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A plain linear penetrable contracting sheet with slip over a micro-polar liquid with a stagnation-point flow is 
analyzed. Through similarity mapping, the mathematical modeling statements are transformed as ODE's and 
numerical results are found by shooting techniques. The varying impacts of physical quantities on the 
momentum, micro-rotation, and temperature were demonstrated through graphs. The computed measures 
including shear and couple stress with distinct measures of factors involved in this proposed problem are 
presented through a table. 
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1. Introduction 
 
 Heat transmission past a stretching surface has a lot of manufacturing applications which include optical 
filament manufacture, hot involution cable graphics, the aerodynamic expulsion of elastic foils, metal spinning, 
and pulling elastic foils. Miklavcic and Wang [1] examined the viscid flow prompted by a contracting surface. 
The closed-form solutions were obtained. Wang [2] analyzed a stagnation point flow over a contracting surface 
and obtained that the heat exchange rate declines with the contracting rate because of the growth in the 
boundary layer thickness. Nadeem et al. [3] considered second quality liquid with the contracting surface and 
discussed axisymmetric and 2-dimensional shrinking flow. Bachok et al. [4] carried out an analysis to examine 
heat transfer and 2-D stagnation-point flow, a laminar liquid movement to an expanding/contracting surface. 
The pertaining equations were solved and the impact of various factors involved in the problem was analyzed. 
Fan et al. [5] studied the flow along a contracting surface and high accurate analytical approximations well 
agreed with the results provided by the Keller-Box scheme. In a porous medium, heat transfer, as well as stable 
stagnation flow along a contracting surface, was examined by Rosali et al. [6]. Heat transfer as well as flow 
behaviour for numerous values of the parameter involved into the problem, were analyzed and outcomes 
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pointed out the dual solutions for the contracting case. Bhattacharyya and Vajravelu [7] analyzed heat transfer 
stagnation flow towards an exponential contraction sheet. The investigation disclosed that if velocity ratio 
factors fulfill inequality .1 487068 c a− ≤ , then the solution will exist. Bachok et al. [8] examined a 2-D 
stagnation flow of a nano-liquid along a contracting/elongating surface. The solution achieved solely depends 
upon the parameters taken into an account. 
 In the Newtonian and non-Newtonian flow theory, heat transfer and flow performance of 
particular fluids, namely polymeric fluids, paints, colloidal fluids, liquid crystals, lubricating oils and 
animal blood cannot be described. These types of fluids have many governing equations that do not 
operate according to Newton’s law. To overwcome such a complication, Eringen [9] developed the 
concept of micro fluids, which handles types of fluids showing particular microscopic impacts rising from 
the shape along with micro-movements of liquid components. These liquids support the stress moment 
and are affected by the spiral recession. Later Eringen [9] created a subcategory of these fluids, called 
micro-polar fluid, in which micro-rotation effects and micro rotation inertia exist, but do not to support 
stretch. It can support body couples as couple stress.  
 Kumari and Nath [10] considered a 2-dimensional unstable axisymmetric body flow of micropolar 
liquids. Heat transfer is affected considerably by the Prandtl number and time-dependent varying wall 
temperature, whereas the micro-rotation gradient and shearing stress are unaffected by them. Zial Haque et al. 
[11] discussed the behavior of an MHD micropolar liquid in a porous medium. Nachtsheim – Swigert repletion 
procedure was engaged as the main device to find the numerical solution. Through graphs, the influences of the 
numerous important factors on velocity, angular velocity, temperature as well as species contours were 
discussed in detail. The impact of the ruling factors on shear stress was explained in the tables. 
 Uddin and Kumar [12] analyzed the impact of Hall current and MHD flow of micropolar liquid 
over non-conducting wedge along with ion-slip and proposed to solve the ruling equations approximately. 
The influence of numerous factors considered in the study have was analyzed with the assistance of 
graphs, values of the Nusselt number and shearing stress were offered in a tabular form and a comparative 
study was also made. The 3-D flow of a micropolar liquid on stiff uncharged dielectric at rest was 
examined by Borrelli et al. [13]. The impact of the ruling factors on the magnetic field and liquid flow was 
exhibited graphically and discussed. Siva and Shamshuddin [14] considered a chemically reactive and 
viscous dissipative flow of a micro-polar liquid along a plumb holey moving surface implanted in a leaky 
medium. A set of ordinary differential equations (non-linear) was derived from partial differential 
equations and then numerical values were obtained by using the finite element procedure. 
 The studies of micropolar fluids over a stretching surface are important from the technological 
point of view because they have many uses in chemical and metallurgy engineering. Rahman et al. [15] 
examined a 2-D MHD flow of a micropolar liquid along a non-linear contracting surface without uniform 
wall temperature and varying viscosity. The similarity solutions were acquired by using the Nachtsheim-
Swigert repetition process. They have a non-linear contracting and temperature index that depends on the 
heat exchange rate. Ishak et al. [16] examined the 2-D flow of a micro-polar liquid along with a 
contracting sheet. Yacob et al. [17] investigated a micro-polar liquid flow over a horizontal linear 
elongating/contracting sheet with stagnation. A mathematical model for elongating/contracting sheet is 
established to analyze the heat transfer during the melting process. 
 Bhattacharyya et al. [18] studied radiative effects of a micro-polar liquid flow over a porous 
contracting surface. The similarity mappings were used to convert PDEs to ODE's and approximate 
solutions were achieved by using a shooting method. Hussain et al. [19] presented radiative effects on the 
unstable micropolar liquid flow along a stretching surface. A non-dimensional form of the flow problem 
was achieved by using similarity variables for a permeable sheet. The homotopy analysis method is 
engaged to get the solutions for various flow parameters. The impacts of a chemically reactive on MHD 
micropolar liquid stagnation flow through a contracting sheet were studied by Khilap Singh et al. [20]. 
 This type of flow has wide applications from chemical engineering to geophysics. Working fluid 
with heat source/sink effects plays a vital role in certain porous media applications. Subhas Abel et al. [21] 
illustrated liquid flow towards a linearly contracting surface with varying heat source/sink and the Keller 
Box technique was engaged to find the solution. Mahmoud and Waheed [22] discussed impacts of a slip 
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velocity flow on an MHD micro-polar fluid with heat generation along with a permeable contracting sheet. 
Numerical solutions were achieved by using the Chebyshev spectral method. Slip factor impacts on angular 
velocity as well as temperature contours were discussed in detail with graphs. 
 Mabood et al. [23] investigated a 2-D magneto hydro-dynamic micro-polar liquid movement along a 
contracting surface inserted in a porous medium. Numerical results were compared with the earlier results 
and were found to be in excellent agreement. Muthamilselvan et al. [24] studied numerically a free 
convective micro-polar liquid in a square pit with the hot tinny plate and the solutions were obtained by a 
finite volume method. The impact of different values of the Prandtl number, Rayleigh number, heat source, 
vortex viscosity factor, and source factors on the fluid flow was analysed. Due to the occurrence of the 
vortex viscosity factor, fluid velocity was observed to be slow. Mishra et al. [25] analysed a micropolar 
liquid stream above a flat plate with a radiative heat source. 
 Motivated by the above works, the authors have analysed a micropolar fluid flow about a 
contracting surface with stagnation-point. Through similarity mapping the modeling mathematical 
statements are transformed to joined ODEs and using MATLAB software, quantitative outcomes are 
found by employing the shooting method with the Runge-Kutta method. 
 
2. Formation of equations 
 
 A 2-D stagnation-point micropolar liquid flow above a flat linear penetrable shrinking surface with 
slip conditions is considered. The coordinate system of the flow is explained in Fig.1. It is assumed that the 
velocity near the surface and velocity of the external flow is ( )wu x ax=  and ( )eu x cx= , respectively, here 

,a 0 c 0> > . The x -axis is taken along the sheet. The impacts of microstructure, viscous dispersion as 
well as radiation are presumed to be naught and the total spin N  of the micro rotation is reduced. 
 

  
Fig.1. Flow model. 

 
 The continuity, velocity, micro-rotation as well as energy equations are as follows: 
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where ,u v  represent the velocity elements in the ,x y  directions respectively; κ  – the vortex viscosity; N  – 

the micro-rotation; j  – the microinertia density; γ  – the spiral gradient viscosity; K κ=
μ

 – the micropolar 

factor and l
c
υ=  as the reference length. 

 Related boundary conditions are as follows: 
 

  ( ), ( ), , ,w 0 f f
u u Tu u ax L v V x N n h T T
y y y

∂ ∂ ∂= = + = = − − κ = −
∂ ∂ ∂

  at    y 0= , 

    (2.6) 
 
  ( ) , , ,eu u x cx N 0 T T∞= → → →       as     y → ∞ . 
 
Here L  is the length, ( )0V x  - transpiration velocity at the wall, fh  - heat transfer coefficient, fT  - fluid 

temperature, ( )n 0 n 1≤ ≤  - boundary value factor. For . .n 0 i e N 0= =  we have a non-spiral state. (The micro-

components in the concentrated flow particles could not rotate near the wall) and for 1n
2

=  the anti-symmetric 

part of the stress tensor disappears and this implies a feeble concentration. Also for n 1= we have turbulent flows. 
 Introduce the following similarity variables: 
 

  , ( )cn y c xf= ψ = υ η
υ

,      ( ), ( )
f

T TcN cx g
T T

∞−= η θ η =
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   (2.7) 

 
Equations (2.1)-(2.4) now reduce to: 
 
  [ ] ''' '' ' '21 K f ff 1 f Kg 0+ + + − + =    (2.8) 
 

  '' ' ' ( '')K1 g fg f g K 2g f 0
2

 + + − − + =  
   (2.9) 

 
  '' Pr ' Prf Q 0θ + θ − θ =    (2.10) 
 
Conditions (2.6) become: 
 
  ( ) , '( ) ''( ), ( ) ''( ), '( ) ( ( )),w if 0 F f 0 f 0 g 0 f 0 0 B 1 0= = ε + δ = −η θ = − − θ  
    (2.11) 
  '( ) , ( ) , ( )f 1 g 0 0∞ = ∞ = θ ∞ = . 
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ε =  – shrinking factor; cLδ =
υ

 – slip factor; f
i
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The physical factors, i.e., shearing stress fC ; couple stress xM ; Nusselt number Nux  are defined as: 
 

  , , Nu
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Surface shear stress wτ ; surface couple stress wm  ; surface heat wq are given by 
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 From Eqs (2.13) we get 
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where Re ( ) /x eu x x= υ  is the local Reynolds number. 
 
3. Computational techniques  
 
 A shooting technique along with Runge-Kutta fourth-order method was employed to solve Eqs 
(2.8)-(2.10). Before, solving the nonlinear equations, first, transform these equations into a set of seven 
differential equations (first-order). Equation (2.11) has only four initial conditions, but it needs seven 
conditions to solve the set of differential equations (first-order). Thus, it is required to find three more 
conditions, i.e., ''( ), '( )f 0 g 0  and '( )0θ  which were not present. Initially, the guesstimate values for 

''( ), '( )f 0 g 0  and '( )0θ  were used to solve the equations. The solution must fulfill the conditions 
''( ) , '( )f 1 g 0η = η =  and '( ) 0θ η = . i.e., In the computation process it is essential to select an appropriate 

finite value, say ∞η  for η → ∞  Calculated values of ''( ), '( )f gη η  and '( )θ η  at η = ∞  are matched with 
''( ) , '( )f 1 g 0η = η =  as well as '( ) 0θ η =  at η = ∞  If it is not satisfied by calculated numerical values then 

the guesstimate values are revised to proceed as above to find a better solution. The procedure is continued 
till the desired results are obtained. 
 
4. Results and discussion 
 
 The present outcomes of ''( )f 0  as well as '( )0−θ  are compared with the outcome of Wang [2], 
Yacob et al. [17], and Khilap Sing et al. [20] as shown in Tab.1. The results agreed very well. 
 The velocity, angular velocity along with temperature for dissimilar values of ,wF K  and stable values 
of other factors taken into consideration are computed numerically and are shown in the form of graphs in  
Figs 2-4. The positive values of wF  and negative values of wF  refer to suction and injection at the plate. 
From Fig.2, we notice that for mass injection, the velocity of the liquid declines gradually nearby the wall 
( ) .0 1 75≤η ≤ , and the reverse is seen at a distance from the plate. Whereas in the case of suction velocity 
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increases gradually as η  increases, since suction confirms the growth of the boundary layer. Raising values of the 
micropolar factor K  decrease the velocity. A thicker boundary layer was observed for high values of the micropolar 
factor. Due to an increase in the micropolar factor K , the concentration of the micro-elements near the boundary 
increases. The velocity of the liquid is generally high in the case of suction in comparison with injection. 
 
Table 1. Similarity results for numerous values of ε  and K i. , Pr . , B '( )n 0 5 1 0 0= = = −θ  and 

wF Q 0= δ = = . 
 

ε  K  
Wang [2] Yacob et al. [17] Khilap Sing et al. [20] Our Result 

''( )f 0  ''( )f 0  '( )0−θ ''( )f 0 '( )0−θ ''( )f 0  '( )0−θ
0 0 1.2326 1.232588 - 0.570465 1.232586 - 0.570465 1.232591 - 0.570465 
0 1  - 1.006404 - 0.544535 1.006405 - 0.5445350 1.006541 - 0.544535 
0.5 0 0.71330 0.713295 - 0.692064 0.713294 - 0.692065 0.713475 - 0.692065 
 

 
Fig.2. Result for K  and wF  with '( )f η . Fig.3. Result for K  and wF  with ( )g η . 

 

 
Fig.4. Result for K  and wF  with ( )θ η . Fig.5. Result for δ  and wF  with '( )f η . 
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 In Fig.3, we see that the angular velocity of the liquid increases tremendously as η  increases, 
subsequently it reaches its peak value at .2 25η =  and then decreases progressively as η  it grows. The 
tendency was the same for all other values K  in both cases (suction and injection). From the computed 
values, we noticed that the temperature of the liquid upsurges as K  increases for both suction as well as 
injection. High values of temperature are observed in the case of injection in comparison with suction. 
 Figures 5-7 illustrated the impact of the slip factor δ on velocity, angular velocity, and temperatures 
for suction as well as injection. From Fig.5, it is clearly seen that the velocity of the liquids declines as δ 
upsurges and η increases nearby the plate, and the reverse is noticed at a distance from the plate irrespective 
of the situation (suction or injection). The angular velocity declines as δ increases which are shown in Fig.6. 
But the reverse trend is noticed as the temperature upsurges as δ grows as shown in Fig.7. 
 

 
Fig.6. Result for δ  and wF  with ( )g η . Fig.7. Result for δ  and wF  with ( )θ η . 

 

 
Fig.8. Result for ε  with '( )f η  Fig.9. Result for ε  with ( )g η . 

 
 The influence of the shrinking parameter ( ε ) on velocity, angular momentum and temperature is 
displayed in Figs 8-10 accordingly. From Fig.8, we determined that the velocity of the liquid for ( 0ε = ) is 
larger nearby the plate than the velocity of the contracting sheet, but the reverse tendency is noticed at a 
distance from the sheet. Also, we see that the velocity of the liquid in the case of elongating sheet is larger 
than the case of the contracting sheet. From Fig.9, we concluded that the angular momentum is greater (for



180  A numerical approach to slip flow of a micropolar fluid above a…  
 

0ε = ) in comparison with the contracting sheet. Also, we observed that the angular momentum is larger in 
the case of the contracting than the stretching sheet. From Fig.10, we see that the temperature of the liquid 
declines as the shrinking parameter ( ε ) increases. 
 

 
 

Fig.10. Result for ε  with ( )θ η . Fig.11. Result for Q  and ε  with '( )f η . 
 

 
 

Fig.12.  Details of the impact of Q  and .0 5ε =   
with '( ).f η  

Fig.13. Result for Q  and ε  with ( )θ η . 

 
 The effects of the heat source factor Q  and shrinking factor ε  on the velocity and temperature were 
explained through Figs 11-13 accordingly. If there is a heat source then the liquid velocity is observed to 
upsurge, i.e., when heat is generated, the flow rate is intensified, which in turn upsurges the velocity profile. 
Also, we observed that the velocity of a micropolar fluid for the elongating sheet is higher than the values for 
the contracting sheet. The computed numerical values of ( )θ η  for varying values of Q  and ε  were obtained 
and shown graphically in Fig.13. We infer from this figure that the temperature of the liquid is higher for the 
shrinking sheet than for the stretching sheet. In case of growing values of the heat source factor Q , we 
noticed that the liquid temperature declines. Due to the occurrence of heat generation, the thermal boundary 
layer grows thicker and the liquid becomes warmer. 
 The analysis of varying values of Pr  and Q  with '( )f η  and ( )θ η  was carried out and shown in Figs 14-16 
respectively. The velocity of Pr .1 0=  is greater than the velocity of Pr .5 0=  as shown in Figs 14 and 15. 
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Physically, increasing the Pr  reduces the thermal diffusivity and these events lead to a decrease in the energy 
efficiency that diminishes the thermal boundary layer. We concluded that the velocity of the liquid increases due to 
upsurging value of Q . In Fig.16, it follows that the temperature of the micropolar fluid declines by the upsurging 
values of Pr . Also, we concluded that the temperature of the liquid decreases as Q  increases. 
 

 

 
 

Fig.14. Result for Pr  and Q  with '( )f η . Fig.15. Details of the impact of Pr  and Q  with '( )f η  
 

 
 

Fig.16. Result for Pr  and Q  with ( )θ η . Fig.17. Result for iB  with '( )f η . 
 
 The impacts of the Biot number iB  on ( '( )f η  as well as ( )θ η ) were displayed in Figs 17 and 18, 
correspondingly. Computed values show that there is no significant effect on the velocity for varying values 
of iB . The temperature grows as iB  upsurges. 
 Table 2 shows the effects of i, , B , , Pr, , wK Q Fε δ  on shearing stress, heat transfer, and couple 
stress. The negative sign of the wall temperature flux indicates the physical reality that the heat flows from 
the surface to the surrounding fluid for all values of factors taken into consideration. From the numerical 
values, by decreasing the value of δ , the skin friction is found to grow but the reverse trend is noticed for the 
couple stress and heat transfer rate. Also, it is noticed that the shearing stress, couple stress and rate of heat 
transfer upsurges as the Biot number iB  upsurges. Growing values of the shrinking factor ε  increase the 
shearing stress, couple stress, and Nusselt number. 
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Fig.18. Result for iB  with ( )θ η . 

 
Table 2. Variation of ''( ), '( )f 0 g 0  and '( )0−θ  for a combination of parameter values at . , Pr .n 0 5 1 0= = . 

 
K   Q   iB   ε   Pr   δ WF   ''( )f 0   '( )g 0   '( )0−θ   
1  0 0.1 - 0.5 1 0.02 0.2 1.339099 0.347962 0.083879 
1 0 0.1 - 0.5 1 0.01 0.2 1.342979 0.343953 0.083751 
1 0 5 - 0.5 1 0.02 0.2 1.339112 0.347967 0.471284 
1 0 0.1 - 1 1 0.02 0.2 1.303338 0.104529 0.075405 
1 0 0.1 - 0.5 1 0.02 0.5 1.532621 0.515344 0.088129 
1 0 0.1 - 0.5 5 0.02 0.2 1.339466 0.348133 0.091680 
1 0.5 0.1 - 0.5 1 0.02 0.2 1.339111 0.347967 0.089520 

0.5 0 0.1 - 0.5 1 0.02 0.2 1.479143 0.429814 0.084428 
 

5. Conclusion 
 
 The 2-D micropolar fluid flow along a flat linear permeable shrinking surface with slip has been 
investigated. The equations were converted into differential equations (ordinary) by using the suitable 
similarity quantities. An impact of various factors on the velocity, micro-rotation along with temperature 
contours was discussed elaborately. 
 The significant outcomes of our investigation achieved through graphical depictions are listed below: 
1. We observe that for mass injection, the velocity of the liquid declines gradually nearby the wall 

( ).0 1 75≤ η ≤ , and then a reverse tendency is noticed at a distance from the plate. 
2. High values of temperature are observed in the case of injection as compared to the suction case. 
3. The angular momentum is larger in the case of contracting than the stretching sheet. 
4. Shearing stress and couple stress are reduced by increasing the value of K . 

 
Nomenclature: 
 
 a  – wall stretching factor 
 iB  – Biot number 

 c  – free stream velocity factor 
 Cp  – specific heat at constant pressure 
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 fC  – shearing stress 

 'f  – dimensionless fluid velocity 
 'g  – dimensionless angular velocity 
 wF  – suction/injection factor 

 fh  – heat transfer coefficient  

 j  – microinertia density 
 K  – micropolar factor 
 l  – reference length 
 L  – length 
 xM  – couple stress 

 wm  – surface couple stress 

 n  – boundary value factor  
 N  – micro-rotation 
 Nu x  – Nusselt number 

 Pr  – Prandtl number 
 Q  – heat source/sink factor 
 wq  – surface heat flux 

 Rex  – local Reynolds number 

 fT  – fluid temperature 

 T∞  – free stream temperature 

 u  – velocity along the surface 
 eu  – free stream velocity 

 v  – velocity perpendicular to the surface 
 ( )0V x  – transpiration velocity 

 x  – direction along the surface 
 y  – direction perpendicular to the surface 
 γ  – spiral gradient 
 δ  – slip factor 
 ε  – shrinking factor 
 η  – boundary layer length 
 θ  – dimensionless temperature 
 υ  – kinematic viscosity 
 κ  – vortex viscosity 
 μ  – dynamic viscosity 
 ρ  – fluid density 
 wτ  – surface shear stress 
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