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The present paper deals with thermal behaviour analysis of an axisymmetric functionally graded 
thermosensitive hollow cylinder. The system of coordinates are expressed in cylindrical-polar form. The heat 
conduction equation is of time-fractional order 0 2< α ≤ , subjected to the effect of internal heat generation. 
Convective boundary conditions are applied to inner and outer curved surfaces whereas heat dissipates following 
Newton’s law of cooling. The lower surface is subjected to heat flux, whereas the upper surface is thermally 
insulated. Kirchhoff’s transformation is used to remove the nonlinearity of the heat equation and further it is 
solved to find temperature and associated stresses by applying integral transformation method. For numerical 
analysis a ceramic-metal-based functionally graded material is considered and the obtained results of temperature 
distribution and associated stresses are presented graphically.  

 
Key words: time fractional, thick hollow cylinder, thermal stresses, internal heat generation, FGMs, thermosenstive. 

 
1. Introduction 

 
Fractional thermoelasticity involves the heat conduction equation of fractional order and the 

differential operator shows memory effects. At present, the theory of fractional calculus have wide 
applications in applied engineering and sciences like robotics, bioengineering, geology, etc. First in 2005, 
Povstenko [1] introduced the heat conduction equation of fractional order and described corresponding 
thermal stresses. Then after he developed and modify various new models based on the fraction theory of 
thermoelasticity as reflected in [2, 3, 4, 5, 6]. Thermosensitive bodies are those homogeneous or piecewise-
homogeneous bodies whose thermo-physical characteristics are temperature dependent. Popovich et al. [7, 8, 
9, 10, 11, 12] studied numerical-analytical solutions of various thermoelastic problems with non-steady heat-
conduction in homogeneous thermosensitive bodies. All these bodies were subjected to prescribed 
temperature or heat flux on the boundaries which were completely linearized by using the Kirchhoff variable 
transformation technique. 

Functionally graded materials (FGMs) are materials having compositions of a microstructure, or 
porosity across the volume of the material. Also this materials are adaptable as heat-resistant materials and have 
attractive application in furnace lines, space structures, fusion reactors and electronics component packaging. 
FGMs are new versions of composite materials that are microscopically inhomogeneous in unique 
characterization. Guo and Noda [13] determined the thermal stresses for a thin FGM cylindrical shell with 
effect of thermal shock. Cheng and Batra [14, 15] established an exact deflection relationship between different 
functionally graded plate theories and that of an equivalent homogenous Kirchhoff plate. Other related studies 
by assuming cylindrical bodies with different boundary conditions are described in [16, 17, 18, 19, 20, 21, 22]. 

During solidification or sublimation or melting most thermally sensitive materials release significant 
amounts of energy. Also, during the heating process these materials absorb energy and transfer energy to the 
environment in the cooling process. Therefore, an analysis of time fractional thermo-sensitivity is very 
important in various cylindrical structures which are made of FGMs. Recently, Thakare and Warbhe [23] 
studied the time fractional order thermoelastic problem of a thermally sensitive functionally graded thick 
hollow cylinder with the effect of internal heat source. Thakre et al. [24] solved a two dimensional 
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thermoelastic problem and determined temperature and associated stresses for a non-homogeneous thick 
hollow cylinder within the context of fractional order theory. 

The article presented here is related to the extension of our own work [23, 24] by assuming the time 
fractional governing temperature and spatial variable dependent heat conduction problem for a thick 
functionally graded hollow cylinder with an internal heat source (geometry as shown in Fig.1). Except 
Poisson’s ratio all the material properties are considered to be dependent on both temperature and spatial 
variable z. The heat conduction equation is solved by using integral transformation and by introducing 
Kirchhoff’s variable transformation. The solution is obtained in the form of Bessel’s and trigonometric 
functions.  
 
2. Formulation of the problem 
 
 A functionally graded axisymmetric thermosensitive thick hollow cylinder is considered with 
internal heat generation of radius varying from r a=  to r b=  and thickness from z 0= to z h= , occupying 

the space { }/( , , ) : ( )3 2 2 1 2D x y z R 0 z hand a x y b= ∈ ≤ ≤ ≤ + ≤  where ( ) /1 22 2r x y= + .  

 The above thermoelastic problem is framed mathematically for a nonlocal Caputo type time 
fractional heat conduction equation of orderα in case of FG thick hollow cylinder. The expression for 
Caputo type fractional derivative of function ( )f t is given as [6] 
 

  ( ) ( )( ) , , ,
( )

t n
n 1

n
0

d f t 1 d ft d t 0 n 1 n
ndt d

α
−α−

α
τ= − τ τ > − <α <

Γ −α τ  (2.1) 

 
with the following Laplace transform rule, where Caputo derivative needs the initial values of the function 

( )f t and its corresponding integral derivatives of order , , ,...,k 1 2 3 n 1= −  
 

  ( )( ) { ( )} ( ) , .
n 1

k 1 k

k 0

d f tL s L f s f 0 s n 1 n
dt

−α
α + α− −

α
=

   = − − <α < 
  

  , (2.2) 

 
in which s  is the transform parameter and n  is a positive integer. 
 
2.1. Governing equation of temperature distribution function with boundaries 
 
 The time fractional governing temperature and spatial variable dependent heat conduction problem 
for a thick functionally graded hollow cylinder with an internal heat source is represented as 
 

  
( ) ( )

( , ) ( , )

( ) ( , ) ,0 0 0

1 T Tr k z T k z T
r r r z z

TQ r r z z t c z T
t

α

α

∂ ∂ ∂ ∂   + +   ∂ ∂ ∂ ∂   

∂+ δ − δ − δ =
∂

  (2.3) 

 
subjected to corresponding initial and boundary condition as  
 

( ) ( ) ( ) ( ), ; , ,1 0 1 0
r a

Tk z T T T Q z z t 0 z h t 0
r =

∂ − ε − = δ − δ ≤ ≤ > ∂ 
 (2.4) 
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  ( ) ( ) ( ) ( ), ; , ,2 0 1 0
r b

Tk z T T T Q z z t 0 z h t 0
r =

∂ + ε − = δ − δ ≤ ≤ > ∂ 
 (2.5)  

 

  ( ) ( )( , ) ; , ,2 0
z 0

Tk z T Q r r t a r b t 0
z =

∂  = δ − δ ≤ ≤ > ∂ 
 (2.6)  

 

  ; , ,
z h

T 0 a r b t 0
z =

∂  = ≤ ≤ > ∂ 
  (2.7) 

 
  , at ,0T T t 0 0 2= = < α ≤ , (2.8)  
 

  , ,T 0 at t 0 1 2
t

∂ = = < α ≤
∂

 (2.9) 

 
where, ( ), ,T r z t  refers to temperature distribution at any time t , 

0
T  denotes the surrounding medium 

temperature, at ( ),0 0r r z z= =  the expression ( ) ( ) ( )0 0 0Q r r z z tδ − δ − δ  denotes the instantaneous point heat 

source of strength 0Q .Further ( ) ( )1 0Q z z tδ − δ  is the heat of the strength 1Q  at the point ( ), 0r a z z= =  

and ( ) ( )2 0Q r r tδ − δ  is the heat of the strength 2Q  at ( ), 0r b z z= =  and ( ),0r r z 0= = , respectively, 

( ),k z T  represents the thermal conductivity and ( ),c z T  denotes specific heat capacity for the thick hollow 
cylinder, further 1ε , 2ε  denote the coefficient of heat transfer.  
  
2.2. Thermal stresses and displacements expressions 
 
 Following Hata [25], the expression for strain-displacement and condition of equilibrium of the thick 
hollow cylinder is as follows 
 

  , , , ,rr zz rz
u u w 1 u we e e e
r r z 2 z rθθ

∂ ∂ ∂ ∂ = = = = + ∂ ∂ ∂ ∂ 
 (2.10) 

 

  ,rrrr rz 0
r z r

θθσ −σ∂σ ∂σ+ + =
∂ ∂

 (2.11) 

 

  ,rz zz rz 0
r z r

∂σ ∂σ σ+ + =
∂ ∂

  (2.12) 

 
here u  and w  denote the displacement components along the radial and axial directions, respectively. 
 In the case of temperature dependent material properties the relationship between stress and strain 
functions are given as  
 
  ( )T T T T T

rr 0 rr 0 0 0 02G z e e z e e 3 z e 2 z e z e Tβ ϖ β ϖ β ϖ β ϖ β χσ = + λ − λ + μ α , (2.13) 

 
  ( )T T T T T

0 0 0 0 02G z e e z e e 3 z e 2 z e z e Tβ ϖ β ϖ β ϖ β ϖ β χ
θθ θθσ = + λ − λ + μ α ,  (2.14) 
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  ( )T T T T T
zz 0 zz 0 0 0 02G z e e z e e 3 z e 2 z e z e Tβ ϖ β ϖ β ϖ β ϖ β χσ = + λ − λ + μ α ,  (2.15)  

 
  T

rz 0 rz2G z e eβ ϖσ = , (2.16) 
 
here, ( )rr zze e e eθθ= + + and , ,rr zze e eθθ  denote the strain components, T

0G z eβ ϖ  stands for the shear 

modulus, T
0 z eβ ϖμ and T

0 z eβ ϖλ  are the Lame’s constants and the thermal expansion coefficient is 

represented by T
0 z eβ χα .  

 On substituting Eqs (2.13)-(2.16) in (2.11) and (2.12), the required equilibrium equations of 
displacements is  
 

  
( ) ,

2
2 0

2
0 0

T0
0

0

u u T T w u w Tu
r r 2G r r r z z r z zr

3 T1 z e T T 1 0
2 r

β χ

λ∂ ∂ ∂ε ∂ ∂ ∂ ∂ ∂ β    Δ − +ϖ + + εϖ + + + ϖ + +    ∂ ∂ μ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 λ ∂−α + ϖ + + = μ ∂ 

 (2.17) 

 

  

2
2 0

0

T0 0
0

0 0 0

u u w T 1 w Tw
r z z r r r z z z

3 T1 z e T 0
2G z 2 r

β χ

 λ ε∂ ∂ ∂ ∂ ∂ ∂ β    Δ + + + ϖ + + + ϖ + +     ∂ ∂ ∂ ∂ ∂ ∂ μ ∂     
 λ λ∂ε ∂+ − α + ϖ = μ ∂ μ ∂ 

 (2.18) 

 
where 2∇  is given by 
 

  
2 2

2
2 2

1
r rr z

∂ ∂ ∂∇ = + +
∂∂ ∂

. (2.19) 

 
Using the thermoelastic Goodier's displacement potential ϕ as well as Boussinesq harmonic functions φand 
ψ  with no body forces in cylindrical coordinates the solution of Eqs (2.13)-(2.16) is as follows 
 

  u z
r r r

∂φ ∂ϕ ∂ψ= + +
∂ ∂ ∂

, (2.20) 

 

  ( )w z 3 4
z z z

∂φ ∂ϕ ∂ψ= + + − − ν ψ
∂ ∂ ∂

  (2.21) 

 
where  
 
  ( ) , , and .2 2 2

0K T T 0 0∇ ϕ = − ∇ φ = ∇ ψ =   (2.22) 
 
The coefficient of restraint is  
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( )
( )( , ) .T

0
1

K z t z e
1

β χ+ ν
= α

−ν
 

 
For the sake of brevity, we take 
 
  ( )z dz M− φ+ ψ = .  (2.23) 

 
Now substituting Eq.(2.23) in (2.20) and (2.21), the harmonic functions φ  and ψ  are expressed in terms of 
Michell’s function M  as 
 

  
2Mu

r r z
∂ϕ ∂= −
∂ ∂ ∂

, (2.24) 

 

  ( )
2

2
2
Mw 2 1 M

z z
∂ϕ ∂= + − ν ∇ −
∂ ∂

 (2.25) 

 
where  
 
  2 2M 0∇ ∇ = . (2.26) 
 
Further, the resultant stresses are obtained by substituting (2.24)-(2.25) in (2.13) to (2.16) as 
 

  

( ) ( ) ( ) ,

2
T

rr 0

2 2 T
0 0 0 0

Mz e 2G
r r r z

1 2 M 3 2 z e T
z

β ϖ

β χ

  ∂ ∂ϕ ∂σ = − +  ∂ ∂ ∂ ∂   
∂ +λ ∇ ϕ+ − ν ∇ − λ + μ α  ∂  

 (2.27)  

 

  

( ) ( )( )( ) ,

2
T

0

2 2 T
0 0 0

1 Mz e 2G
r r r z

1 2 M 3 2 z z e T
z

β ϖ
θθ

β χ

  ∂ϕ ∂σ = − +  ∂ ∂ ∂   
∂ +λ ∇ ϕ+ − ν ∇ − λ + μ α  ∂  

 (2.28) 

 

  
( )

( ) ( )( ) ,

2
T 2

zz 0 2

2 2 T
0 0 0 0

Mz e 2G 2 1 M
z z z

1 2 M 3 2 z e T
z

β ϖ

β χ

  ∂ ∂ϕ ∂σ = + −ν ∇ − +   ∂ ∂ ∂  
∂ +λ ∇ ϕ+ − ν ∇ − λ + μ α  ∂  

 (2.29) 

 

  ( )
2 2

T 2
rz 0 2

M Mz e G 1 2 M
z r r z r z z

β ϖ
     ∂ ∂ϕ ∂ ∂ ∂ϕ ∂ σ = − + + − ν ∇ −     ∂ ∂ ∂ ∂ ∂ ∂ ∂        

. (2.30) 

 
Further, in traction free surface the following stress functions satisfy  
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at and ,

at and .

rr

zz

0 r a r b

0 z 0 z h

σ = = = 


σ = = = 

  (2.31) 

 
Modeling of the functionally graded thermal sensitive hollow cylinder problem in the context of fractional 
theory with internal heat is presented above.  
 

 
 

Fig.1. Geometry of the nonhomogeneous hollow cylinder. 
 

3. Solution of the problem 
 
3.1. Solution of the heat conduction problem 
 
Following Noda [26], we have 
 
  ( ) ( ) ( ) ( ), , ,k z T z k T c z T z k Tβ β= = . (3.1) 
 
Further, following Popovych et al. [3, 4, 5, 10, 13, 17] by introducing the Kirchhoff’s variable  
 

  ( , )
0

T

T

k z T dTΘ =  . (3.2) 

 
Next, the material is considered with simple thermal nonlinearity  
 
  ( ) ( )/C T k T 1= . (3.3) 
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By taking account of Eqs (3.1), (3.2) and (3.3), Eq.(2.3) is rewritten as 
 

  ( ) ( ) ( )
2 2

0 0 02 2
1 Q r r z z t
r rr z t

α

α

 ∂ Θ ∂Θ ∂ Θ ∂ Θ+ + + δ − δ − δ =  ∂∂ ∂ ∂ 
. (3.4)  

 
Corresponding boundary and initial conditions are 
 

  ( ) ( ); ,1 1 0
r a

Q z z t 0 z h t 0
r =

∂Θ − ε Θ = δ − δ ≤ ≤ > ∂ 
, (3.5) 

 

  ( ) ( ); ,2 1 0
r b

Q z z t 0 z h t 0
r =

∂Θ + ε Θ = δ − δ ≤ ≤ > ∂ 
,  (3.6) 

 

  ( ) ( ); ,2 0
z 0

Q r r t a r b t 0
z =

∂Θ  = δ − δ ≤ ≤ > ∂ 
,  (3.7) 

 

  ; ,
z h

0 a r b t 0
z =

∂Θ  = ≤ ≤ > ∂ 
, (3.8) 

 
  , at ,0 t 0 0 2Θ = = < α ≤ , (3.9) 
 

  , at ,0 t 0 1 2
t

∂Θ = = < α ≤
∂

. (3.10) 

 
Applying the Laplace transform to Eq.(3.4) and using boundary conditions (3.9)-(3.10), one obtains 
 

  ( ) ( )
* * *

*.
2 2

0 0 02 2
1 Q r r z z s
r rr z

α ∂ Θ ∂Θ ∂ Θ+ + + δ − δ − = Θ  ∂∂ ∂ 
 (3.11)  

 
Corresponding boundary and initial conditions are,  
 

  ( )
*

* , , ,1 1 0
r a

Q z z 0 z h t 0
r

=

 ∂Θ − ε Θ = δ − ≤ ≤ >  ∂ 
  (3.12) 

 

  ( )
*

* , , ,2 1 0
r b

Q z z 0 z h t 0
r

=

 ∂Θ + ε Θ = δ − ≤ ≤ >  ∂ 
  (3.13) 

 

  ( )
*

, ,2 0
z 0

Q r r a r b t 0
z

=

 ∂Θ = δ − ≤ ≤ >  ∂ 
, (3.14) 
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*

, , .
z h

0 a r b t 0
z

=

 ∂Θ = ≤ ≤ >  ∂ 
  (3.15) 

 
Further, using the transform by Al-Hajri and Kalla [27] to solve Eq.(3.11) over the variable r , using 
transformed boundary condition (3.12) and (3.13) as 
 

  
( ) ( )( ) ( )

( ) ( )

*
*

*,

2
2

2 n 1 1 n 1 0 n 2

0 0 n 0 0

b M q b Q a M q a Q z z q
z

Q r M q r z z sα

∂ Θε − ε δ − − Θ + +
∂

+ δ − = Θ

 (3.16) 

 

  ( )
*

, , ,2 0 n 0

z 0

Q r M q r a r b t 0
z

=

 ∂Θ  = ≤ ≤ >
 ∂ 

  (3.17) 

 

  
*

, ,
z h

0 a r b t 0
z

=

 ∂Θ  = ≤ ≤ >
 ∂ 

  (3.18) 

where 
  ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,n n 1 n 2 0 n n 1 n 2 0 nM q r B q a B q b J q r A q a B q b Y q r   = − ε + ε − − ε + ε     
 
in which  
 
  ( ) ( ) ( ), ; , , ,n n1 n1 0 n n 0 n 1A q r J q r q J q r n 1 2 r a b′ε =ε + = = , 
 
  ( ) ( ) ( ), ; , , ,n n1 n1 0 n n 0 n 1B q r Y q r q Y q r n 1 2 r a b′ε =ε + = =  
 
where the Bessel’s functions of first and second kind are denoted by 0J  and 0Y  and nq is the ‘+’ roots of the 
following transcendental equation  
 
  ( ) ( ) ( ) ( ), , , ,n 1 n 2 n 1 n 2B q a A q a A q a B q a 0−ε × ε − − ε × ε = . 
 
Next, using the finite Fourier cosine transform to (3.16) over the variable z under transformed boundary 
(3.17) and (3.18), one obtains  
 

 
( ) ( )( ) ( ) ( )

( ) ( )

*

* **

/ cos( / )

/ cos( / ) ( ) .

2 n 1 1 n 1 0 0 2 0 n 0

2 2
0 0 n 0 0 0 n m

b M q b Q a M q a Q 2 m z h z Q r M q r

Q r M q r 2 m z h z q sα

ε − ε π π θ + +

− π π θ = + α Θ + Θ
 (3.19) 

 
Here 

  ( )*
,

.

0

0

0

0 z 0
z

1 z 0

<
θ = 
 ≥

 (3.20) 
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Now, taking inversion of the Laplace transform of Eq.(3.19), one obtain 
 

  

( )( ) ( )({
( ) ) ( ) ( )
( ) ( ) ( ) ( )}

,

*

*

/ cos /

/ cos / .

1 2 2
n m 2 n 1

1 n 1 0 0

2 0 n 0 0 0 n 0 0 0

t E q t b M q b Q

a M q a Q 2 m z h z

Q r M q r Q r M q r 2 m z h z

α− α
α αΘ = − + α ε +

− ε π π θ +

+ − π π θ

 (3.21) 

 
Next, on applying inversion of the Fourier-cosine transform on Eq.(3.21), one obtain 
 

  

( ) ( )({{
( ) ) ( ) ( )
( ) ( ) ( ) ( )}}

( ) ( )({{
( ) ) ( ) ( ) ( )
( ) ( ) ( )}

,

*

*

,

*

*

( )

/ cos /

/ cos /

( )

/ cos /

/ cos /

1 2 2
n m 2 n 1

1 n 1 0 0

2 0 n 0 0 0 n 0 0 0
m 0

1 2 2
n m 2 n 1

m 1

1 n 1 0 0 2 0 n 0

0 0 n 0 0 0

1 t E q t b M q b Q
h

a M q a Q 2 m z h z

Q r M q r Q r M q r 2 m z h z

t E q t b M q b Q

a M q a Q 2 m z h z Q r M q r

Q r M q r 2 m z h z

α− α
α α

=
∞

α− α
α α

=

Θ = − + α ε +

− ε π π θ +

+ − π π θ +

+ − + α ε +

− ε π π θ + +

− π π θ



}cos( / ) .m z h× π

 (3.22) 

 
Further using inverse of the transform derived by Al-Hajri and Kalla [27] on the above Eq.(3.22), one obtain 
 

  

( ) ( )({{
( ) ) ( ) ( )
( ) ( ) ( ) ( )}}

( ) ( )({{
( ) ) ( ) ( )
( ) ( )

,

*

*

,

*

( )

/ cos /

/ cos /

( )

/ cos /

/ cos

1 2 2
n m 2 n 1

n 1

1 n 1 0 0

2 0 n 0 0 0 n 0 0 0
m 0

1 2 2
n m 2 n 1

m 1

1 n 1 0 0

2 0 n 0 0 0 n 0

1 t E q t b M q b Q
h

a M q a Q 2 m z h z

Q r M q r Q r M q r 2 m z h z

t E q t b M q b Q

a M q a Q 2 m z h z

Q r M q r Q r M q r 2 m

∞
α− α

α α
=

=
∞

α− α
α α

=

Θ = − + α ε +

− ε π π θ +

+ − π π θ +

+ − + α ε +

− ε π π θ +

+ − π π





( ) ( )} ( )}

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*/ cos /

, ,

, ,

0 0

n 1 n 2 0 n
n

n 1 n 2 0 n
n

z h z m z h

1 B q a B q b J q r
M q

1 A q a A q b Y q r
M q

θ × π ×

  × − ε + ε +  


 − − ε + ε  


 (3.23) 

where 

  ( ) ( )
( ) , ,

, .

nb

n m
a

M q m n
r M q r M q r dr

0 m n

 =


= 
 ≠
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On reverse variable transformation from Θ  to T , the equation of temperature distribution (3.23) becomes 
 

  

( ) ( )( ) ( ){
( ) ( )( ){ ( ) ( )

( ) ( )}}
( ) ( )({{

( ) )

,

*

*

,

( )

/ cos( / )

/ cos( / )

( )

/ cos(

0
1T 1 2 2

0 m0 c0 c0 n m
n 1

2 n 1 1 n 1 0 0 2 0 n 0

0 0 n 0 0 0
m 0

1 2 2
n m 2 n 1

m 1

1 n 1

1T T e 1 z k k k t E q t
h

b M q b Q a M q a Q 2 m z h z Q r M q r

Q r M q r 2 m z h z

t E q t b M q b Q

a M q a Q 2 m z

∞ −−ϖ β α− α
α α

=

=
∞

α− α
α α

=

 = + − − + − + α ×  

× ε − ε × π π θ + +

− π π θ +

+ − + α ε +

− ε π π




( ) ( )

( ) ( )} }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

*

/ )

/ cos( / ) cos( / )

, ,

, , .

0 0 2 0 n 0

0 0 n 0 0 0

n 1 n 2 0 n
n

n 1 n 2 0 n
n

h z Q r M q r

Q r M q r 2 m z h z m z h

1 B q a B q b J q r
M q

1 A q a A q b Y q r
M q

θ + +

− π π θ × π ×

  × − ε + ε +  


 − − ε + ε  


 (3.24) 

 
4. Thermoelastic equations 
 
 The solution of thermoelastic Goodier’s potential displacement function obtained by using Eq.(3.24) 
in Eq.(2.22) as 
 

  

( )
( )

( )( )
( )( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ){( ){ ,

cos /

( ) cos / / ( ) cos / / ( )

( )

/ co

0 0

T

0
2
n

1T T
m0 c0 c0 0 m0 c0

n 1 n 1

1 1 2 2
c0 n m 2 n 1 1 n 1

m 1

1 m z h z e1 v
1 v u z q 1 m z h u z 1 m z h u z

e 1 z k k k T e 1 z k k

1k t E q t b M q b Q a M q a Q
h

2

β χ

∞ ∞−−ϖ −ϖβ β

= =
∞− α− α

α α
=

+ π+
ϕ = α × +″−  − + π + + π 

  + − − + × + − − +  

 + + − + α ε − ε ×   

× π

 



( ) ( ) ( )

( ) ( ) ( )}}
( ) ( )({{

( ) ) ( ) ( ) ( )

( ) ( ) ( )} ( )}

*

*

,

*

*

s /

/ cos /

( )

/ cos /

/ cos / cos /

0 0 2 0 n 0

0 0 n 0 0 0
m 0

1 2 2
n m 2 n 1

m 1

1 n 1 0 0 2 0 n 0

0 0 n 0 0 0

m z h z Q r M q r

Q r M q r 2 m z h z

t E q t b M q b Q

a M q a Q 2 m z h z Q r M q r

Q r M q r 2 m z h z m z h

=
∞

α− α
α α

=

π θ + +

− π π θ +

+ − + α ε +

− ε π π θ + +

− π π θ × π ×



 (4.1)
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, , .

n 1 n 2 0 n
n

n 1 n 2 0 n
n

1 B q a B q b J q r
M q

1 A q a A q b Y q r
M q

  × − ε + ε +  


  − − ε + ε    

 (cont.4.1) 

 
Let the Michell’s function as given below satisfy the condition governed by Eq.(2.26)  
 

  ( ) ( ) ( ),cos( ) n n
1 1 n 1 1 m 0 n m 0 n

n 1 m 1
M z t E t C J q r D rY q r

∞ ∞
−α

−α+
= =

 = Ω ψ ψ +    (4.2) 

 
where mC  and mD are constants.  
Next, on substitution Eqs (4.1) and (4.2) in (2.24)-(2.25) the displacement components are obtained as 
 

  
( ) ( )

( ) ( ) ( )

,sin( )

,

n n
1 1 n 1 1

n 1 m 1

m n 1 n m n 1 n m 0 n

u z t E t
r

C q J q r D q rY q r D Y q r

∞ ∞
−α

−α+
= =

∂ϕ= − Ω Ω ψ ψ × ∂

 × + − 


  (4.3) 

 

 

( )( ) ( )

( ) ( )

( ) ( ) ( ) ( ) }

,

,

cos( )

cos .

n n
1 1 n 1 1

n 1 m 1

2
m n 0 n m 0 n n

2 n n
1 1 n 1 1 m 0 n m 0 n

w 2 1 v z t E t
z

1C q J q r D Y q r q r
r

1 2v z t E t C J q r D rY q r

∞ ∞
−α

−α+
= =

−α
−α+

∂ϕ= + − Ω ψ ψ × ∂

  × − + − +    

   + − −Ω Ω ψ ψ × +  



 (4.4) 

 
The stress components from (2.27)-(2.30) for both the homogeneous and non-homogeneous case can be 
obtained using (4.3)-(4.4) by setting ( )0β =ϖ = χ = and ( )0β ≠ ϖ ≠ χ ≠ , respectively. Also, the values of 
constant are calculated by using traction free boundaries. Mathematica is utilized for all numerical 
computations. 
 
5. Numerical calculations 
 
 For the purpose of numerical analysis alumina is set as the ceramic and nickel as metal to form 
functionally graded metal-ceramic base is considered.  
 Where non-dimensional variables are as: 
 

  
( )

( )
( )

( )
* * * *, , , , , ,2

R 0 0 0 0

1 v u 1 v wT r z tT t u w
T a a 1 v T a 1 v T aa

− −κ= η = ζ = = = =
+ α + α

 

 

  * * * *, , ,rr zz rz
rr zz rz

0 0 0 0 0 0 0 0 0 0 0 0G T G T G T G T
θθ

θθ
σσ σ σσ = σ = σ = σ =

α α α α
. 

 



118  Thermosensitive response of a functionally graded cylinder… 

The dimensions used during the numerical calculation are as follows: inner radius of a cylinder a 1cm= , 

outer radius of a cylinder b 2cm= , h 1cm= , o
0T 320 K= . 

The other related values are as taken: 
For Alumina (Ceramic): 
thermal conductivity . /k 0 282 W cmK= ,  
specific heat capacity . /C 0 78 J gK= ,  

shear modulus . /6 2G 12 4 10 N cm= × ,  

coefficient of linear thermal expansion . /65 4 10 K−α = × ,  
Poisson’s ratio .0 23ν = . 
For Nickel (Metal): 
thermal conductivity . /k 0 901 W cmK= ,  
specific heat capacity . /C 0 44 J gK= ,  

shear modulus . /6 2G 7 6 10 N cm= × ,  

coefficient of linear thermal expansion /614 10 K−α = × ,  
Poisson’s ratio .0 31ν = . 
 
5.1. Analysis of numerical results 
 
 MATEMATICA software is used for the purpose of numerical analysis of temperature distribution, 
radial stress distribution, tangential stress distribution, axial stress and shear stress distribution for different 
values of the fractional-order parameter . , , . ,0 5 1 1 5 2α = α = α = α =  (depicting weak, normal and strong 
conductivity) for the case of the functionally graded thermosensitive hollow cylinder. 
 

 
 

Fig.2a. Dimensionless temperature distribution function along the axial direction in the homogeneous cylinder. 
 

 Figures 2a and 2b present the distribution of dimensionless temperature *T  along the dimensionless 
axial direction ζ in both homogeneous and non-homogeneous cylinder for different values of the fractional 
order parameter α  by fixing .1 5η = . It is observed that due to prescribed varying heat source at the lower 
surface, the same temperature is noted in both the homogeneous and non-homogeneous cases. Further, the 
temperature distribution slowly decreases towards the upper surface by somehow showing sinusoidal type 
behavior in the non-homogenous case. Also, it is observed that the speed of thermal signals propagation vary 
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directly proportional to the values of the fractional-order parameter α  in both the cases. For non-homogeneous 
case the magnitude of temperature distribution is found low as compared to the homogeneous case. 

 

 
 

Fig.2b. Dimensionless temperature distribution function along the axial direction in the non-homogeneous cylinder. 
 

 
Fig.3a. Dimensionless radial stress distribution along the axial direction in the homogeneous cylinder. 

 
Fig.3b. Dimensionless radial stress distribution along the axial direction in the non-homogeneous cylinder. 
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 Figures 3a and 3b present the distribution of dimensionless radial stress *
rrσ along the dimensionless 

axial direction ζ in both the homogeneous and non-homogeneous cylinder for different values of the fractional 
order parameter α  by fixing .1 5η = . It is observed that stress distribution gradually increases on going from 
the lower to the upper surface for different fraction parameters in both the homogeneous and non-homogeneous 
cases. Also the effect of varying heat source on the curved surface can be noted here. Further, stress distribution 
slowly decreases towards the upper surface and the impact of stress propagation is found varying inversely 
proportional to the different values of the fractional-order parameterα in both the cases.  

 

 
 

Fig.4a. Dimensionless tangential stress distribution along the axial direction in the homogeneous cylinder. 
 

 
 

Fig.4b. Dimensionless tangential stress distribution along the axial direction in the non-homogeneous cylinder. 
 

 Figures 4a and 4b present the distribution of dimensionless tangential stress *
θθσ  along the 

dimensionless axial direction ζ  in both the homogeneous and non-homogeneous cylinder for different values 
of the fractional order parameter α  by fixing .1 5η = . For the homogeneous case, the radial stress 
distribution shows compressive behavior while in the non-homogeneous case the radial stress has a 
sinusoidal nature throughout the thickness. The magnitude of stress is found to be decreasing in between the 
upper and lower surface for different values of the fractional parameter. 
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Fig.5a. Dimensionless axial stress distribution along the axial direction in the homogeneous cylinder. 
 

 
 

Fig.5b. Dimensionless axial stress distribution along the axial direction in the non-homogeneous cylinder. 
 

 
 

Fig.6a. Dimensionless shear stress distribution along the axial direction in the homogeneous cylinder. 
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Fig.6b. Dimensionless shear stress distribution along the axial direction in the non-homogeneous cylinder. 
 

 Figures 5a and 5b present the distribution of dimensionless axial stress *
z zσ  along the dimensionless 

axial direction ζ  in both the homogeneous and non-homogeneous cylinder for different values of the 
fractional order parameter α  by fixing .1 5η = . From the plotting it is noted that for both the homogeneous 
and non-homogeneous cases the nature of the graph is sinusoidal. Also, stress behavior is compressive in the 
homogeneous case throughout the functionally graded cylinder. Its magnitude increases towards the central 
region and starts decreasing towards the upper surface. In the non-homogeneous case stresses are 
compressive in the range .0 0 65< ζ <  and tensile in the range .0 65 1< ζ < . Further, mathematical boundary 
condition defined in Eq.(3.31) completely matches the above graphical plotting. 
 Figures 6a and 6b present the distribution of dimensionless shear stress *

r zσ along the dimensionless 
axial direction ζ  in both the homogeneous and non-homogeneous cylinder for different values of the 
fractional order parameter α  by fixing .1 5η = . The plotting shows sinusoidal type behavior in both the 
homogeneous and non-homogeneous cases. Also, the magnitude of stress distribution is found more in the 
non-homogeneous case as compared to the homogeneous case. Further, the different values of the fractional 
parameter significantly affect the variation of stresses on going from the lower to the upper surface.  
 
6. Conclusion  
 
 In the article, a thermoelastic problem of a thick hollow cylinder under time-fractional order heat 
conduction equation is studied under the influence of thermosensitive material properties. The integral 
transform method is applied to analyze the thermal behavior of the cylinder with internal heat generation 
subjected to convection boundaries on the curved surface as well as heat flux at the lower surface. All 
material properties except Poisson’s ratio were assumed to depend on both temperature and axial direction. 
For the numerical analysis thermo-mechanical properties of alumina and nickel at room temperature were 
utilized for both the homogeneous and non-homogeneous case. From the numerical analysis for the 
functionally graded thermosensitive thick hollow cylinder it is concluded that the speed of wave propagation 
is influenced by taking different values of the fractional parameter α  in the both homogeneous and non-
homogeneous cases as shown in Figs 2-6. Convection type boundary condition following Newton’s law of 
cooling on curved surfaces and heat flux at the lower surface also affect the flow of temperature and stresses 
distribution on moving from the lower to the upper surface. Hence, all the above discussed factors can be 
useful for designing new materials and is applicable to real life situations. Hence we say that the functionally 
graded thermosensitive thick hollow cylinder with internal heat generation in the context of fractional order 
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theory approach predicts very useful structural effect on design of different models in engineering and 
applied sciences. Hence, we conclude that the above study is useful for the design of new materials. 
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Nomenclature 
 
 ( , )c z T  – specific heat capacity  
 , ,rr zze e eθθ  – strain components 

 T
0G z eβ ϖ  – shear modulus 

 ( , )k z T  – thermal conductivity 
 M  – Michell’s function  
 ( , , )T r z t  – temperature distribution at any time t  
 

0
T  – surrounding medium temperature 

 u  – displacement components along radial direction 
 w  – displacement components along axial direction  
 r a=  – inner radius of cylinder  
 r b=  – outer radius of cylinder 
 z  – thickness of cylinder 
 α  – time-fractional order derivative 

 T
0 z eβ χα  – thermal expansion coefficient  

 1ε , 2ε  – coefficients of heat transfer 

 T
0 z eβ ϖλ  – Lame’s constant 

 T
0 z eβ ϖμ  – Lame’s constant 

 ϕ  – Goodier's displacement potential  
 φ , ψ  – Boussinesq harmonic functions  
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