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Thermal stresses of a functionally graded hollow thick cylinder due to non-uniform internal heat generation are
studied in this paper. Analytical solutions are obtained with radially varying properties by using the theory of elasticity.
Thermal stresses distribution for different values of the powers of the module of elasticity and varying power law index
of heat generation are studied. The results have been computed numerically and illustrated graphically.
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1. Introduction

Functionally graded materials (FGM) are inhomogeneous materials, consisting of two or more different
materials, engineered to have a continuously varying spatial composition profile. The FGM concept originated
in Japan in 1984 during the space plane project. Materials with changing composition, microstructure or
porosity across the volume of the material are referred to as the functionally graded materials.

Arefi et al. [1] presented a thermo-mechanical analysis of orthotropic rotating hollow structures of
FGM due to thermo-mechanical loadings and derived temperature distribution, radial displacement and
radial and circumferential stresses in general state. Ghanbari and Farhatnia [2] discussed the prediction of
yielding onset and spread pattern in functionally graded thick-walled cylindrical vessel subjected to thermo-
mechanical loading.

Jabbari et al. [3] performed a general analysis of one dimensional steady-state thermal stresses in a
functionally graded hollow thick cylinder whereas Jabbari ef al. [4] presented a general analysis of two-
dimensional steady-state thermal stresses for a functionally graded hollow thick cylinder. Kedar and
Deshmukh [5] presented an analysis of a thin clamped hollow disk under unsteady temperature field due to
point heat source in the form of thermal stresses.

Nayak and Mondal [6] analyzed a functionally graded thick cylindrical vessel with radially varying
properties and obtained stresses with the consideration that the properties of the material vary with the power
law of radius. Obata and Noda [7] considered steady thermal stresses in a functional graded hollow circular
cylinder and hollow sphere and discussed the influence of the inside radius size on stresses. Pawar et al. [8]
determined thermal stresses in FGM hollow sphere due to non-uniform internal heat generation with radially
varying properties by using theory of elasticity and Pawar et al. [9] presented the thermoelastic analysis of
FGM solid sphere subjected to non-uniform heat source under the constant surface temperature. Yildirim
[10] presented a thermo-mechanical analysis of sphere made of non-homogeneous isotropic materials and
proposed the closed form formulas for the elastic fields in a simple-power-law graded spheres subjected to
steady-state thermal and internal/external pressure loads.

Zimmerman and Lutz [11] derived the exact solution for the problem of uniformly heating cylinder
and showed that the radial and tangential stresses are largest in magnitude at the center whereas the deviotric
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stress is largest in magnitude at the outer edge of the cylinder. In the present paper, we have studied the
thermal stresses based on the theory of uncoupled thermoelasticity in a functionally graded hollow thick-
cylinder subjected to non-uniform internal heat generation and discussed the thermal stresses distribution for
different values of the powers of the module of elasticity and varying power law index of heat generation.
We obtained the expressions for radial and circumferential thermal stresses by using the theory of elasticity.
The variation of thermal stresses is also shown graphically.

2. Formulation of problem

Consider an FGM hollow cylinder with the inner radius ‘@’ and outer radius ‘0’, temperature 7, at
the inner surface and 7}, at the outer surface with non-uniform heat generation ‘g’ within the solid.
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Fig.1. FGM hollow cylinder.

The properties in cylindrical co-ordinates z and 0 are identical. The material properties are assumed
to vary as power function in radial direction. The cylinder is graded in the radial direction so that the material
properties of elasticity modulus, thermal expansion coefficient and thermal conductivity are functions of »
only. Non-uniform heat is generated within it and is also a function of . The following power law functions

of radius in the radial direction are considered as in Ghanbari and Farhatnia [2]:
- elasticity modulus:

E=Ey™,
- coefficient of thermal expansion:

o=o,r"?, (2.1
- thermal conductivity:

k=kyr™
- non-uniform heat generation:

q=qpr™

where m;, m,, m; and m, are parameters. E,, o, k, and g, are reference values of the Young modulus,
thermal expansion coefficient, thermal conductivity and non-uniform heat generation, respectively.
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In the steady state condition, in cylindrical co-ordinates and under first kind thermal boundary
conditions as in Obata and Noda [7] with non-uniform heat generation, the heat conduction equation may be
obtained as follows:

li[rkorm £}+q0rm4 =0 a<r<b, t>0. (2.2)
rdr dr

Boundary conditions are
T=T, at  r=a, (2.3)
T=T, at r=b. 24
3. Thermoelastic solution

The properties in the cylindrical co-ordinates z and O directions are identical and u is the
displacement component in the radial direction. The non-zero strain components are

_du

=

LY (3.1)

N R

The stress components G,,. and Ggq in the radial and circumferential direction in terms of the displacement
component u, for plane strain conditions are given by

E du u

o, —m[(]—(f);'FG;—(]'FG)OCtT] , 3.2)
E du u

Ogp —m[cg+(1—0)7—(1+0)0€,7’] (33)

where €,. and ggqare strains in the radial and circumferential directions, 7' is the temperature change
determined form the heat conduction equation (2.2), o, is the coefficient of thermal expansion.

The equilibrium equation in the radial direction in the absence of body force and inertia term is given
as below:

% 4 (5, — gy ) =0 (3.4)
r

The cylinder is subjected to the traction free boundary conditions, i.e.

c,,=0 at r=a, 3.5)

rr
and

Cgp=0 at r=b. (3.6)

Therefore, Eqs (2.1)-(2.4) and (3.1)-(3.6) constitute the mathematical formulation of the problem.
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4. Temperature distribution function

The solution of heat conduction Eq.(2.2) is obtained as:

T(r)=0;™ ™™ +Cr™ +C,  where  my;#0 4.1)
and

_ —4
O = e (my + 2)(my—my +2) *2)

C,=- B , my20. (4.3)
kom

The constant of integration C; and C, can be determined by using boundary conditions (2.3)-(2.4) in
Eq.(4.1)

(Ta _Tb)+Q] (bm4—m3+2 _am4—m3+2)
C, = R 4.4)

b—I’I’I3 _ a—m3

T _T b_m3 an4—n’I3+2_ bm4—n13+2_am4—m3+2 b—m3
(LBl o, | ) (45)

G=ht (b m3 —a_m3) (b_m3 —a_m3)

The parameters m; and m, are chosen such that the denominator is non-zero, the temperature distribution
function is obtained as:

(T )

T 7 =T + + rm4—m3+2 _bm4—m3+2 +
( ) b (b_m3 —a_m3) QI ( )
4.6
(bm4—m3+2_am4—m3+2)(b—m3 _r—m3) ( )
+ )
)
for
r=pllomro-i)
(1-0)
T(r)=Q,™" +C5Inr+C, 4.7
where
Q=2 (4.8)
k() (m4 + 2)
C; =§. 4.9)
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Using the boundary conditions (2.3)-(2.4) in (4.7), we obtain the constants

a

(1,-1.)-0, (0" -4

C; = 5 , (4.10)
In—
a
my+2 my+2
7. —T \)Inb bt — g™ \Inb
b b
In— In—
a a
and the temperature distribution function is given by
(7,-7,)ln® (b2 —am4+2)lné
T(r)=T,~———L+0, ; r +(r’"4+2 —b’”"”) . (4.12)
In— In—
a a

5. Thermoelastic stresses

The equilibrium Eq.(3.4) in terms of displacement component # on using the functional relation (2.1)
and Egs (3.2)-(3.3).

2
Pr2d—Z+Qr%+Ru:Llrm2+m4_'”3+3 + M N for om0, (5.1)
r
2 dzu du my+my+3 my+1 my+1
Pr —2+Qrd—+Ru=L2r 2T M Inr + Ny for  m;=0 (5.2)
r
where
1-0 om; +6—1
p=U=%) o pm+1), Rr=p{OmFO=DL (5.3)
(I1+0) (1-0)
L1=0Lt0Q1(m1+m2 +m4_m3 +2), (54)
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The general solutions of Eqs (5.1)-(5.2) are obtained by adding particular solutions to the complimentary

solution of homogenous form. The complimentary function u,, is
u, (r)=Xr’

where X is constant.
Using Eq.(5.10) in homogeneous form of Eq.(5.1) or Eq.(5.2), we get

2
Pr’ d—2(er )+ Qri(XrS )+ R(X)=0
dr dr

or
Pr? Xs(s— 1) + QrXsr* ™ + RXr* =0,
on simplification, we get

Ps’ +(0-P)s+R=0,

Equation (5.11) has two roots

(P-0)+ (Q—P)2—4PR.

S12= >p

Thus the complimentary functions for Eqs (5.1) and (5.2) are

u, (r)=X,r' + X,r? for  my#0
and
u,(r)=X;r' + X2 for  my=0.

The particular solutions for Egs (5.1) and (5.2) are considered as

_ my+my—m3+3 my—m3+1 my+1
up(r)—er +Y,r +Y;r for  m;#0
and

up(r)=Y4rm2+m4+3+(Y51nr+Y6)rm2+1 for  m;=0.

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

Substituting Eq.(5.15) in Eq.(5.1) and Eq.(5.16) in Eq.(5.2) and equating the coefficients of identical powers

using the values of L;, M;, N;, L,, M, and N, from Eqs (5.4)-(5.9), we obtain

o, Oy (my +my +my —m; +2)

Y, = ,

v - o, C; (my +my —m;) c-_ B

- s
kons

(5.17)

(5.18)
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v - o, C; (m; +m;)
I (my +1)[Pm, + Q]+ R’

(5.19)

y - (xton(m1+m2 +my +2) (5.20)
! (my +m, +3)[P(m2 +my +2)+Q]+R ’

C +
Y, = &, 3(1711 mz) ’ 3:&’ (5.21)
(my +1)[Pm, + Q]+ R ky
1
Y6= Z{QtOI:C3+C4(m1+m2):II:(m2 +])(Pm2 +Q)+R:|+
[(my +1)(Pm, +Q)+R] (5.22)
—Ott0C3(m1 +m2)|:P(2m2 +I)+Q:|}
The general solution u(r) of Eq.(5.1) is obtained for m; # 0 as
u(r) — XII"SI +X2rS2 + erm2+m4—m3+3 +erm2—m3+1 +);3]/}712+] (523)
and general solution u(r) of Eq.(5.2) is obtained for m; =0 as
u(r)= X5 + X 2 + Y2 4 (Yonr + Y )2 (5.24)
using Eq.(5.23) in Egs (3.2)-(3.3), we get:
e for my#0
Gy :(1+0)EE+20)[{(1_6)S1 +o} X" (1-0)s, + o} X2 4
+[{(1—G)(m2 +m,—m;+3)+0}Y, —(1+0)octOQ,]Jr”’1+’”2+’”4‘m3+2 + (5.25)
+[{(1=0)(my —my + 1)+ 0}V, = (1+0)a, C; |27 +
+[{(1—0)(m2 +1)+0}Y; —(1+G)(xt0C2}r”’1+m2},
oo =%[{(1—6)+6S1}X1rm1“1_1 +{(I-0)+os, X, 4
+[{G(m2 +m,—m;+3)+(1-0)}Y, —(1+cs)octOQ,]Jr”’1+”’2+’"4""3+2 + (5.26)

+[{G(m2 —m; +])+(1—(5)}Y2 —(1+c)(xtocj]]rm1+m2—m3 +

+[{G(m2 +1)+(1-0)}Y; —(I+G)0ct0C2]rm1+m2 ]

Now using Eq.(5.24) in Egs (3.2)-(3.3), we get:
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e for m;=0
o, =—0
" (I1+0)(1-20)

{(1=0)(m; +my)+(3-20)} ¥, = (1+0) e, 0,1 "2 "4% +

+

+

[
[
[

(
{(1=0)m, +1}¥; —(I+0)a, C31|r"*" Inr+
(

+

{(1=0)m, +1}Y; +(1-0)Y; —(1+G)0€,0C4]rm1+m2}

EO
(1+0))((1-20))

+{o(my +m, +3)+ ]—c)}Y4—(1+c5)oct0Q2]r’"1+’”2+'”4+2+

Ggg =

[
+[{o(m, +1)+(1-0)}¥5 = (1+0) 0, C31]r" "2 Inr +
[

+ oY; +{o((m, +1)+(1-0)}¥; —(1+G)oct0C4]r'”1+m2]

[{(l—c)sl +o} X" 1 (1-6)s, + o} X T 4

[{(1—(5)+GS1}X31’m1+S1_1 +{(I-0)+os, } X, 4

(5.27)

(5.28)

where X;,X,,X; and X, are the constants obtained by using the conditions (3.5) and (3.6). Then the

expressions for thermal stresses are obtained from Eqs (5.25)-(5.28):
e for m;#0

Eya
0% my+sy—Iymp+my+my—m3+2
GOy = H:Q]{ l:( A

_am1+mz+m4—m3+2bm1+s2—1)rm1+s1—] n (bm]+s1—]am1+m2+m4—m3+2

_bm1+m2+m4—m3+2am1+sl—1)rm1+s2—1+A1rm1+m2+m4—m3+2J+

—A222 |:(am]+32—1bm1+m2—m3 _am1+m2—m3bm]+32—1)rm1+s1—1+

+(bm1+sl—1am1+m2—m3 _bml+mZ—n13am1+S]—])rm1+S2—]+A1rm]+mZ—M3j|+

—A3Z3 |:(am1+s2—1bm]+m2 _am1+n12bm1+s2—1)rm1+s1—1+
+(bm1+s1—1am1+m2 _bm1+m2am1+sl—l)rm1+sz—l+A]rm1+m2 :|}+

—A422 _(am]+32—1bm1+m2—m3 _am1+m2—m3bm]+32—1)rm1+s1—1+

+(bm1+s1—1am1+m2—m3 _bml+mZ—n13am1+S]—])rm1+S2—]+A1rm]+mZ—M3j|+

+A5Z3 (am1+32—1bm1+m2 _am1+m2bm1+s2—1)rm1+s1—1+

+s7-1 + + +s57-1 +5y—1 +
+(b’"1 sp=1 mytmy _pmptmy mptsy ),,’"1 2714 42 }ﬂ’

+

(5.29)
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Eyor os;+1-0
oo =— “10,42, [( : )

(am1+s2—lbm]+m2 +m4 —WI3+2 +
; (1-0)s,+0]

_am1+m2+m4—m3+2bm1+s2—1)rm1+s]—1+ (GS2+]_G) %
[(1-0)s,+0]

X(bm1+s1—1am1+m2+m4—m3+2 _bm1+m2+M4—m3+2am1+s1—1)rm1+32—1i|+

[(1-0)s,+0]
_am1+m2—m3bm]+32—1)rm1+31—1 + (GSZ +1_G)

+my— +s7—-1 +59—1 +my— +
BT M) 2 7 A S 7 A A

+my+my—mz+2 +55-1 +my—

(bm]+sl—1am1+m2—m3 +

(0s;+1-0)
[(]—G)S] +G:|
N (os,+1-0)

[(I—G)s2+cs]

(os;+1-0)
[(1-0))s;+0]
N (os,+1-0)

[(1-0)s,+0]

—A3Z3 (am]+s2—1bm]+m2 _am]+m2bm]+s2—1)rm]+sl—]+

(5.30)

(me+S]—1aWI]+I’I12 _bm1+mzaml+sl—])rm1+s2—1 +

—A4Z2 (am1+S2—1me+M2—Wl3 _am1+m2—m3bm1+s2—1)rm1+s1—]+

(bm]+s]—1am1+m2—m3 _bm1+m2—m3am1+s1—1)rm1+32—1 +

(os;+1-0)
[(1-0)s;+0]
(os,+1-0)

Ti=0)s,+0]

+A5Z3 (am1+32—]bm1+m2 _am1+m2bm1+s2—])rm1+sl—1+

(bm1+51—1am1+m2 _bM]+mZaH1]+S]—])rmI+Sz—1

where

my—m3z+2

bM4—I'n3+2 —a

A] :amI+S1—1me+S2—1 _am1+S2—]me+S1—], A2 —

b — g

—m3+2 S
A3 =pmT P —a b, A, :ﬂ >
b—M3 _a—m3 b—m3 _a—M3
4 _7}7+(721_Tb)b_m3 7 - —{(my + D(my +my) —my |
5 6

b g3 ~ (I—0)(my + )(m; +m, + 1)+ (om, +6—1)
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Z, = ,

! (I—0)(my +my —msz+3)(m; +my, +my —m3z +3)+(om; +6—1)
7 - —(my —m3)

2T (1=0)my —my+ D)(m, +m, —my + 1)+ (om, +6—1)’
Z;= 2

3T (I=0)(my + I)(m, +my + 1)+ (om, +6—1)

_ —{(my +my —m; +3)(m; +my +my —m; +2)—my]|

! (1=0)(my+my—my +3)(m; +m, +m, —m; +3)+(Om, +6-1)’
7 —[(my —ms + D)(m; +my —mz)—m]

5

(U= 0)my —my + 1Y(my +my —my + 1)+ (om; +0—1)

e For m;=0

E,o
0™ +Sy—1y mp+my+my—mz+2
G, =—0 HQz{Zz[(am] sp=lpmy+tmy+my—mg+2
1
_am1+m2+m4—m3+2bm1+32—1)rm1+sl—1+(bm1+sl—1am]+m2+m4—m3+2+
_bm1+m2+m4—m3+2am1+s1—1)rm]+s2—1+A]rm]+m2+m4—M3+2:|+
+s59—1ymy+ + +559-1 +s57-1

+(bm1+51—1am1+m2 _bm1+m2am1+51—1)rm1+s2—1+A]rm]+m2:|+

+59—1 + + +s59—1 +s5;-1
—A6Z3[(a’”1 27 MM g™ M2 lna)rm1 =1y
+s;—1 my+ + +s7-1 +55-1 + (5.31)
+(b’”1 LG | g ™ g 1nb)r"’1 271y gt lnr]}+
+A828[(am1+S2—]bm1+mZ—M3 _am1+m2—m3bm1+sz—1)rm1+sl—1+

+(bm1+s1—1am1+m2—m3 _bm1+m2—m3am1+s]—I)rm1+s2—1+A1rm]+m2—m3:|+

i +59-1 + + +s59—1 +s57-1
+Ag7, (am1 271 [y g2 M2 lna)rm1 171

mi+s;—1 mj;+m my+ my+s;—1 my+sy—1I my+
+(b1 17" ™2 Ing - p™1T"2 "0 1na)r1 2 +A]r1m21nr}+

i +59—1 + + +59—1 +s57—-1
+A4)Z4 (aml spy~lpmp+my _ mptmypmi+s; ),/"1 sp=~1

m1+sl—1 my+my my+my m1+s]—1 m]+s2—1 my+my
+(b a -b a r +A;r

where
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(bm4+2 - am4+2)lnb

A6 - ba s A7 :bm4+2 - b 9
In— In—
a a
T,-T. (T, -T,)Inb
Ay = : ba > Ag=T),— b .
In— In—
a a

Now

ant (O'Sl +1_O-) My +5n =15 My +1e +m —y +2
— 0 Z ( 1772 b 177277473
O =y [[Qz{ {[(1—0‘)s1+0'] ‘ ’

my +my +my —msy +2 m +s2—l) my+s; =1 (O-Sz +1_O—)
-a b +o—
(1-0)s, +0]

X(bml +S1—1am1+mz +my —my+2 — pmtmytmy—m; +2aml+s1—l)rmlJrS2 _1:|+ZgA1}’ml+m2 +my—my+2 +

my+s, =1, my+m my+my 5 My +5,—1 my +s;—1
(a12b12ia12b12)r11+

—(A4Z, +A7Z3)[%

N (os,+1-0)
[(1-0)s,+0]

~ A (Zyodg + 2,14, )™ = Z A A" Ing +

(bml +5 —laml +my bml +m, aml +s57-1 ) }"ml +5,—1 :| +

A7 (0-S1 +1_O—) (aml+S2_lbml+m2 lnb_aml+m2bml+s2—l lna)rmlJrsl—l
“\T(1=0)s, +0]

(0s,+1-0)

T=0)s,+0]

(bml +sl—laml+m2 lna_bml +m2aml +5 -1 lnb)rml +5 —1]}+

my+s5, =1, my+m my+m, 5 My +5, =1 my+s, =1
(012b12—012b12)7’11+

+(Agzg + 492, )L:((loisi;;)lsl_fg-:l

N (0s,+1-0)
[(1—0‘)s2 +O':|

+ 4, (Zo Ay + 2, A r™ " + Z A 4™ Inr +

myts =1 _my+my _ pmytmy mypts; =1\ my+s, -1
(b a b a )r }L (5.32)

N (os,+1-0)
AgZ{[(l—a)sﬁcf}

(0s,+1-0)

Ti=0)s,+0]

my+s,—1, my+m my+ms 5 my+5,—1 my 45, —1
(a1 2 b1 2Inb-al b2 lna)r1 It
(bml +sl—1aml+m2 lna_bml +m2aml +5 -1 lnb)rml+s2 1]]:|

where
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_ —(my +my +2)
(I1-0)(m, +my +3)(m; +m, +m, +3)+(om; +6-1)’

Z;

(I-0)my’ —m,

28: 20
[I=0)m, +D)(m; +m, +1)+(om; +06—1)]

(I-0)(m, +my+3)(m, +my +m, +3)+(om; +c-1)°

Zg

Zy = 27
[(=0)(m, +1)(m; +m,y,+1)+(om; +6—1)]

—(m22 +mym, +my)

Z; = .
(I=o)m, +1)(m; +m,+1)+(om; +06—1)

6. Particular case

In the final equations, if we take m; =m, =m; =m, =0, we get the expressions for an isotropic and

homogeneous hollow cylinder with uniform volumetric heat generation. This fact can be used as a validation
of the problem.
Substituting m; =m, =mz =m, =0 in Eq.(2.1), E,0,,k and g become Ej,0, ,k, and g,, which

are the modulus of elasticity, thermal expansion coefficient, thermal conductivity and constant volumetric
heat generation, respectively, for an isotropic and homogeneous material. From Eqgs (5.3) and (5.12), we
obtain s; =/ and s, =—1.

The results obtained for thermal stresses with non-uniform heat generation are validated with the
results as in Nayak and Mondal [6] by putting O; and O, equal to zero in the expressions (5.29) to (5.32),

respectively.
7. Results and discussion

The mathematical thermoelastic model of a functionally graded thick hollow cylinder can be
constructed by considering a thermal gradient through its radial direction.

A thick cylindrical vessel of the inner radius a =Im and outer radius bh=1.2 m, Poisson’s ratio
6 = 0.3, thermal conductivity coefficient k, =2.09 W/ mK is considered to be constant. Material constants

of the thermal expansion coefficient and modulus of elasticity are o, =/0x1/ 07°/°C and E)=151GPa

respectively. The inner surface of the hollow cylinder is fixed at 7, = 10°C and the outer surface is kept at

T, = 0°C and volumetric heat generation g, =500W / m? , which is constant.

8. Graphical illustrations

For m;=m, =m;=m, #0, the temperature distribution obtained by (4.6) and thermal stress
components obtained in Eqs (5.29) and (5.30) are used. For m; =m, =m; =m, =0, the temperature
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distribution and thermal stress components are obtained by using the expressions (4.12), (5.31) and (5.32),
respectively.

WITH SOURCE
10 . . : . .
m=1
g B —k—m=2
= —_ — —m=3
sk TR, e m=-1
*.om=0
? =
L st
=
I
g 5
£
ﬁ 4+ . )
3 N
A
2t N
R

]

1 102 104 1068 108 11 112 114 116 118 12
Radius

Fig.2. Variation of temperature distribution with the radius.
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The temperature distribution and thermal stresses with non-uniform heat generation are represented
graphically and discussed as a particular case with variation in the power law index as
m=m;=my,=mz=my=0,1,2,3,-1.

Figure 2 represents the variation in the temperature with the radius in the presence of non-uniform
heat source within the cylinder. For m =3,2,1,0 and -1, the temperature increases as the power law index
decreases.

Figure 3 represents the radial stress distribution with heat generation within the cylinder. Due to
assumed mechanical boundary conditions, the radial stress is zero on the surfaces and it is compressive
throughout the cylinder. The compression shifts towards the outer surface for parameters /,—/ and 0. The

variation can be observed in the case of the homogeneous and isotropic material for m=0.
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In Fig. 4, the radial stress becomes tensile in nature for m =3 and the stress becomes tensile for the
region up to the radius of about » = /.74 and the remaining part is compressive for m=2.

Figure 5 represents the circumferential stress distribution which increases as the power law index
increases for m=0,1,2 and 3. The stress increases from the inner to the outer surface. In Figure 6, it is

interesting to note that for m =—1, the circumferential stress becomes tensile.
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Fig.5. Variation of circumferential stress with the Fig.6. Variation of circumferential stress with the
radius. radius.

9. Conclusion

In this paper, exact analytical solutions are obtained for the temperature distribution and thermal
stresses in an FGM hollow cylinder with a non-uniform internal heat generation. As a special case, a
mathematical model is constructed for a hollow cylinder with material properties specified in the numerical
calculations.

In this study, it is observed that the temperature, in the presence of the heat source, increases as the
power law index decreases. The radial stress is compressive inside the cylinder as in the earlier results of
Nayak and Mondal [6] but it is interesting to note that the radial stress becomes tensile for m =3 and for
m =2, the region up to the radius of about » = /./4 and the remaining part is compressive. For m=3,2,1
and 0, the circumferential stress increases as the power law index increases from the inner to the outer
surface and for m =—1, the circumferential stress becomes tensile.
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Nomenclature:

a —radius at the inner surface
b —radius at the outer surface

o derivative with respect to the radial coordinate
v
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E,E, —Young modulus
k,ky —thermal conductivity
g —non-uniform heat generation
t —time
T —temperature
T, —temperature at the inner surface

T, — temperature at the outer surface
u —radial coordinate
o0, — thermal expansion coefficient
g, —radial strain
gg9 — circumferencial strain

o — Poisson’s ratio
o,. —radial stress

ogg — circumferential stress

Subscripts
a —value at the inner surface
b —value at the outer surface
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