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In this article, we have discussed in detail the effect of Newtonian heating on MHD unsteady free convection 
boundary layer flow past an oscillating vertical porous plate embedded in a porous medium with thermal radiation, 
chemical reaction and heat absorption. The governing PDEs of the model together with related initial and boundary 
conditions have been solved numerically by the finite element method. The dimensionless velocity, temperature and 
concentration profiles are analyzed graphically due to the effects of key parameters in the concerned model problem. 
Computed results for the skin friction coefficient, Nusselt number and Sherwood number are put in tabular form. It is 
observed that the thermal and mass buoyancy effects support the velocity whilst a reverse effect is noticed when the 
strength of the magnetic field is increased. The velocity and temperature enhances with an increase in the Newtonian 
heating and thermal radiation whilst a reverse effect is observed with an increase in the Prandtl number and heat 
absorption parameter. Increasing Schmidt number and chemical reaction parameter tends to depreciate both velocity 
and concentration. The Newtonian heating, thermal radiation and magnetic field tends to decrease in the skin 
friction. The Nusselt number increases with increasing Newtonian heating and heat absorption parameters. An 
increase in the Schmidt number and chemical reaction rate tends to improve the Sherwood number.  
 
Key words: Newtonian heating, radiation parameter, chemical reaction rate, oscillating plate, heat absorption 

parameter. 
 
1. Introduction 
 

 The problem of convective flow with heat and mass transfer in the presence of a chemical reaction 
has received substantial amount of concern in recent years due to its wide range of practical applications in 
many areas of science and engineering. In many chemical engineering processes, a chemical reaction occurs 
between a foreign mass and the fluid in which the plate is moving. These processes take place in numerous 
industrial applications such as manufacturing of ceramics or glassware, polymer production and food 
processing. Chemical reaction can be classified as either homogeneous or heterogeneous processes, which 
depends on whether they occur at an interface or as a single phase volume reaction. Many transport 
processes exist in mass transfer in nature as a result of combined buoyancy effects of thermal diffusion and 
diffusion of chemical species. Das et al. [1] studied the effect of homogeneous first order chemical reaction 
on the flow past an impulsively started infinite vertical plate with uniform heat flux and mass transfer. 
Muthucumaraswamy and Ganesan [2] discussed the effect of chemical reaction on an unsteady flow past an 
impulsively started vertical plate which is subjected to uniform mass flux and in the presence of heat 
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transfer. Raptis and Perdikis [3] studied numerically the steady two dimensional flow of an incompressible 
viscous and electrically conducting fluid over a non-linear semi-infinite stretching sheet in the presence of 
chemical reaction under the influence of a magnetic field. Cortell [4] studied MHD flow and mass transfer of 
an electrically conducting fluid of second grade over a nonlinear stretching sheet with chemically reactive 
species in a porous medium. Mass transfer effects on an isothermal vertical oscillating plate in the presence 
of chemical reaction were analyzed by Muthucumaraswamy and Janakiraman [5]. Mahapatra et al. [6] 
studied the effects of chemical reaction on a free convection flow through a porous medium bounded by a 
vertical surface. Rajesh and Varma [7] investigated the impact of chemical reaction on a free convection 
flow past an exponentially accelerated vertical plate. MHD and chemical reaction effects on a free 
convection flow with variable temperature and mass diffusion were discussed by Rajesh [8]. El-Fayez [9] 
analyzed chemical reaction effect on an unsteady free convection flow past an infinite vertical permeable 
moving plate with variable temperature. Sehkar and Reddy [10] studied the effects of chemical reaction on 
MHD free convective oscillatory flow past a porous plate with viscous dissipation and heat sink.  
 In most of the above cited research studies, the effects of thermal radiation on the flow are not taken 
into account. However, the problem of MHD free convection heat and mass diffusion in the presence of 
thermal radiation play a vital role in manufacturing processes such as glass production, design of fins, steel 
tolling, furnace design, casting and levitation, etc. Moreover, several engineering processes occur at high 
temperature where the knowledge of radiative heat transfer becomes crucial for the design of pertinent 
equipment, nuclear power plants, gas turbines and various propulsion devices for aircraft, missiles, satellites, 
and space vehicles are examples of such engineering areas. Soundalgekhar and Takhar [11] analyzed the 
radiation effects on a free convection flow past a semi-infinite vertical plate. Takhar et al. [12] studied the 
effect of radiation on MHD free convection flow of a radiating gas past a semi-infinite vertical plate. 
Radiation effects on free convection flow past a moving plate was discussed analytically by Raptis and 
Perdikis [13]. Chamkha et al. [14] studied a radiative free convective non-Newtonian fluid flow past a wedge 
embedded in a porous medium. Muthucumaraswamy and Janakiraman [15] analyzed MHD and radiation 
effects on a moving isothermal vertical plate with variable mass diffusion. Rajesh and Varma [16] 
investigated the radiation effects on MHD flow through a porous medium with variable temperature and 
mass diffusion. Effects of thermal radiation on a transient MHD free convection flow over a vertical surface 
embedded in a porous medium with periodic boundary conditions were investigated by Mebine and Adigio 
[17]. Sharma and Deka [18] analyzed thermal radiation and oscillating temperature effects on an unsteady 
MHD flow past a semi infinite vertical porous plate in the presence of chemical reaction. Muralidhran and 
Muthucumaraswamy [19] discussed the radiation effects on a linearly accelerated plate with variable mass 
diffusion in the presence of a magnetic field. 
 Convection flows with combined heat and mass transfer past a vertical plate are usually modeled by 
considering variable surface temperature or ramped wall temperature or constant heat flux. Though, in many 
practical applications where the heat transfer from the surface is proportional to the local surface temperature 
known as the Newtonian heating effect, when the above conditions fail to work Newtonian heating conditions are 
highly needed. The applications of Newtonian heating are found significant engineering applications such as heat 
exchangers, turbines and also in convective flows set up when the bounding surface absorbs heat by solar 
radiation. The natural convection boundary layer flow over a vertical surface with Newtonian heating was first 
studied by Merkin  [20]. Lesnic et al. [21, 22] studied free convection boundary layer flows along vertical and 
horizontal surfaces in a porous medium generated by Newtonian heating. Subsequently, a free convection 
boundary layer flow above a nearly horizontal surface in a porous medium with Newtonian heating was reported 
by Lesnic et al. [23]. An unsteady free convection flow past an impulsively started vertical plate with Newtonian 
heating was studied by Chaudhary and Jain [24]. Salleh et al. [25] studied a forced convection boundary layer 
flow at a forward stagnation point with Newtonian heating. A steady boundary layer flow over a stretching sheet 
with Newtonian heating was studied by Salleh et al. [26]. Abid et al. [27] studied heat and mass transfer past an 
oscillating vertical plate with Newtonian heating where the governing equations of the problem were solved by 
the Laplace transform technique. Subsequently, Abid et al. [28] studied an unsteady boundary layer MHD free 
convection flow in a porous medium with constant mass diffusion and Newtonian heating analytically by the 
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Laplace transform technique. An unsteady hydro-magnetic natural convection flow past an impulsively moving 
vertical plate with Newtonian heating in a rotating system was studied by Seth et al. [29].  
 The above comprehensive review of literature demonstrates that the problem of the Newtonian heating 
effect on an MHD unsteady free convective boundary layer flow past an oscillating vertical plate in the presence 
of thermal radiation, chemical reaction and heat absorption has not been studied. Such a model problem finds 
ample engineering and industrial applications such as manufacturing of ceramics or glassware, polymer 
production and food processing, heat exchangers, design of fins, steel tolling, furnace design, casting and 
levitation, design of pertinent equipment, nuclear power plants and gas turbines, etc. The main purpose of this 
problem is to fill this gap. The dominant finite element method has been employed to solve the governing system 
of PDEs. The behavior of the velocity, temperature, concentration, skin friction, Nusselt number and Sherwood 
number are discussed under the influence of various embedded parameters through graphs and tables. 
  
2. Mathematical model 
 
 Consider an unsteady magneto-hydrodynamic (MHD) free convective boundary layer flow of a 
viscous incompressible electrically conducting radiating and reacting fluid past an oscillating infinite vertical 
porous plate embedded in a porous medium. The 'x − axis is measured along the plate in the vertically 
upward direction and the 'y − axis measured normal to it. A uniform magnetic field of strength 0B  is applied 
in the direction perpendicular to the flow. The magnetic Reynolds number is assumed to be very small so 
that the induced magnetic field is negligible. The plate is infinite in the 'x −  direction, so all the field 
quantities become functions of the space coordinate 'y  and time '.t  Initially, the plate and fluid are at rest 

with constant temperature 'T∞  and concentration ' .C∞  At time ' ,t 0>  the plate starts an oscillatory motion in 
its own plane with the velocity cos( ' ')0U tω  against the gravitational field, where 0U  is the amplitude of the 
plate oscillations and 'ω  is the frequency of oscillations. Simultaneously, heat transfer from the plate to the 
fluid is proportional to the local surface temperature 'T  and the concentration near the plate is raised from 

'C∞  to ' .wC  Coupled the above assumptions with the usual Boussinesq’s approximation, the following 
governing PDEs of the model are derived as: 
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The associated initial and boundary conditions are: 
 
  ' ;t 0≤     ' '' , ' , 'u 0 T T C C∞ ∞= = =      for all   'y 0≥ , (2.4) 
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The radiation heat flux under the Rosseland approximation Magyari and Pantokratoras [30] is expressed by 
 

  
'
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where •σ  is the Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. It is assumed that the 
temperature differences within the flow are sufficiently small such that 4T ′ is expressed as the linear 
function of temperature. Thus expanding 4T ′  about 'T∞ using the Taylor series expansion and neglecting 
second and higher order terms; we obtain 
 
  ' ' '( ' )4 4 3 3 4T T 4T T T 4T T 3T∞ ∞ ∞ ∞ ∞′ ′ ′ ′≅ + − ≅ − . (2.8) 
 
In view of Eqs.(2.7) and (2.8), Eq.(2.2) reduces to the following form:  
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Introducing the following dimensionless parameters and quantities; 
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into Eqs.(2.1), (2.3) and (2.9), the following dimensionless governing system of PDEs are obtained: 
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The initial and boundary conditions in dimensionless form become: 
 
  ;t 0≤ , ,u 0 0 0= θ = φ = ,      for all      0η ≥ , (2.13) 
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  ;t 0> cos( ), ( ), ,u t 1 1∂θ= ω = −γ + θ φ =
∂η

at  0η = , (2.14) 

 
  , , ,u 0 0 0→ θ → φ →       as      η → ∞ . (2.15) 
 
Here s 0h Uγ = ν  is the Newtonian heating parameter. It is importance to note that Eq.(2.14) gives ,0θ =
when ,0γ =  corresponding to sh 0=  and consequently, no heating exists from the plate (Salleh et al. [26] 
and Abid et al. [27]). 
 
3. Solution of the problem by FEM 
 
 The dimensionless governing system of coupled PDEs (2.10)-(2.12) with related initial and boundary 
conditions (2.13)-(2.15) have been solved numerically for various values of involved parameters by 
employing the finite element method. The finite element method is a numerical and computer based method 
employ to solve many engineering problems, which occur in different fields such as fluid mechanics, heat 
transfer, electrical systems, solid mechanics and chemical engineering, etc. A detailed discussion of the 
numerical procedure was given in Reddy [31] and Bathe [32].  
 
Variational formulation 
 
 The variational form associated with Eqs.(2.10)-(2.12) over the typical two-nodded linear element 
( , )e e 1+η η  is given by: 
 

  ( )
e 1

e

2
2

1 r m2
u u 1w M u u G G d 0
t K

+η

η

  ∂ ∂  − + + − θ + φ η =     ∂ ∂η    
 , (3.1) 

 

  ( )e 1

e

2

2 H2
r

1 R
w Q d 0

t P

+η

η

  +∂θ ∂ θ  − + θ η =     ∂ ∂η    
 , (3.2) 

 

  
e 1

e

2

3 r2
c

1w k d 0
t S

+η

η

  ∂φ ∂ φ  − + φ η =     ∂ ∂η    
  (3.3) 

 
where ,1 2w w  and 3w  are weight functions and may be viewed as the variations in ,u θ and ,φ respectively. 
Upon application of integration by parts to reduce order of spatial derivatives which allows the application of 
initial and boundary conditions, the following equations are obtained: 
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Finite element formulation 
 
 The finite element model may be obtained from Eqs.(3.4)-(3.6) by substituting appropriate finite 
element approximations of the form: 
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with  
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where ,e e

j ju θ  and e
jφ  are respectively, velocity, temperature and concentration of the fluid at the thj  node of 

the the element ( ),e e 1+η η  and 'e
j sψ  are the shape functions over the typical element ( ),e e 1+η η  and are 

taken as:  
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The whole domain is divided into a set of 80  line elements of equal width . ,0 05  each element being two 
nodded. Each element matrix is of order .10 10×  The boundary condition η = ∞  has been fixed as ,4  which 
lies very well outside the momentum, energy and concentration boundary layers. Using Eqs. (3.7) and (3.8) 
into Eqs. (3.4)-(3.6) after assembly of all the element equations by inter-element connectivity conditions, we 
obtain a matrix of order .324 324×  The obtained system of equations is non-linear therefore an iterative 
scheme has been used to solve it. The system is linearized by incorporating known function. After imposing 
the boundary conditions (2.13)-(2.15) only a system of 317 equations remains and these equations have been 
solved by using the Gauss elimination method by maintaining the desired accuracy . .0 0005  
 The skin friction, rate of heat and mass transfer in terms of Nusselt and Sherwood numbers at the 
plate are given by  
 

  , u
0 0

u N
η= η=

   ∂ ∂θτ = − = −   ∂η ∂η   
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S
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Validation of numerical procedure 
 
 In order to validate the present numerical procedure, a comparison has been made of the computed 
Nusselt number uN  in the absence of the heat absorption parameter ( )HQ 0=  and the Sherwood number hS  
in the absence of the chemical reaction rate ( )rk 0=  numerically by the finite element method and those of 
Abid et al. [28] analytically by the Laplace transform technique as shown in Tabs 1 and 2. It has been noted 
that there is an excellent agreement between the values of the Nusselt number and Sherwood number. This 
proves the accuracy of the present numerical procedure. 
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Table 1. Comparison of the Nusselt number uN  when .HQ 0=  
 

rP  R  γ  t  Abid et al. [28] Present results 

0.71 
1.00 
0.71 
0.71 
0.71 

2 
2 
4 
2 
2 

1 
1 
1 
2 
1 

0.2 
0.2 
0.2 
0.2 
0.4 

1.3118 
1.4661 
1.1471 
2.0349 
1.1056 

1.3118 
1.4661 
1.1471 
2.0348 
1.1055 

 
Table 2. Comparison of the Sherwood number hS  when .rk 0=  
 

cS  t  Abid et al. [28] Present results 

0.22 
0.62 
0.22 

0.2 
0.2 
0.4 

0.5919 
0.9939 
0.4184 

0.5919 
0.9940 
0.4185 

 
4. Results and discussion 
 
 In order to evaluate physical significance of the problem due to the effects of the magnetic 
parameter, permeability parameter, Prandtl number, radiation parameter, heat absorption parameter, 
Newtonian heating parameter, Schmidt number, chemical reaction parameter, phase angle, time, thermal and 
mass Grashof numbers on the dimensionless velocity, temperature and concentration, we have computed 
numerical results and presented them graphically versus η  in Figs 1-20 whilst the computed results of the 
skin friction, Nusselt and Sherwood numbers are put in Tabs 3-6. 
 

 
 

Fig.1. Impact of M  on the velocity profiles when . , , , , . ,H r ct 0 1 R 2 Q 1 P 7 S 0 62= = = = = . , ,rk 1 0 K 1= =
, ,r mG 2 G 2 1= = γ =  and .4ω = π  

 
 Figure 1 illustrates the effect of the magnetic parameter M on the velocity profiles against η . 
Physically, M 0= means that there is no magnetic effect and the flow is merely hydrodynamic. The presence of 
the magnetic field normal to the flow region in an electrically conducting fluid introduces a Lorentz force 
which works against the flow. Consequently, fluid velocity decreases with an increasing magnetic field 
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parameter. The influence of the permeability parameter K  on the velocity profiles against η  is displayed in 
Fig.2. It is observed that an increase in the permeability parameter tends to accelerate the fluid velocity. 
Physically, the holes of the porous medium are very large so that the resistance of the medium may be 
neglected.  
 

 
 

Fig.2. Impact of K  on the velocity profiles when , , . , , . ,H r ct 1 R 2 Q 0 5 P 7 S 0 62= = = = =
. , . ,rk 0 5 M 0 5= = , , .r mG 3 G 2 0 5= = γ =  and .3ω = π  

 
Figure 3 depicts the variation of velocity profiles against η  for four different values of the Prandtl number 

. ,rP 0 71= ,1 7  and 100  which correspond to air, electrolytic solution, water and engine oil, respectively. It is 
clearly seen that the fluid velocity decreases in the boundary layer as the Prandtl number increased. Physically, 
the fluid with large rP  has high viscosity and small thermal conductivity, which makes the fluid thick and 
causes a decrease in the fluid velocity in the boundary layer. Also, it is seen that the velocity for air is greater 
than that of the electrolytic solution, water and engine oil. The variation of velocity profiles against η  for 
different values of the radiation parameter is seen in Fig.4. Physically, R 0=  means that there is no radiation 
only pure convection. It can be seen that the fluid velocity increases with an increasing radiation parameter 
because large R  corresponds to an increased dominance of conduction over radiation thereby increasing the 
thermal boundary layer thickness.  
 

 
 

Fig.3. Impact of rP  on the velocity profiles when . , , . , . , . ,H c rt 0 2 R 2 Q 1 0 S 0 62 k 0 5= = = = =
. , ,M 1 0 K 2= = , ,r mG 5 G 5 1= = γ = and .4ω = π  
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Fig.4. Impact of R  on the velocity profiles when . , . , . , . , . ,H r c rt 0 2 Q 1 0 P 0 71 S 0 62 k 1 0= = = = =
, ,M 2 K 2= = , ,r mG 5 G 2 1= = γ =  and .4ω = π  

 
Figure 5 illustrates the effects of the Newtonian heating parameter γ on the velocity profiles against η . As 
expected, an increase in γ  leads to lessen the fluid density as a result of amplification of the momentum 
boundary layer thickness. Consequently, an increase in the Newtonian heating parameter tends to increase 
the fluid velocity. The effect of the Schmidt number cS  on the velocity profiles against η  is shown in Fig.6. 
It is observed that an increase in cS  causes a decline in the fluid velocity due to a decrease in the 
concentration buoyancy effects. Figure 7 illustrates the effect of the thermal Grashof number rG on the 
velocity profiles against η . Physically, rG  represents the effect of free convection current i.e., rG 0=
indicates the absence of free convection currents. It is seen that an increase in rG  tends to enhance the fluid 
velocity in the boundary layer.  
 

 
 

Fig.5. Impact of γ  on the velocity profiles when . , , , . , . ,H r ct 0 2 R 3 Q 1 P 0 71 S 0 62= = = = = . , ,rk 0 5 M 1= =
, ,r mK 2 G 5 G 2= = = and .4ω = π  
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Fig.6. Impact of cS  on the velocity profiles when . , , , . , . ,H r rt 0 4 R 2 Q 1 P 0 71 k 0 5= = = = = . , ,M 0 5 K 2= =
, ,r mG 5 G 3 1= = γ =  and .3ω = π  

 

 
 

Fig.7. Impact of rG  on the velocity profiles when . , , , . , . ,H r ct 0 2 R 3 Q 1 P 0 71 S 0 62= = = = =
. , . ,rk 0 5 M 0 5= = , ,mK 2 G 3 1= = γ = and .4ω = π  

 

 
 

Fig.8. Impact of mG  on the velocity profiles when . , , . , . , . ,H r ct 0 2 R 3 Q 0 5 P 0 71 S 0 62= = = = = , ,rk 1 M 2= =
, ,rK 1 G 4 1= = γ =  and .4ω = π  
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The velocity profiles against η  for different values of the mass Grashof number mG  are depicted in Fig.8. 
The effect of mG  on the velocity profiles is same as that of .rG  This is accomplished by comparing Figs.7 
and 8. Further, from these figures, we found that velocity suddenly increases near to the plate surface and 
after this velocity progressively decreases to zero as .η → ∞  Figure 9 represents the velocity profiles against 
η  for different time. It is clearly seen that the velocity increases with time.  
 

 
 

Fig.9. Impact of t  on the velocity profiles when , , . , . , . , . , ,H r c rR 2 Q 1 P 0 71 S 0 62 k 0 5 M 0 5 K 2= = = = = = =
, ,r mG 5 G 2 1= = γ = and .0ω =  

 
The influence of the phase angle tω  on the velocity profiles against η  is seen in Fig.10. It is observed that 
the behavior of the fluid velocity is oscillatory. The velocity is maximum near the plate and decreases with 
increasing distance from the plate surface and finally approaches zero as .η → ∞  Also, it is clear from this 
figure that velocity satisfies the given boundary conditions Eqs.(2.14) and (2.15), which proves the accuracy 
of our results. 
 

 
 

Fig.10. Impact of tω  on the velocity profiles when , , . , . , . ,H r ct 1 R 1 Q 0 5 P 0 71 S 0 22= = = = =
. , ,rk 0 5 M 1= = , ,r mK 2 G 3 G 2= = = and . .0 5γ =  

 
 Further, it has been found that in the absence of heat absorption ( )HQ 0=  and chemical reaction 
( ),rk 0=  the influence of , , , , , , , ,r c r mM K P R S G G tγ and tω  on the velocity profiles are quite identical 
with those (see Figs 2 to 11) of Abid et al. [28]. Figure 11 depicts the effect of the heat absorption parameter 
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HQ  on the velocity profiles against .η  It is seen that an increase in the heat absorption parameter 
decelerates the fluid velocity in the boundary layer. Physically, the presence of heat sink in the boundary 
layer absorbs energy which causes a decrease in the fluid temperature and as a result decreases the fluid 
velocity due to the buoyancy effect. The influence of the chemical reaction rate rk  on the velocity profiles 
against η  is seen in Fig.12. It is observed that the fluid velocity decreases with an increasing chemical reaction 
rate. 
 

 
 

Fig.11. Impact of HQ  on the velocity profiles when . , , , . , . , , ,r c rt 0 2 R 3 P 7 S 0 62 k 1 0 M 2 K 1= = = = = = =
, , .r mG 3 G 2 0 5= = γ = and .4ω = π  

 

 
 

Fig.12. Impact of rk  on the velocity profiles when . , , . , , . , , ,H r ct 0 2 R 3 Q 1 0 P 7 S 0 22 M 2 K 1= = = = = = =
, , .r mG 3 G 2 0 5= = γ = and .4ω = π  

 
 Figure 13 exhibits variation of the temperature distribution against η  for different values of the 
Prandtl number rP . It is observed that an increase in the Prandtl number decreases the fluid temperature due 
to a decrease of the thermal boundary layer thickness. The influence of the heat absorption parameter HQ on 
the temperature distribution against η is seen in Fig.14. It is clear that the fluid temperature decreases with 
increasing HQ  for the same reason as mentioned above. Figure 15 displays the temperature distribution 
against η  for different values of time .t  It is noted that the fluid temperature increases with increasing time. 
Further, in the absence of radiation ( )R 0=  and when ,1γ =  the effects of ,r HP Q  and t  on the fluid 
temperature are fairly matching those of Seth et al. [29]. This proves the accuracy of the present work. 
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Fig.13. Impact of rP  on the temperature distribution when . , , Ht 0 4 R 3 Q 1= = =  and .1γ =  
 

 
 

Fig.14. Impact of HQ  on the temperature distribution when . , , .rt 0 2 R 3 P 0 71= = =  and .1γ =  
 

 
 

Fig.15. Impact of t  on the temperature distribution when . , , .r HP 0 71 R 1 Q 0 5= = =  and .1γ =  
 

The effects of the radiation parameter R  on the temperature distribution against η  are displayed in Fig.16. An 
increasing effect is noted in the fluid temperature with increasing radiation parameter for the same reason 
mentioned above. Figure 17 represents the impact of the Newtonian heating parameter γ  on the temperature 
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distribution against η . We found that an increase in the Newtonian heating parameter enhances the fluid 
temperature in the boundary layer. Furthermore, it is clear that in the absence of heat absorption ( ),HQ 0=  the 
effects of ,rP R  and t  on the temperature distribution are similar to those of Abid et al. [28] (see Figs 12 to 15). 

 

 
 

Fig.16. Impact of R  on the temperature distribution when . , . , .r Ht 0 2 P 0 71 Q 0 5= = =  and .1γ =  
 

 
 

Fig.17. Impact of γ  on the temperature distribution when . , . ,rt 0 2 P 0 71 R 3= = =  and . .HQ 0 5=  
 

 
 

Fig.18. Impact of cS  on the concentration distribution when .t 0 2=  and . .rk 1 0=  
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Figure 18 is plotted to show the variation of concentration distribution against η  for various values of the 
Schmidt number cS . It is observed that increasing values of cS  reduce fluid concentration. Physically, an 
increase of cS  leads to a decrease of molecular diffusivity as a result decreases the concentration boundary 
layer thickness. The evaluation of concentration distribution against η  with time t  is displayed in Fig.19.  
 

 
 

Fig.19. Impact of t  on the concentration distribution when .cS 0 62=  and . .rk 0 5=  
 

 
 

Fig.20. Impact of rk  on the concentration distribution when .t 0 2=  and . .cS 0 62=  
 
Table 3. Comparison of the skin friction τ  when . . , , , . ,r c HP 0 71 R 2 1 S 0 22 Q 0= = γ = = =  and .rk 0=  
 

rG  mG  M  K  t  tω  Abid et al. [28] Present results 

3 
4 
3 
3 
3 
3 
3 

2 
2 
3 
2 
2 
2 
2 

0.5 
0.5 
0.5 
1.0 
0.5 
0.5 
0.5 

0.2 
0.2 
0.2 
0.2 
0.4 
0.2 
0.2 

0.1 
0.1 
0.1 
0.1 
0.1 
0.2 
0.1 

2π  
2π  
2π  
2π  
2π  
2π  

π  

3.540 
4.072 
3.221 
3.609 
3.297 
0.621 
3.349 

3.541 
4.075 
3.220 
3.610 
3.297 
0.626 
3.349 
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It can be seen that the fluid concentration increases with increasing time. Moreover, this figure verifies the 
concentration boundary condition given in Eqs. (2.14) and (2.15). Initially, concentration takes the value 1 
and soon after for large values of ( )0η η >  it tends to zero with an increase of .t  Furthermore, it is noted that 
in the absence of the chemical reaction rate ( )rk 0=  the effects of cS  and t on the concentration distribution 
are same as those (see Figs 16 and 17) in Abid et al. [28]. The variation of concentration distribution against 
η  for various values of the chemical reaction rate rk  is depicted in Fig.20. It is observed that an increase in 

rk  reduces the concentration of species in the boundary layer. 
 The computed numerical results of the skin friction coefficient, Nusselt number and Sherwood number 
are displayed in Tabs 3-6 for different values of key parameters. It is observed from Tabs 3 and 4 that the skin 
friction improves with an increase in , ,r rG P M and rk  whilst a reverse tendency is noted with an increase in 

, , , , , ,m cG K t t R Sω γ  and .HQ  These tables show an excellent agreement between the numerical values of the 
skin friction coefficient in the present study and past work of Abid et al. [28] in the absence of the heat 
absorption parameter ( )HQ 0=  and chemical reaction rate ( ).rk 0=  It is seen from Tab.5 that the Nusselt 
number increases with increasing ,rP γ  and HQ  whilst it decreases with increasing R  and t . An increase in 

cS  and rk  increases the Sherwood number whilst a reverse effect is observed when t  is increased as seen in 
Tab.6.  
 
Table 4. Comparison of the skin friction τ  when , , . , . , .r mG 3 G 2 M 0 5 K 0 2 t 0 1= = = = =  and .t 2ω = π  
 

rP  R  γ  cS  HQ  rk  Abid et al. [28] Present results 

0.71 
1.0 

0.71 
0.71 
0.71 
0.71 
0.71 
0.71 

2 
2 
3 
2 
2 
2 
2 
2 

1.0 
1.0 
1.0 
1.5 
1.0 
1.0 
1.0 
1.0 

0.22 
0.22 
0.22 
0.22 
0.62 
0.22 
0.22 
0.22 

0.0 
0.0 
0.0 
0.0 
0.0 
1.0 
1.5 
1.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.5 
0.5 
1.0 

3.540 
5.251 
2.413 
0.915 
3.467 

--- 
--- 
--- 

3.541 
5.250 
2.413 
0.917 
3.467 
3.256 
2.642 
3.583 

 
 
Table 5. Numerical values of the Nusselt number .uN  
 

rP  R  γ  HQ  t  uN  

0.71 
7.00 
0.71 
0.71 
0.71 
0.71 

2 
2 
3 
2 
2 
2 

1 
1 
1 
2 
1 
1 

1.0 
1.0 
1.0 
1.0 
1.5 
1.0 

0.2 
0.2 
0.2 
0.2 
0.2 
0.4 

1.1342 
2.1649 
1.0375 
2.5792 
1.6031 
0.9681 
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Table 6. Numerical values of the Sherwood number .hS  
 

cS  t  rk  hS  

0.22 
0.62 
0.22 
0.22 

0.2 
0.2 
0.4 
0.2 

0.5 
0.5 
0.5 
1.0 

0.7041 
1.2151 
0.5169 
0.8273 

 
5. Conclusions 
 
 The effect of Newtonian heating on a heat absorbing unsteady MHD free convective flow past an 
oscillating vertical porous plate embedded in a porous medium in the presence of thermal radiation and 
chemical reaction has been studied numerically by the finite element method. The following major 
conclusions have been drawn from the present study: 

− The fluid velocity increases with an increase in , , , , rR t K Gγ  and mG , whereas it decreases with an 
increase in , , , ,r c H rP S M Q k  and .tω  

− rP  and HQ  have a tendency to decrease in the temperature distribution, whereas ,R γ  and t show an 
opposite tendency.  

− There is a decrease in the concentration distribution with an increase in cS  or ,rk  whereas a reverse 
trend is noticed when t  is increased.   

− The value of the skin friction coefficient improves with an increase in , ,r rG P M  and rk , whereas it 
decreases with an increase in , , , , , ,m c HG K R S Q tγ ω  and .t  

− Increasing value of ,r HP Q  and γ  increases the Nusselt number, whereas it decreases with an increase 
in R  and .t  

− The value of the Sherwood number increases with an increase in cS  or rk , whereas it decreases with an 
increase in .t  

 
Nomenclature  
 
 0B  – magnetic induction ( )1Am−   

 'C  – species concentration ( )mol 3m−  

 pC  – specific heat ( )1Jkg k−  

 '
wC  – plate surface concentration ( )mol 3m−  

 'C∞  – free stream concentration ( )mol 3m−  

 D  – mass diffusivity ( )2 1m s−  

 g  – acceleration due to gravity ( )2ms−  

 mG  – mass Grashof number 
 rG  – thermal Grashof number 
 K  – permeability parameter 

 k  – thermal conductivity ( )1 1Wm K− −  
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 '
rk  – reaction coefficient 

 2M  – magnetic field parameter  
 uN  – Nusselt number 
 rP  – Prandtl number 

 '
0Q  – heat absorption coefficient 

 HQ  – heat absorption parameter 

 rq  – radiation heat flux ( )/ 2W m  

 R  – radiation parameter 
 hS  – Sherwood number 
 cS  – Schmidt number 
 'T  – fluid temperature ( )K  
 't  – time ( )s  

 'T∞  – free stream temperature ( )K  
 'x  – co-ordinate axis along the plate ( )m  
 'y  – co-ordinate axis normal to the plate ( )m  

 u  – dimensionless velocity ( )1ms−  

 'u  – fluid velocity ( )1ms−  

 0U  – amplitude of the plate oscillations 

 β  – volumetric coefficient of thermal expansion ( )1K −  

 ∗β  – volumetric coefficient of concentration expansion ( )1K −  

 η  – dimensionless variable 
 θ  – dimensionless temperature 

 ν  – kinematic viscosity ( )2 1m s−  

 μ  – dynamic viscosity ( )/ 1 1Kg m s− −  

 ρ  – fluid density ( )/ 3Kg m  

 σ  – electrical conductivity ( )/S m  

 φ  – dimensionless concentration  

 τ  – skin friction coefficient ( )2Nm−  

 ω  – frequency of oscillations 
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