a coated isotropic thermoelastic material. Ai and Wang [31] discussed thermal consolidation of a 
multilayered porous thermoelastic medium due to heat sources. Yang et al. [1] studied three dimensional 
axisymmetric problems for static response of multilayered thermoelastic media subjected to surface loads 
and containing heat source. The vector surface harmonics and propagator matrix method was used to 
investigate the behaviour of repository for heat-emitting high-level nuclear waste (decaying with time point 
heat source) in a geological formation. Ai et al. [32] introduced an extended precise integration solution for 
the coupled thermoelastic problems with the integral transformation techniques to illustrate the influence of 
the coupling of thermoelasticity and layered characteristics on the thermo-mechanical response. Ai et al. [33] 
discussed the thermo-mechanical response of a layered isotropic medium around a cylindrical heat source. 
Lu et al. [34] derived a modified scaled boundary finite element method to study three dimensional steady-
state heat conduction in anisotropic layered media.  

Although, a number of source problems involving multilayered thermoelastic media have been 
studied but mainly for heat source and are based on the uncoupled theory of thermoelasticity, which 
considers that the determination of the temperature field is independent of the stress and displacement fields. 
The coupled theory of thermoelasticity has not been seen taken into account to study mechanical source 
problem as it is appropriate to consider a thermoelastic medium for a realistic Earth’s model. 

In this paper, a plane strain problem of quasi-static deformation of a multilayered thermoelastic 
medium due to seismic sources and heat sources is studied. The layered thermoelastic medium consists of 
layers over a half-space. Surface loads and heat source are taken as sources. The basic equations of a coupled 
theory of thermoelasticity are used in formulation and propagator matrix method is used to analyze surface 
loading and temperature-induced deformations. Analytical solutions have been obtained in the form of 
integrals for normal strip loading, normal line loading, shear strip and line loading, strip heat source and line 
heat source. Numerical computation for displacements and heat flux for these sources is also done.  
 
2. Formulation of the problem 

 
A p  layered thermoelastic model, consisting of p 1  thermoelastic layers over the thermoelastic 

half-space is considered, as shown in Fig.1. Let nd  denotes the thickness of the general thn  layer bounded 

by the interfaces -n 1z  and nz  and H  be the depth of the last interface. So 
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-n n n 1d z z        and      
p 1

n
n 1

H d




  .          

 
For a plane strain problem in the yz  - plane, the displacement vector is taken as 
 

      , , , .y zy z t u u u u                                                                           (2.1)    

 

 
 

Fig.1. Multilayered thermoelastic half-space. 
 
First, a strip of width 2L  and of infinite length in the x - direction ( L y L   ) over the surface 

( )0z z 0  of multilayered half-space is considered and a normal force 0  acting uniformly on this strip is 
also considered. Next, normal and shear line forces and heat source are considered, respectively. 

 
3. Basic equations and their solutions 

 
The Duhamel-Neumann relations (stress-strain relations) for a homogeneous isotropic thermoelastic 

medium (Nowacki [35]) are  
 

 2     I                                                                                              (3.1)  

 

where 
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( )t 3 2      ; t  is the coefficient of linear thermal expansion; , ,y y z zu u   ; 
y z

  
    

  and 

1 0

0 1

 
 
 

I = .  

From Eq.(3.1), the strains can be obtained as 
 

( ) ,

( ) ,

yy yy zz 0

zz zz yy 0

yz yz

2 1

2 1

2

         

         

  

,                                                                  (3.2) 

 
where 0 = ( ) t2 1     and   is Poisson’s ratio.

 
The governing equations for a thermoelastic medium (Vashisth et al. [35]) are: 

(i) Equations of equilibrium 
 

, 0∇.                                                                                                                             (3.3) 
 

(ii) Compatibility equation  
 

, , ,yy zz zz yy yz yz2     ,                                                                                       (3.4)  

 
(iii) The equation of heat conduction  
 

2
0 e 0C T 0                                                                                                    (3.5) 

 
where, 0  is the thermal conductivity,   is the density, eC  is the specific heat and superposed dot denotes 
derivative with respect to t.  

Using Eqs (3.2) and (3.3) in Eq. (3.4), we get 
 

 2
yy zz 2 0                                                                                           (3.6) 

 

where   , .
( )

20

2 1


   

 
∇.∇  

 
Let U  be the Airy’s stress function. So, the stresses can be expressed as 

 

, ,
2 2 2

yy zz yz2 2

U U U

y zz y

  
      

  
.                                                (3.7) 

 
Using Eqs (3.2) and (3.7) in Eqs (3.5) and (3.6), we get 
 

( )2 2U 2 0     ,                                                                                        (3.8) 
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( )
( )

2
2 20 0 0 0

0 e
T T

C U 0
1 2 2

  
               

  .                                                               (3.9) 

 
Applying the Laplace transform, Eqs (3.8)-(3.9) become 

 

2 2s
0

c
      
 

,                                                                                      (3.10) 

 

2 4s
U 0

c
     
 

,                                                                                                     (3.11) 

 

where   
( ) ( )

12 2
0 0 0 0

0 e
T T

c C
1 2 2 1


  

     
       

.  

 
The bar over the symbols, which denotes the Laplace transform of the variable, is dropped hereafter 

for convenience. 
Applying the Fourier sine/cosine transform to Eqs (3.10)-(3.11), solving the resulting differential 

equations and then taking inversion of the Fourier sine/cosine transform and simplifying further, we obtain 
 

sin

cos
0

ky
R dk

ky

  
   

  ,                                                                                           (3.12) 

 

sin

cos
0

ky
U F dk

ky

  
  

                                                                                                (3.13) 

where  

   mz mz 2 kz kz
1 1 3 3

1

s
R L e M e k L e M e      


 ,                                             (3.14) 

 

   mz mz kz kz
1 1 2 3 2 3F L e M e L L kz e M M kz e       ,                                  (3.15) 

 

 / ,
1

2 2m k s c 
   

 

( )a

0

2   
 


,     1 2 c     ,  

( )

12 2
0 0 0 0

a e
T T

C
2 1 2


  

          
, 

 

and the coefficients  , , ,i iL M i 1 2 3  may be functions of k . The expression 
sin

cos

ky

ky

 
 
 

 denotes either 

sin ky  or cosky . The phrases ‘upper solution’ and ‘lower solution’ will refer to the upper and lower terms of 
this expression, respectively. 

For the layers of finite depth, both positive and negative exponential terms are retained. For 
finiteness of solution in the half-space (p-th layer), where z  , only negative exponential terms are 
retained. 

The stresses can be obtained as 
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sin
,

cosyy

0

ky
G dk

ky

  
   

       
sin

coszz

0

ky
N kdk

ky

  
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  ,     
cos

sinyz

0

ky
S kdk

ky

  
     ,           (3.16) 

where  

     ( ) ( )2 mz mz 2 kz kz 2 kz kz
1 1 2 2 3 3G m L e M e k L e M e k kz 2 L e kz 2 M e          , (3.17) 

 

    mz mz kz kz
1 1 2 3 2 3N k L e M e L L kz e M M kz e        ,                                  (3.18) 

 

   ( ) ( )mz mz kz kz kz kz
1 1 2 2 3 3S m L e M e k L e M e L 1 kz e M 1 kz e          .              (3.19) 

 
The displacement components can now be obtained as  
 

cos
,

siny

0

ky
u V dk

ky

  
           

sin
,

cosz

0

ky
u W dk

ky

  
  

                                                              (3.20) 

where 

  


     ,

mz mz kz kz
1 1 2 2

kz kz
3 a 3 a

k
V L e M e L e M e

2

L 2 2 kz e M 2 2 kz e

 



     


         
(3.21) 

 

   
    .

mz mz kz kz
1 1 2 2

kz kz
3 a 3 a

1
W m L e M e k L e M e

2

L 1 2 kz ke M 1 2 kz ke

 



    


        
                                  (3.22) 

 
The flux of heat in the z -direction, given by the generalized Fourier law, can be obtained as 
 

sin
,

cosz

0

ky
q Q dk

ky

  
  

                                                                                                 (3.23) 

where 

   mz mz 3 kz kz
0 1 1 0 3 3

1

ms
Q L e M e k L e M e        


 .                                             (3.24) 

 
The functions , , , , ,V W S N R Q  are related through  

 
( ) ( ) ( )z z z Z E A                                                                                                  (3.25) 

where  

   ( ) ,
TT

1 1 2 2 3 3z V W S N R Q L M L M L M  ,  

 
( ) ( )

( ) ,
( ) ( )

z z
z

z z

 
  
 

a b
Z

c d
             

 ( ) diag , , , , , ,mz mz kz kz kz kzz e e e e e e  E
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( ) ( )
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c d                                               

 
4. Equations for multilayered half-space 
 
       The equations, described in Section 3, can now be written for the -thn layer by affixing a subscript ‘ n ’. 

 

  ( ) ( ) , ( )
T

n n n n n n n n n n n 1 nV W S N R Q z z z z z    Z E A                 (4.1) 

 

( ) ( ) ( )1 1
n n n n n n nz z z  A E Z  .                                                                                        (4.2) 

 
            The continuity of displacements, stresses, temperature function and heat flux at the interfaces leads to 

 
( ) ( )n 1 n 1 n n nz z   P                                                                                     (4.3) 

 
where nP  is called the propagator matrix and is 
 

( ) ( ) ( ) ( )1 1
n n n 1 n n 1 n n n nz z z z 

 P Z E E Z .                                                       (4.4) 
 
The elements of the matrix nP  are given in the Appendix A. 

Repeated use of Eq.(4.3) gives 
 

( ) ( )1 p0 H D  ,                                                                                              (4.5) 

where   
........1 2 3 p 1D P P P P .                                                                                         (4.6) 

 
In the p th layer, i.e. in the half-space, the solutions must be finite as z   which requires  

 
.1 p 2 p 3 pM M M 0                                                                                             (4.7) 

 
Equations (4.1), (4.5) and (4.7) imply that 

 

  TT
0 0 0 0 0 0 1p 2 p 3 pV W S N R Q L 0 L 0 L 0   B  ,                      (4.8) 

where 
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( ) ( ).p pH HB DZ E                                                                                               (4.9) 

 
For given ,0 0S N  and 0R , the solution of Eq.(4.8) can be written as 

 

  ,0 11 1 13 2 15 3
1

V B B B     
         

 0 21 1 23 2 25 3
1

W B B B     


,  

 (4.10) 

 0 61 1 63 2 65 3
1

Q B B B     


                                                                                  

where  
det( , , ), det( , , ), det( , , ), det( , , )1 2 3 1 4 2 3 2 1 4 3 3 1 2 4C C C C C C C C C C C C         and 

 

[ ] ,T
1 31 41 51C B B B  [ ]T2 33 43 53C B B B ,  

 

[ ]T3 35 45 55C B B B , [ ]T4 0 0 0C S N R . 
 

Using Eq.(4.10) in Eqs (3.20) and (3.23), ( ), ( ) and ( )y z zu 0 u 0 q 0  can be obtained. 

For given ,0 0S N  and 0Q ; , and0 0 0V W R  can be obtained by replacing , ,61 63 65B B B  and 0Q  with 

, ,51 53 55B B B  and 0R  respectively in Eqs (4.10) and using these in Eqs (3.20) and (3.12); ( ), ( )y zu 0 u 0  

and ( )0  can be obtained. 
 

5. Boundary conditions 
 

5.1. Surface loads 
 
Let us assume the surface z 0  as isothermal surface. Hence 0   at z 0 . The stresses, for 

different type of prescribed loads over the surface, can be written as: 
 

5.1.1 Normal strip loading: ,yz 0 
     

for

for
zz 0

0 y L

y L
2L

 
   
 

      at    z 0 .                                   (5.1) 

 

5.1.2 Normal line loading:
 

,yz 0 
     

( )zz 0 y    ,     at z 0  .                                                           (5.2) 
 

5.1.3 Shear strip loading: ,zz 0 
     

for

for
yz 0

0 y L

y L
2L

 
   
 

     at    z 0                                      (5.3) 

 

where 0  is the force intensity applied in the positive y  direction. 
 
5.1.4 Shear line loading: ,zz 0       ( )yz 0 y    ,     at      z 0  .                                              (5.4) 

 
5.2. Heat source 

 
For a prescribed heat source,   is known. Let us consider a traction free surface .z 0  Hence, 

atyz zz 0 z 0     . 
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5.2.1 Strip heat source: 
for

for0

0 y L

y L
2L

 
   



      at      z 0 ,                                                               (5.5) 

 
where 0  is the heat source density.   
 
5.2.2 Line heat source: ( )0 y    ,       at       z 0 .                                                                             (5.6) 

 
 Taking the Laplace and Fourier sine/cosine transform of Eqs (5.1)-(5.6), solving, taking inverse 

transform and then comparing the resulting equations with (3.12) and (3.16) and selecting appropriate 
‘Upper or Lower solution’, we obtain values of ,0 0S N  and 0R  as given in Tab.1 for different type of 
loadings. 
 

Table 1. Values of  ,0 0S N  and 0R  for different type of loads on the surface. 
 

 Normal strip
loading 

Normal line
loading 

shear strip 
loading 

shear line 
loading 

Strip heat
source 

Line heat 
source 

0S  0 0 sin0 kL

sk kL





 0

sk





 
0 0 

0N  sin0 kL

ks kL





 0

ks





 
0 0 0 0 

0R  0 0 0 0 sin0 kL

s kL




 0

s




 

Upper solution/
Lower solution 

Lower 
solution 

Lower 
solution 

Upper 
solution 

Upper 
solution 

Lower 
solution 

Lower 
solution 

 
6. Uniform half-space 

 
When the model contains only a thermoelastic half-space ( )0 z    and layers are absent, then 

Eq.(4.9) reduces to ( )0B Z . 
For normal line loading, we have 

 

, , ,0 0 0
1 2 32 2

1 1

s
L L mk L

s s k k

    
          

                                          (6.1) 

where 2

1

s
mk k

 
      

. 

 
Substituting these values in Eq. (4.8), we get , and0 0 0V W Q  as 
 

( )0
0 a

1

s
V k m 1 2

2 s k

 
        

 , 
( )a 0

0
1

1
W

k

  
 

 
 , ( )0 0

0Q m k
2 c

 
  

 
.        (6.2) 

 
Substituting Eq. (6.2) in Eqs (3.20) and (3.23), the displacements and heat flux on the surface can be 
obtained.  



186                                              A.K.Vashishth, K.Raniand K.Singh 

The solutions in the interior of the half-space for normal line loading are also obtained and are 
written as 

 

  sin
( , , ) mz kz kz0

y a
10

s ky
u y z s ke me 2 1 kz e dk

2 s k


   

         
 ,                            (6.3) 

 

    cos
( , , ) mz kz kz0

z a
10

s ky
u y z s m e e 2 2 kz e dk

2 s k


   

         
 ,                  (6.4)  

 

  cos
( , , ) mz kz0 0

z

0

ky
q y z s me ke dk

2 c


  

  
  ,                                                              (6.5) 

 

cos
( , , ) ( )2 mz kz kz0

zz
10

s ky
y z s k e mke 1 kz e dk

s


   

         
 ,                              (6.6)      

                                 

  sin
( , , ) mz kz kz0

yz
10

s ky
y z s mk e e kz e dk

s


   

        
 ,                                       (6.7) 

 

  cos
( , , ) mz kz0

0

ky
y z s e e dk

2 c


 

   
  .                                                             (6.8) 

 
If the deformation occurs so slowly that the heat has sufficient time to diffuse from the material 

elements, there will be no temperature change from the reference temperature. In this limit of long time 
deformation, the response is labeled isothermal and the stress strain relation will be as in a linear elastic 
solid. Hence t   gives isothermal response. 

So, taking the limit t  and using the result that lim ( ) lim ( ),
t s 0

f t sf s
 

  and evaluating the integrals 

given in Eqs (6.3)-(6.8) analytically, we have ,zq 0    
 

 ( , ) tan ,10
y 2 2

y yz
u y z 2 1

2 z y z
            

 

   ( , ) ln ,
2

2 20
z 2 2

z
u y z 1 y z

2 y z

 
      

   
  (6.9)                     

 

 
( , ) ,

3
0

zz 22 2

2z
y z

y z

 
        

         

 
( , ) .

2
0

yz 22 2

2 yz
y z

y z

 
                 

              

 
 These results match with the corresponding results of elastic medium (Sneddon [37]; Garg and 
Singh [38]). 
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For shear line loading, the solutions are obtained as 
 

    cos
( , , ) mz kz kz0

y a
10

s ky
u y z s k e e 2 2 kz e dk

2 s k


   

         
  ,                     (6.10)  

 

  sin
( , , ) mz kz kz0

z a
10

s ky
u y z s me ke 1 2 kz e dk

2 s k


   

         
 ,                         (6.11) 

 

  sin
( , , ) mz kz0 0

z

0

ky
q y z s me ke dk

2 c


  

  
  ,                                                   (6.12) 

 

sin
( , , ) 2 mz kz0

zz
10

s ky
y z s k e 1 z e dk

s k


    

           
  ,                                          (6.13)     

                                 

cos
( , , ) ( )mz 2 kz kz0

yz
10

s ky
y z s mke k e 1 kz e dk

s


   

        
  ,                                 (6.14)     

 

  sin
( , , ) mz kz0

0

ky
y z s e e dk

2 c


 

   
   .                                                                 (6.15) 

 
 Taking the limit t   and evaluating the integrals (6.10)-(6.15) analytically, we have ,zq 0    

 

   ( , ) ln ,
2

2 20
y 2 2

z
u y z 1 y z

2 y z

 
      

   
  

 

 ( , ) tan ,10
z 2 2

y yz
u y z 1 2

2 z y z
           

 (6.16) 

 

 
( , ) ,

2
0

zz 22 2

2yz
y z

y z

 
                  

 
( , ) .

2
0

yz 22 2

2y z
y z

y z

 
        

                                          

 
 These results match with the corresponding results of elastic medium (Sneddon [37]; Garg and 
Singh [38]). 

For line heat source, the solutions are obtained as 
 

    sin
( , , ) ( )mz kz0

y a

0

ky
u y z s ke k kz 2 2 m k e dk

2 s


 

      
   ,                       (6.17) 
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    cos
( , , ) ( )mz kz0

z a

0

ky
u y z s me k 1 2 kz m k e dk

2 s


 

       
   ,                    (6.18) 

 

cos
( , , ) ( )2 kz mz0 0

z
10

ms ky
q y z s k k m e e dk

s


   

      
 ,                                               (6.19)

  

 

  cos
( , , ) ( ( ) )

2
mz kz0

zz

0

k ky
y z s e 1 k m z e dk

s


 

    
    ,                                           (6.20)   

 

   sin
( , , ) ( )( )mz kz0

yz

0

k ky
y z s me k 1 kz m k e dk

s


 

     
   ,                                (6.21) 

 

cos
( , , ) ( ) kz mz0

10

s ky
y z s k k m e e dk

s


  

       
 .                                                      (6.22) 

 

7. Numerical results and discussion 
  
 For the numerical computation of the results, a model of three layers overlying half-space of a 
thermoelastic solid is considered. The parameters for numerical computation of the model are taken from 
Ahrens [39], Aki and Richards [40] and are given in Tab.2. Thickness of the layers is taken in the ratio 2:3:5. 
The solutions at the surface z 0  for surface line loading and line heat source are computed numerically and 
are presented graphically. 
 

Table 2. Parameters of thermoelastic layers and half-space.                                
 

Material  1 2kg m s    1 2kg m s    1
t K    3kg m   0T K

 
 2 1 2

eC m K s 

Layer 1 
(CaO) 

. ( )106 6378 10  . ( )108 75 10  . ( ) 53 92 10   3460  1000  888  

Layer 2 
(MgO) 

. ( )106 96 10  . ( )109 67 10  . ( ) 54 26 10   3516  1000  1166  

Layer 3 
(Groussular 

garnet) 

. ( )107 84 10  . ( )1010 92 10  . ( ) 52 83 10   3542  1000  1041  

Half-space 
(Pyrope rich 
garnet) 

. ( )108 51514 10  . ( )1011 4508 10 . ( ) 53 11 10   3620  1000  1076  

 

The non-dimensional quantities are defined as 
 

, , , , , ,iji z
i ij z2

0 0 0 0 0

y z 2ct u Hq
Y Z T U Q

H H HH

          
    

,        (7.1) 

 

for normal loading. For shear line loading and heat source, 0  is replaced by 0  and 0 , respectively. As 
the depth is made dimensionless, the coefficients in positive exponential terms in the solutions become less 
than one. So the check for convergent solutions is ensured and no numerical overflow is observed. 
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For computation of the inverse Laplace transform, Schapery’s [41] formula is used. Gauss 
quadrature formula has been used for the evaluation of results listed in Eqs (6.3)-(6.8), (6.10)-(6.15) and 
(6.17)-(6.22). 

 

 
 

Fig.2. Variation of displacements along Y at the surface, for normal line load; (a) yU   (b) zU  . 

 
For dimensionless time T=1, the variations of horizontal and vertical displacement components with the 

horizontal distance (Y) at the surface Z=0 for normal line source are presented in Fig.2. The horizontal surface 
displacement increases gradually and the vertical displacement decreases slowly with the distance from the line 
source. The displacements have maximum magnitudes in the vicinity of Y=0. A comparison of the results of 
displacement components for a uniform half-space and layered model is also shown. It is observed that the 
magnitude of the displacements corresponding to layered model is much greater than that corresponding to the 
uniform half-space. Time history of displacement components for normal line loading is shown in Fig.3 for Y=1. 
The horizontal surface displacement decreases steadily with time while the vertical displacement increases. The 
variation of horizontal displacement for layered model is greater than that of the uniform half-space.  

 

 
 

Fig.3. Variation of displacements with dimensionless time T at the surface Z=0 for normal line load; (a) yU   (b) zU  . 
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Fig.4. Surficial heat flux for normal line loading along (a) horizontal distance Y (b) dimensionless time T. 
 

Heat flux is computed for the normal line source for the half-space model and layered model and is 
plotted against the dimensionless horizontal distance (Y) for T=1, as shown in Fig.4a. It increases first and 
then approaches zero as the distance increases. Time history of the heat flux for normal line loading is shown 
in Fig.4b for Y=1. The heat flux component firstly decreases then increases steadily and approaches zero as 
time increases. Initially, the difference between the layered model and the half-space model is significant. As 
the time elapses, the heat flux of the layered model approaches that for the half-space.  
 

 
 
Fig.5. Variation of displacements with Y at the surface Z=0 for shear line loading; (a) horizontal 

displacement (b) vertical displacement. 
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Fig.6. Heat flux for shear line loading at the surface Z=0 along (a) horizontal distance Y (b) dimensionless time T. 
 
Figure 5 exhibits the variation of the horizontal and vertical displacements with the horizontal 

distance (Y) for shear line loading for T=1. It is observed that graph 5a of horizontal displacement is same as 
the vertical displacement for normal line loading and graph 5b of vertical displacement is the mirror image of 
horizontal displacement for normal line loading. This is also justified from the analytical expressions. It is 
observed that the displacement components in the layered model are more significant in the vicinity of the 
line source. Similar observations are for the graphs of time history of displacement components for shear line 
loading, so are not shown here.  

The heat flux along horizontal distance (Y) from line source for shear line loading is shown and 
compared for the layered model and half-space in Fig.6a. The heat flux steadily increases and approaches 
zero as the distance from the line source increases. Time history of heat flux for shear line loading is shown 
and is compared for the layered model and uniform half-space in Fig.6b. The heat flux increases smoothly 
with time and approaches zero as time increases. The comparison is significant when time is approaching 
zero. It signifies the importance of inclusion of thermoelastic effect in the source problems. 

 

 
 

Fig.7. Variation of displacements at surface Z=0 with horizontal distance Y due to line heat source; (a) yU   (b) zU  . 
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Fig.8. Variation of displacements with dimensionless time T at surface Z=0 for line heat source; (a) yU   (b) 

zU  . 
 

 
 

Fig.9. Surficial heat flux for line heat source along (a) horizontal distance Y (b) dimensionless time T. 
 

In Fig.7, horizontal displacement and vertical displacement are plotted along horizontal distance (Y) 
from the line heat source at surface Z=0 for T=1 and are compared for the layered model and uniform half-
space. Along the horizontal distance (Y) from the line heat source, the horizontal displacement decreases; the 
vertical displacement increases and both approach zero as the distance increases. Near the line heat source, 
the layered model has more deformation than the uniform half space. As the distance increases, both graphs 
coincide. For Y=1, the time history of displacements is presented in Fig.8. The horizontal displacement yU   

increases and the vertical displacement zU   decreases with the dimensionless time T. It can be inferred from 
Fig.7 and Fig.8 that shear deformation is affected significantly by consideration of the layered model in the 
presence of heat source. 
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Heat flux ( zQ ) is computed for the line heat source for the layered model and uniform half space and 
is plotted against the horizontal distance (Y) as shown in Fig.9a. It sharply increases near the line of source, 
then decreases smoothly and approaches zero as the distance increases. In Fig.9b, the graph of heat flux with 
dimensionless time for the layered model and uniform half-space is plotted for Y=1. From Fig.9, it is 
observed that the increase in the number of layers decreases the magnitude of heat flux. 
 

8. Conclusion 
 

The present study deals with the two dimensional quasi-static deformation of a layered thermoelastic 
medium subjected to surface loads and heat source. The coupled theory of thermoelasticity is used for the 
governing equations. The multilayered problem is formulated using the propagator matrix method. 
Analytical solutions in the form of displacements, stresses and heat flux for normal and shear strip and line 
loading, strip and line heat source are derived for the uniform half space and multilayered model. Numerical 
results show that the number of layers influences the deformation of the medium as well as the flow of heat. 
The shear deformation is affected significantly by consideration of the layered model in the presence of 
normal line load and heat source and the normal deformation is affected significantly in the presence of shear 
line load. The effect of the layered model on heat flux due to surface loads and heat source is also 
considerable. 
 
Nomenclature  
 
 eC

  
− the specific heat  2 1 2m K s   

 nd  − thickness of the thn  layer (m) 

 H − depth of last interface (m) 
 zQ  − dimensionless normal heat flux 

 iq  − components of heat flux 

 s − Laplace transform parameter 
 T  − dimensionless time 
 0T  − temperature at natural state  K  

 t  − time (s) 
 U  − Airy’s stress function 
 iU   − dimensionless displacement components 

 ,y zu u  − components of displacement vector (m) 

 ,Y Z  − dimensionless Cartesian coordinates 

 ,y z  − Cartesian coordinates (m) 

 t  − coefficient of linear thermal expansion  1K   

 (.)  − Dirac delta function 

  ,   − Lame’s constants  1 2kg m s   

 0  − thermal conductivity  1 1Wm K 
 

 ij  − dimensionless stress tensor 

   − temperature deviation from the reference temperature 0T  K  

 0  − heat source intensity 

   − Poisson’s ratio 

   − density  3kg m  

 0   
− shear force intensity  

 0  − normal force intensity 
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 ij  − components of stress tensor  1 2kg m s   

   − dimensionless temperature difference function 
 
Appendix A 
 
 The elements of nP  are given by 
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n n nP 2 P   
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( sinh sinh ) sinh cosh ,
2

42 1
n n 1 n n n n n

k k
P 2 md kd kd kd kd

s m

 
       

   

45 15
n n nP 2 P  ,  

 

  46 16
n n nP 2 P  ,  

 

   cosh cosh ,51 54
n n n 1 n n n nP 2 k md kd 2 P          

 

  
sinh sinh ,52 53

n n n 1 n n n n
k

P 2 k md kd 2 P
m

          
         

cosh ,55 66
n n nP md P 

 
 

  
sinh ,56

n n
0n

1
P md

m


         
sinh sinh ,61 2 64

n 0n n n n n n n
m

P 2T c k md kd 2 P
k

        
 

 

 

  
 cosh cosh ,62 2 63

n 0n n n n n n nP 2T c k kd md 2 P     
         

sinh ,65
n 0n nP m md   

 

where    ,
( )1

an

1

2 1
 

 
   

c ( )
,

( )( )
n n an

2 1 1
n an

1

2 1 1 2

  
    

   
  ( ),3 1

1
1

2
     .n n n n 1

4
0n 0n

c

T

   
  


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