
 

Int. J. of Applied Mechanics and Engineering, 2022, vol.27, No.2, pp.124-142 
DOI: 10.2478/ijame-2022-0024 
 

MODELING AND OPTIMIZATION OF CUTTING PARAMETERS WHEN 
TURNING EN-AW-1350 ALUMINUM ALLOY 

 
F. KHROUF* 

Laboratory of Mechanics, Chaabet-Ersas Campus, Mechanical Eng. Dept.,  
Université Frères Mentouri, 25000 Constantine -1, ALGERIA 

E-mail: fakhreddine.khrouf@umc.edu.dz 
 

H.TEBASSI and M.A. YALLESE 
Mechanics and Structures Research Laboratory (LMS), Mechanical Eng. Dept., 

Université 8 Mai 1945 Guelma, BP 401, 24000 Guelma, ALGERIA  
 

K. CHAOUI 
Mechanics of Materials and Industrial Maintenance Research Laboratory (LR3MI),  

Mechanical Eng. Dept., Badji Mokhtar University, PO Box 12, 23052 Annaba, ALGERIA 
 

A. HADDAD 
Applied Mechanics for New Materials Laboratory (LMANM), Mechanical Eng. Dept., 

Université 8 Mai 1945 Guelma, BP 401, 24000 Guelma, ALGERIA 
 
 

An experimental investigation is carried out to examine the effects of various cutting parameters on the 
response criteria when turning EN-AW-1350 aluminum alloy under dry cutting conditions. The experiments 
related to the analysis of the influence of turning parameters on the surface roughness (Ra) and material removal 
rate (MRR) were carried out according to the Taguchi L27 orthogonal array (313) approach. The analysis of 
variance (ANOVA) was applied to characterizing the main elements affecting response parameters. Finally, the 
desirability function (DP) was applied for a bi-objective optimization of the machining parameters with the 
objective of achieving a better surface finish (Ra) and a higher productivity (MRR). The results showed that the 
cutting speed is the most dominant factor affecting Ra followed by the feed rate and the depth of cut. Moreover, 
the Artificial Neural Network (ANN) approach is found to be more reliable and accurate than its Response 
Surface methodology (RSM) counterpart in terms of predicting and detecting the non-linearity of the surface 
roughness and material removal rate mathematical models. ANN provided prediction models with a precision 
benefit of 8.21% more than those determined by RSM. The latter is easier to use, and provides more information 
than ANN in terms of the impacts and contributions of the model terms.  
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1. Introduction 

 
 The excellent machinability characteristics of aluminum alloys match perfectly the modern 
machining techniques that mostly depend on reliable processes and increased productivity as these are 
necessary for the reduction of costs and the improvement of competitiveness. Machinability may be defined 
as the relative difficulty presented by a material during its machining. Its value is mainly determined by five 
parameters: the surface roughness, the cutting forces, the tool life, the chip formation  and the flank wear [1-
4]. Models for the cutting operation can be developed using classical approaches such as linear and quadratic 
regression or artificial intelligence methods. The latter techniques use unconventional approaches such as 
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Artificial Neural Networks (ANN), Fuzzy Logic (FL) and Genetic Algorithms (GA). Several research works 
have investigated and applied these techniques. Rafael F. Garcia et al. [5] experimentally investigated the 
influence of machining conditions represented by the cutting parameters (Vc, f and ap) along with the dry 
and reduced quantity lubricant conditions on the surface roughness (Ra and Rz) in turning of 6082-T6 
aluminum alloy using uncoated carbide tool. Through the application of Box–Behnken design, they 
succeeded in establishing a correlation between the friction conditions and the surface roughness. Their 
results indicate that the feed rate is the most significant input variable on the Ra and Rz mean values among 
those analyzed (Vc, f, ap) for both dry and reduced quantity lubricant machining. 
 Rajesh Kumar Bhusha [6] carried out statistical modeling using the RSM method in order to 
investigate the effect of the four process parameters (cutting speed, feed rate, depth of cut and nose radius) 
on the surface roughness and tool wear in CNC turning of AA7075/SiC composites. They concluded that the 
depth of cut and tool nose radius were main factors affecting surface roughness, and that the abrasive wear of 
the tungsten carbide rises when the nose radius increases. This reduces tool life. Seyed Hasan Musavi et al. 
[7] carried out a statistical analysis using the Response Surface Methodology (RSM) in order to derive the 
machining response represented by the surface roughness and tool wear in the turning of 7075 aluminum 
alloy with a cemented uncoated carbide insert. They concluded that the RSM combined with a factorial 
design of the experiments represent a useful technique for the surface roughness and tool wear evaluation, 
and that the tool wear and surface roughness results for MQL machining were better than those recorded 
under dry mode. This phenomenon can be attributed to a better transfer of cutting fluid particles to the 
machining area in the MQL method. 
 An aluminum alloy has a low density, high strength, good fracture toughness along with a high stress 
corrosion resistance. It is thus an ideal light structure material for use in applications related to aerospace, 
manufacturing, automotive and aeronautics industries [8, 9]. Fang et al. [10] performed cutting experiments 
on the 2024-T351 aluminum alloy using cemented carbide inserts, and examined the effect of the built-up 
edge on the cutting vibrations. They found out that the most significant factors affecting the vibration 
amplitude were the cutting speed (53%) followed by the feed rate (33.3%). Demir and Gündüz [11] 
experimentally investigated the effects of aging on the machinability of 6061 aluminum alloy using CVD 
multi-layer coated cemented carbide inserts. Their experimental results showed that increasing cutting speed 
leads to decreasing surface roughness, and this has been interpreted as a result of the decreasing built-up 
edge formation tendency which is a consequence of the increase the cutting speed. Sahoo et al. [12] carried 
out statistical modeling using both the weighted principal component analysis and RSM in order to 
investigate the effect of the process parameters on the surface roughness and tool vibration in CNC turning 
of aluminum alloy 63400. They concluded that the interaction effects of the spindle speed (Vc) and feed rate 
(f) were significant for the model in the case of tool vibration. They were, however, insignificant in the case 
of the surface roughness. 
 In high speed CNC manufacturing process is usually adopted because of its low cost along with its 
increased machining accuracy. Moreover and due to thixotropy, which is a property that allows the material 
to be ‘work-softened’ due to the shear strain imparted on it by the tool’s cutting edge and then to revert back 
to its original hardness properties once the cutting operation is complete, aluminum alloys seem to be the 
ideal candidates for high speed cutting processes. Therefore, high productivity along with best precision and 
surface qualities in manufacturing can be achieved at high cutting speeds and feed rates. Surface roughness is 
generally a consequence of the process parameters represented by the cutting conditions (depth of cut, feed 
rate, and cutting speed), the tool geometry (nose radius, inclination angle, and rake angle) and the tool 
material [13-15].  
 In the last two decades, the artificial neural network (ANN) has come up as one of the most efficient 
methods for empirical modeling, especially for non-linear processes as well as modeling of output 
parameters in machining. With that in mind, Das et al. [16] justified the use of artificial neural network to 
develop relationships between the cutting process parameters and the surface roughness when machining Al-
4.5Cu-1.5TiC metal matrix composites. Moreover, Palavar et al. [17] concluded that the prediction of the 
aging effects on the wear behavior of Inconel 706 super alloy using the ANN can provide effective results, 
and that the method can be adequately used to detect weight loss values in the determined parameters with a 
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high coefficient of assurance value. In addition, the ANN approach can save time and reduce costs in 
experimental processes as it provides quicker results. Several researches discussed the capabilities and 
accuracies of the RSM and ANN approaches. In their comparative study, Tebassi et al. [18] concluded that 
ANN models are found to be capable of better predictions of surface roughness and cutting force within the 
range they have been applied than the RSM models in terms of better correlation and lower error.  
 In this study, the Taguchi L27 orthogonal array (313) approach and ANN were adopted for 
developing a relationship between the experimental variables (cutting speed, feed rate and depth of cut) and 
machining process output parameters (surface roughness and material removed rate). Moreover, both 
approaches were compared in terms of the better coefficient of determination (R2), lower root mean square 
error (RMSE) and mean predictive error (MPE). The predicted conversion using ANN and RSM models is 
discussed to determine which approach has better accuracy and capability for predicting surface roughness 
and material removed rate when turning EN-AW-1350 aluminum alloy. 
 
2. Experimental arrangement and procedure 
 
2.1. Turning conditions and materials 

 
 Turning operations are carried out on a CNC SPINNER-TC65 lathe that develops a maximum spindle 
speed of 4500 rpm and a spindle power of 16.5/562-4500-kW under dry conditions.  
 

 
 

Fig.1. Schematic of experimental setup. 
 
 The measurements of arithmetic surface roughness for each cutting condition were obtained from a 
PCE-RT 1200 Roughness Tester with a cut-off length of 0.8 mm and sampling length of 4 mm. The 
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measurements were repeated at five equally spaced locations around the circumference of the workpiece and 
the result is an average of these values for a given machining pass. Vickers hardness is evaluated using a 
digital micro-hardness tester HVS-1000Z. All tests are carried out on previously polished samples under a 
consistent load of 30 kgf applied for approximatively15 seconds. A minimum of four readings are taken for 
each sample, and the average is derived. The hardness of the workpiece is HV142. The experimental setup is 
displayed in Fig.1. 
 
2.2.Workpiece material and cutting tool 
 
 On the basis of their properties, lightweight aluminum alloys with high strength have been and are 
still adopted for various applications. The 8xxx series are used in air-conditioning while the 7xxx series, 
because of their good weldability, are needed for manufacturing of aircraft wings and in the aerospace and 
marine industries in general. All the remaining series (from 6xxx to 1xxx) are employed in a wide range of 
applications ranging from automotive to aerospace industries as well as architecture and packaging. 
Chemical composition of EN AW 1350 aluminum alloy is reported in Table 1. Specimens of 500mm in length 
and 50 mm in diameter are adopted for the turning process using a coated carbide tool. Cutting tools and the 
tool holder characteristics are given in Tab.2. 
 
Table 1. Chemical composition of EN AW 1350 aluminum alloy. 
 

Elements Fe Si Cu Zn Cr Ti Mg Mn 
Composition (wt %) 0.19 0.11 0.023 0.038 0.010 0.018 0.021 0.09 

 
Table 2. Characteristics of the cutting tool and the tool holder. 
 
Cutting tool Tool holder 

Type Active zone geometry Cutting 
edge 

length 
(mm) 

Type Length (mm) 
VNGA 

principal 
cutting edge 

angle 

cutting 
edge angle 

nose 
radius 
(mm) 

93° 5° 0.4  16  SVJBL 2020 K16 125  
 
2.4. Organization of experiments 
 
 In order to reduce resources and time without compromising quality, the Taguchi L27 orthogonal 
array (313) approach was adopted for developing a relationship between the independent input process 
parameters and output process responses. Consequently, the present experiments develop 27 rows 
corresponding to the number of parameter combinations (26 degrees of freedom) along with 13 columns at 
three levels. 
 Tests were performed according to three levels of cutting speeds (600, 650 and 700 m/min), feed 
rates (0.02, 0.03 and 0.05 mm/rev) and depths of cut (0.2, 0.3 and 0.4 mm). The combination of the 
orthogonal array L27 parameters along with the measured results for both the surface roughness (Ra) and 
the metal removal rate (MRR) are presented in Table 3. The levels of the cutting parameters are selected 
from the intervals recommended by the cutting tools manufacturer. The material removal rate is expressed 
by Eq.(2.1) as: 
 
  ( min)3MRR cm Vc f ap= × × . (2.1) 
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Table 3. Experimental data for EN AW 1350 aluminum alloy. 
 

 
3. Taguchi design based approach 

 
3.1. Analysis of variance 
 
 In order to show the process parameters influence on the output responses, the Analysis of Variance 
(ANOVA) approach was applied. Tables 4 and 5 present the ANOVA results regarding the surface 
roughness and material removal rate, respectively. The analysis was carried out with a 5% significance level, 
i.e. for a confidence level of 95%. A low p-value indicates a high statistical significance of the source over 
its corresponding response. 
 From Tab.4, it can be seen that the two most important factors affecting the surface roughness are the 
cutting speed and the feed rate with contributions of 38.16% and 28.69%, respectively. They are followed by 
the cutting speed-feed rate interaction with a contribution of 15.38% while the remaining parameters did not 
show any significantly meaningful influence on the surface roughness (Ra). These results are in perfect 
agreement with many research works. 
 
  

N° Actual factors Responses 
 Vc (m/min) f (mm/rev) ap (mm) Ra (µm) MRR (cm3/min) 

1 600 0.02 0.2 0.585 2.4 
2 600 0.02 0.3 0.563 3.6 
3 600 0.02 0.4 0.742 4.8 
4 600 0.03 0.2 0.671 3.6 
5 600 0.03 0.3 0.706 5.4 
6 600 0.03 0.4 0.717 7.2 
7 600 0.05 0.2 1.533 6 
8 600 0.05 0.3 1.747 9 
9 600 0.05 0.4 1.671 12 
10 650 0.02 0.2 0.456 2.6 
11 650 0.02 0.3 0.671 3.9 
12 650 0.02 0.4 0.683 5.2 
13 650 0.03 0.2 0.517 3.9 
14 650 0.03 0.3 0.572 5.85 
15 650 0.03 0.4 0.609 7.8 
16 650 0.05 0.2 0.662 6.5 
17 650 0.05 0.3 0.714 9.75 
18 650 0.05 0.4 0.729 13 
19 700 0.02 0.2 0.343 2.8 
20 700 0.02 0.3 0.402 4.2 
21 700 0.02 0.4 0.31 5.6 
22 700 0.03 0.2 0.591 4.2 
23 700 0.03 0.3 0.493 6.3 
24 700 0.03 0.4 0.465 8.4 
25 700 0.05 0.2 0.634 7 
26 700 0.05 0.3 0.61 10.5 
27 700 0.05 0.4 0.64 14 



F. Khrouf  129 

Table 4. ANOVA table for surface roughness (Ra). 
 

 
Table 5. ANOVA table for material removal rate (MRR). 
 

 
ANOVA results for MRR, reported in Tab.5, demonstrate that the main contribution is performed by the feed 
rate (58.87%) followed by the depth of cut and the cutting speed with 34.99% and 1.86%, respectively. The 
diverse interactions achieve contributions corresponding to 0.240%, 0.126% and 4.523% for the cutting 
speed-feed rate, cutting speed-depth of cut and the feed rate-depth of cut, respectively while the remaining 
terms influence is found insignificant. Optimum machining conditions that maximize the material removal 
rate are found to be Vc=700 m/min, f=0.05 mm/rev and ap=0.4 mm. Moreover, the highest amount of 
material removal rate of 14000 mm3/minis achieved at the highest feed rate and depth of cut. This agrees well 
with the results achieved by [19,20]. 
  

Source Sum of 
squares 

DF Mean F- value p- value Cont. (%) Remarks 

Model * 2.89 9 0.32 11.12 < 0.0001 85.50 Significant 
A-Vc 1.29 1 1.29 44,53 < 0.0001 38.16 Significant 
B-f 0.97 1 0.97 33.67 < 0.0001 28.69 Significant 

C-ap 0.017 1 0.017 0.59 0.4512 0.50 Not Significant 
AB 0.52 1 0.52 18.00 0.0005 15.38 Significant 
AC 0.020 1 0.020 0.70 0.4132 0.59 Not Significant 
BC 5.171E-004 1 5.171E-004 0.018 0.8952 0.015 Not Significant 
A2 0.089 1 0.089 3.09 0.0966 2.63 Not Significant 
B2 0.047 1 0.047 1.62 0.2206 1.39 Not Significant 
C2 2.933E-003 1 2.933E-003 0.10 0.7539 0.086 Not Significant 

Residual 0.49 17 0.029     
Total 3.38 26      

R2=0.8548, R2 (adjusted)=0.7779 

Source Sum of 
squares 

DF Mean 
squares 

F-value p-value Cont.(%) Remarks 

Model * 261.50 9 29.06 10584.46 < 0.0001 99.98 Significant 
A-Vc 4.87 1 4.87 1775.61 < 0.0001 1.86 Significant 
B-f 154.00 1 154.00 56100.46 < 0.0001 58.87 Significant 

C-ap 91.53 1 91.53 33341.92 < 0.0001 34.99 Significant 
AB 0.63 1 0.63 229.50 < 0.0001 0.240 Significant 
AC 0.33 1 0.33 121.43 < 0.0001 0.126 Significant 
BC 11.83 1 11.83 4309.50 < 0.0001 4.523 Significant 
A2 0.000 1 0.000 0.000 1.0000  Not Significant 
B2 0.000 1 0.000 0.000 1.0000  Not Significant 
C2 0.000 1 0.000 0.000 1.0000  Not Significant 

Residual 0.047 17 2.745E-003     
Total 261.55 26      

R2=0.9998, R2 (adjusted)=0.9997 
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(a) (b) 

  
Fig.2. Perturbation plots: (a) for Ra and (b) for MRR. 

 
3.2. Regression equations 
 
 According to the references, the correlations relating the different factors to the performance 
measures were modeled by quadratic regressions. The obtained equations are: 
 

  

. . . .

, . .

. . . ,

c
3

p c c p

5 2 2 2
p c p

Ra 16 590 0 05685 V 162 5305 f 7 1404

a 0 2726 V f 8 233 10 V a 4 2976

f a 4 8822 10 V 449 4444 f 2 2111 a

−

−

= + − × + × + ×

× − × × − ⋅ × × − ×

× × + ⋅ × + × − ×

 (3.1) 

 

  
. . . ,

. .

. . . .

3
c

p c c p p

18 2 13 2 14 2
c p

MRR 6 49 9 999 10 V 195 00 f 21 66
a 0 30 V f 0 03 V a 650 f a

3 177 10 V 6 05 10 f 8 51 10 a

−

− − −

= + − ⋅ × − × − ×
× + × × + × × + × × +

− ⋅ × − ⋅ × + ⋅ ×

 (3.2) 

 
 In the present case, these models are reduced by eliminating the terms that have no significant 
influence on the responses. The final relationships may then be expressed as: 
 
  . .   .   .      ,Ra 16 590 0 05685 Vc 162 535 f 0 2726 Vc f= − × + × − × ×  (3.3) 
 

  
. . .   .

. . .

3
c p

c c p p

MRR 6 49 9 999 10 V 195 00 f 21 66 a

0 30 V f 0 03 V a 650 f a

−= + − ⋅ × − × − × +

+ × × + × × + × ×
 (3.4) 

 
3.3. Surface plots 
 
 The “Design-Expert v10” software was applied for the development of the experimental plan for the 
RSM. Figures 3, 4 and 5 show the estimated response surface plots for (Ra) against the cutting parameters 
represented by the cutting speed, the feed rate and the depth of cut. It can be observed that the surface 
roughness (Ra) rapidly increases with the feed rate. Figure 4 clearly shows that the greatest surface 
roughness is achieved for a cutting speed comprised between 660 m/min and 700 m/min. Many researchers 
[19,20] indicate that the feed rate is one of the main factors affecting the surface roughness (Ra). 
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Fig.3. Contour plot for Ra vs (Vc and f ). Fig.4. Contour plot for Ra vs (Vc and ap). 

  

  
Fig.5. Contour plot for Ra vs (f and ap). 

 
 Figures 6, 7 and 8 exhibit the estimated contour plot and response surface plots for the material 
removal rate (MRR) as a function of the cutting parameters represented by the cutting speed, the feed rate 
and the depth of cut. It can be observed the (MRR) increases with all the cutting parameters under 
consideration. Similar explanations have been mentioned in [19-20] regarding the effect of the cutting 
parameters (Vc, f, ap) on the material removal rate (MRR). 
 
3.4 Residual analysis 
 
 Figures 9 and 10 illustrate the residuals concerning both the surface roughness and the material 
removal rate models. It can be observed that the points are evenly split by a 45° line. The residuals normal 
probability (Figs 11 and 12) show all the residual points falling along a straight line, and that means that the 
errors are normally distributed. This leads to conclusion that the developed regression models for (Ra) and 
(MRR) are acceptable within the experimental range considered. 
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Fig.6. Contour plot for MRR vs (Vc and f ). Fig.7. Contour plot for MRR vs (Vc and ap). 

 
 

 
  

Fig.8. Contour plot for MRR vs (ap and f ). Fig.9. Predicted vs experimental residuals for Ra. 
  

  
Fig.10. Predicted vs experimental residuals for MRR. Fig.11. Normal probability residuals for Ra. 
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Fig.12. Normal probability residuals for MRR. 
 

4. Desirability Function (DF) application and optimization 
 
 The desirability function method has been used in numerous research studies [21-25] in order to 
optimize a manufacturing process pertaining to turning, milling or various other operations [26,27]. This 
approach allows the combination of multiple responses into a single function (the Desirability Function or 
DF) through the choice of a value comprised between zero and one (least to most desirable, respectively). 
During the optimization process, the aim is to minimize the surface roughness and maximize the material 
removal rate. The response surface optimization is an ideal technique for achieving the best cutting 
parameters combination. To this end, an objective function ( )F x  is defined and expressed as:  
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n wi wi

i 1
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If the objective function is to minimize the output response, then (di) will be given as: 
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min
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 (4.3) 

 
where (yi) is the response value, (yi min) and (yi max) representing the minimum and maximum values of the 
response (i) respectively. 
 Three optimization operations have been carried out in terms of quality, productivity, and quality-
productivity [28-30]. The first procedure consists on finding out the minimum of the surface roughness, 
while the second seeks the maximum of the material remove rate. The third case is interesting since it 
combines a high productivity along with a better surface quality. The parameter ranges defined for the 
optimization processes are summarized in Tab.6. 
 The results of three optimizations are displayed in Figs 13, 14 and 15. Concerning the surface 
roughness optimization, the optimal cutting parameters are recorded as: Vc=654 m/min, f=0.02 mm/rev and 
ap=0.2mm while the optimized surface roughness and the material removal rate are found equal to Ra=0.40 
μm and MRR=2.613 cm3/min. 
 

 
 

Fig.13. Ramp of desirability function for Ra. 
 
 

 
 

Fig.14. Ramp of desirability function for MRR. 
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 Figure 14 presents the optimal cutting parameters for the material removal rate optimization. They 
are Vc=700 m/min, f=0.05 mm/rev, and ap=0.4 mm. The optimized material removal rate and surface 
roughness achieved are MRR=13.916 cm3/min and Ra=0.535 μm. 
 
Table 6. Goals and parameters ranges when optimizing both quality and productivity.  
 

 
Name Goal Lower 

limit 
Upper 
limit 

Lower 
weight 

Upper 
weight 

Importance 
Quality Productivity Combined 

Vc In range 600 700 1 1 3 3 3 
f In range 0.02 0.05 1 1 3 3 3 

ap In range 0.2 0.4 1 1 3 3 3 
Ra Minimize 0.31 1.747 1 1 5 None 5 

MRR Maximize 2.4 14 1 1 None 5 5 
 

 
 

Fig.15. Ramp of combined desirability function. 
 

(a) 
(b) 

 

Fig.16. Results of the desirability function: (a) for Ra and (b) MRR. 
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 The last optimization operation concerns a bi-objective optimization pertaining to a better surface 
finish and higher productivity, and is shown in Fig.15. The cutting speed, feed rate and depth of cut are 
achieved as 700 m/min, 0.05 mm/rev and 0.4 mm respectively. Furthermore, the optimized surface roughness 
and material removal rate are found as Ra=0.535 μm and MRR=13.91 cm3/min. 
 In fact, the optimal cutting parameters have been achieved with a minimum value of (Ra) along with a 
maximum value of (MRR) when equal weights were set as a desired condition. Moreover, the point displaying the 
highest desirability is shown in Figs 16(a) and (b), and is represented by: Vc=700m/min, f=0.05mm/rev, and 
ap=0.4mm. The optimal regions taking the overall desirability value of 0.914 indicate closeness to the target 
response. 

 
5. Chip formations  
 
 The chip shape constitutes a good indicator of the deformation having occurred during the machining 
process. The chip formation mode depends on the cutting conditions, the workpiece material and the tool 
geometry. In cutting operations, the chip control plays a major role in checking the quality of the procedure. 
A mastery of the chip formation contributes to improving the machining process, guaranteeing the geometric 
quality of the machined surfaces as well as productivity. Thus, chip formation control is one of the key 
factors in turning aluminum alloy [31-32]. All the chips produced are of continuous type. However, as the 
speed increases, the chip thickness decreases irrespective of the cutting conditions. Similar explanations have 
been mentioned in [6] regarding the effect of the cutting speed (Vc) on the chip formation. Chip fracture is 
also fast at low (Vc), which results in a high (Ra). 
 

 
 

Fig.17. Chip breaking. 
 
6. ANN approach 
 
 The artificial neural network method is a potentially trustable approach that provides nonlinear 
complex relationships describing physical aspects of several phenomena [16]. It has numerous advantages 
among which is the fact that it can truly learn by registering data sets. The ANN is a prominent tool used for 
random function estimation in order to forecast output machining processes. It is potentially accurate and can 
be used as an alternative to the full-based modeling approach offering the modeling of complex nonlinear 
relationships. 
 Within this part of the study, both the surface roughness (Ra) and material removed rate (MRR) are 
modeled independently according to different targeted architectures. The number of neurons in the input layer is 
preset as three represented by the cutting speed, the feed rate and the depth of cut. The output layer has a single 
neuron, that is the target response represented either by (Ra) or (MRR). The activation function used in this 
research is a hyperbolic tangent (TanH) which is a sigmoid function (Eq.6.1) that transforms values between -1 
and +1 
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  Tan
2x

2x
e 1H
e 1

−=
+

 (6.1) 

 
where: (x) represents a linear combination of the (X) variables. 
 
7. RSM and ANN models 
 
 In order to assess the fitting and prediction capabilities of the models obtained by the application of 
the ANN and RSM approaches, coefficients of determination (R2), concert function error analysis of the root 
mean square error (RMSE) and mean predictive error (MPE) are used to compare the investigated and 
forecasted data for (Ra) and (MRR) [33]. The coefficient of determination (R2), RMSE and MPE are 
expressed as [34, 36]: 
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where (n) is the number of trials, (yi,e) the experimentally registered data of the ith test, (yi,p) the predicted 
value of the ith test provided according to the model and (yaverage) is the averaging of the experimentally 
registered data. In order to compare the RSM and ANN developed models and determine which technique can 
adequately and precisely visualize the surface roughness and material removed rate, residuals of both 
approaches are plotted and compared. 
 
7.1. Artificial Neural Networks based-models 
 
 In order to suggest an ANN model, an architecture of the neural network should be built, the intention 
being to acquire an ANN model with optimal size and smallest errors during the testing and validation stages 
[36]. In this case, a learning rate of 0.01 is set. During this phase, the number of iterations is varied while the 
screening of the finest number of neurons in the single hidden layer (H) according to the best (R2), lowest of 
both (RMSE) and (MPE) is performed. 
 Figure 18 shows the ANN architecture of the arithmetic mean roughness (Ra) model. The suggested 
number of iterations regarding this architecture is 1500. It leads to high correlation and low registered errors 
in terms of RMSE and MPE, and achieves the performance parameters according to the ANN model for 
training as 0.999 for R2, 0.00103 for RMSE and 3.1638% for MPE. Regarding the validation stage, their 
relevant values are found to be 0.999 for R2, 6.661 e-16 for RMSE and 3.1638% for MPE. 
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Fig.18. ANN architecture of (Ra) model. 
 

7.2. Comparison between RSM and ANN models 
 
 The present comparison aims at determining which estimating model is capable of achieving results 
that are the closest possible and fits experimental data. Furthermore, it intends to find out the advantages of 
each approach and the differences that separate them. Figure 19 displays both ANN and RSM predicted 
results along with the experimental ones. 
 

 
 

 

Fig.19. Actual vs predicted values for (Ra) model. Fig.20. ANN accuracy against RSM for (Ra) 
model. 

 
 It shows the deviations between the ANN predicted results and experimental ones to be less 
significant than those of its RSM counterpart. For the surface roughness, the RSM model leads to R2=0.8548 
while it achieves R2=0.9999 for the ANN model.  
 Moreover, in terms of the surface roughness the RSM model, RMSE and MPE attain 0.2595 and 
18.08 %, respectively, while the application of surface roughness ANN model led to 0.00103 and 3.1638 %. 
Furthermore, for the whole design space, the ANN prediction model produces benefits in terms of precision 
of the order of 48.39 % compared to 15.7% attained by the RSM (Fig.20). This leads to a conclusion that 
ANN models exceed those of MSN in terms of precision and closeness to experimental data. These results are 
in perfect agreement with many research works [20,25]. 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Ra
 (µ

m
)

Run order

Ra experimental Ra predicted RSM Ra predicted ANN

48,38 % →Mean 
benefit of 
15.70 %

-20

-10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Ac
cu

ra
cy

 %

Run order

ANN  against RSM Mean value



F. Khrouf  139 

8. Conclusions 
 
 In the present study, the analysis of both the surface roughness and the material removal rate in the 
turning operation of the EN AW 1350 aluminum alloy by coated carbide tool inserts is presented. On the 
basis of the results obtained, the following conclusions are drawn: 

• The analysis of the machining parameters through the application of the Response Surface 
Methodology approach allows the exploration of the influence of each factor on the response outputs 
represented in the present case by the surface roughness (quality) and the material removal rate 
(productivity). 

• It is noticed that the feed rate develops the highest contribution with a contribution of 58.87 % 
followed by the depth of cut with 34.99 %. 

• The statistical analysis (ANOVA) shows that the most influential factors on the evolution of the 
surface roughness were represented by the cutting speed (Vc) and the feed rate (f) with contributions 
reaching 38.16% and 28.69% on (Ra) respectively. 

• The statistical analysis shows that both models investigated are valid. The correlations coefficients of 
the quadratic model are respectively 85.50% for the surface roughness and 99.98% for the material 
removal rate. 

• The quadratic response model was optimized using the desirability function approach and achieved 
an optimum of Ra=0.535µm for a desirability of 0.915 for Vc=700 m/min, f=0.05 mm/rev and 
ap=0.4 mm. A minimization of (Ra) and maximization of (MRR) were applied. 

• The models developed in this study can be used efficiently in the metal manufacturing industry and 
would be helpful in selecting the optimum cutting regimes for the optimization of turning aluminum 
alloys. 

• All the chips that were produced were of continuous type. However, the chip thickness decreased 
with the increase of the speed for all the cutting conditions investigated. 

• Within the handled range, the ANN prediction model developed better models for both surface 
roughness and material removed rate than its RSM counterpart. In terms of (Ra), the RSM achieved a 
coefficient of determination R2=0.8548, a root mean square error RMSE=0.02595 and a mean 
predictive error MPE=18.09 %. The corresponding values achieved by the ANN were R2=0.999, 
RMSE=0.00103 and MPE=3.1638%. Consequently, the ANN prediction model led to a mean benefit 
of 15.70 % against its RSM prediction counterpart.  
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Nomenclature 
 
 ANOVA − analysis of variance 

 ANN − artificial neural network 

 pa  − depth of cut ( )mm  

 Adj MS − adjusted mean squares 

 DF − degrees of freedom 

 cV  − cutting speed ( )/m min  
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 f  − feed rate ( ) /mm rev  

 HV − Vickers hardness 

 MPE − mean predictive error 

 MRR − material removal rate ( )/3cm min  

 PC% − percentage contribution ratio ( )%  

 2R  − determination coefficient 

 Ra  − arithmetic average of absolute roughness ( )µm  

 RSM − response surface methodology 

 RMSE − root mean square error 

 Seq SS − sequential sum of squares 
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