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The deflection analysis of beams has been recently an active area of research. The large deflection of beams 
refers to deflections occurring due to large displacements and small strains. This type of deflection has been one of 
the areas of interest in the development of beam deformation methods. The wide diversity of beam deformation 
methods highlights the importance of their comparison to further elucidate the properties and features of each 
method and determine their benefits and limitations. In this study, a new comparison model is introduced which 
involves three steps, instead of only comparing final results for verification in common studies. In the first step, a 
complete comparison is made based on the assumptions and approximations of each method of the kinematics of 
deformation, displacement, and strain fields. After selecting the most accurate method in the first step, the 
displacement functions are determined by polynomial approximation under different loading and support conditions 
based on the selected method. In the third step, the displacement functions are used to calculate the strains in each 
method. The conclusion is based on comparing the strains. This comparative model can be used as a benchmark to 
compare different theories of deformation analysis.  
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1. Introduction 

 
In recent years, the deflection analysis of beams has been one of the hottest topics in solid-state 

mechanical engineering. The large deflection of beams refers to the deflection due to large displacements and 
small strains. This type of deflection has been one of the areas of interest in the development of beam 
deformation analysis methods. Considering the variety of beam deformation methods, a comparison of these 
methods is of great importance. 

Ohtsuki [1] described the large deflection of a simply supported beam under symmetrical three-point 
bending. An experiment was also performed to validate the applicability of the proposed model. 

Beléndez et al. [2] analyzed the large deflection of a cantilever beam under a uniformly distributed 
load and an external vertical concentrated load at the free end, both experimentally and numerically. They 
compared the numerical results with the experimental findings to find the modulus of elasticity of the beam 
and verify the numerical results. 

Nanakorn and Vu [3] proposed a new 2D Euler-Bernoulli beam element for the large displacement 
analysis using the total Lagrangian formulation. They confirmed the validity and efficiency of the proposed 
element by comparing various numerical results found in the literature. 

Xiao [4] investigated the large deflection of prismatic cantilever beams under a distributed load. An 
approximate analytical solution was obtained using the homotopy analysis method. The solution was validated 
through comparison with the nonlinear shooting method.  

Mohyeddin and Fereidoon [5] analyzed large deflections of a simply supported beam exposed to a 
point load in the middle. The results were compared with available experimental data and those obtained for 
the Euler-Bernoulli beam. 
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Li and Li [6] studied the three-point bending of a beam based on the Timoshenko theory. They finally 
compared large deflections and large rotations with their classical equivalents and experimental results.  

Taghipour and Baradaran [7] proposed a large deflection model by considering surface effects for 
nanowires. This model was verified by experimental data and used for interpretation of some other experiments. 

Abu-Alshaikh et al. [8] analyzed large deflections of a prismatic cantilever beam under concentrated 
force and moment. A new numerical solution was found by an elliptic integral construction. The results were 
obtained based on the Euler-Bernoulli beam theory, verified by comparing them with available numerical data. 

Taghipour and Baradaran [9] developed a large deflection model based on the nonlocal theory for 
nanowires. The numerical results were verified with the existence of numerical data for small deflections of 
the Timoshenko nanobeams. 

Bouadjadja et al. [10] investigated the large deflection response of composite cantilever beam 
experimentally and analytically. The analytical model was derived based on the classical Euler–Bernoulli beam 
theory with both symmetric and antisymmetric laminated beams and validated by those obtained analytically 
and experimentally in the literature. 

Zeng et al. [11] proposed a numerical approach for the cantilever beam under a force pointing at a 
fixed point with large deflections. They verified the analysis model with a commercial finite element analysis. 

Estabragh and Baradaran [12] investigated a finite element model for large deflection analysis of 
nanobeams based on the modified couple stress theory. The results were validated with the numerical data in 
the literature. 

Li et al. [13] improved the homotopy analysis method to solve the strongly nonlinear differential 
equation, for example for a cantilever beam subjected to point a load at the free end. The results were validated 
with the traditional homotopy method.  

Most of the mentioned studies and other comparative investigations compared the final results of 
different methods with each other for verification without following a specific comparison strategy. Because 
their main goal of comparisons was to evaluate the methods. This allows a fair and insightful comparison only 
under the same conditions. In such cases, important effective factors such as deformation assumptions, the 
displacement field, and strain field are often neglected. 

In this study, a new comparison model is proposed in a three-step strategy, as opposed to most studies 
that compared their results by considering the points mentioned overhead. The different methods were 
compared by classifying large analytical deflection models (proposed for beams) in terms of the type of 
kinematics of deformation, and the simplifications and assumptions of the displacement and strain fields in the 
first step. The values were parametrically compared in this step. The displacement functions were extracted as 
polynomial functions based on the most accurate method, in the second step. Finally, in the third step, different 
methods of analyzing the deflection of beams were compared based on different modes of support, loading, 
thickness, and deflection. Assuming the displacement field, the strain field was calculated by different 
introduced methods. Then, the values of the calculated strains were compared with the reference values (the 
most accurate strain values in this study i.e., strain values based on the Timoshenko method, without any 
simplifying hypotheses). 

 
2. The first step of the problem-solving approach 

 
Depending on the type of kinematics of deformation, the analysis of the large deflection methods can 

be divided into two general categories. The first category refers to methods giving up from the shear strain 
effect in deformation, known as the Euler-Bernoulli beam theory. The second class includes methods that 
assume the shear strain at the cross-sectional area of a beam is constant (i.e., Timoshenko’s beam theory). 
Finally, the most accurate method was selected. 
 
2.1. Methods of large deflection analysis of beams based on the Euler-Bernoulli theory 
 
 Based on the Euler-Bernoulli beam theory, the beam displacement field will be as depicted in Fig.1. [3]: 
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  ( ) ( ) ( )( ), , sin0u X Y Z u X Y X= − θ , (2.1) 
 
  ( ) ( ) ( )( ){ }, ,  cos0v X Y Z v X Y 1 X= − − θ , (2.2) 
 
  ( ), ,w X Y Z 0=  (2.3) 
 
where ( ), ,u X Y Z , ( ), ,v X Y Z  and ( ), ,w X Y Z  are the displacements of a point on the beam cross section, in 
the X , Y , and Z  directions, ( )0u X  and ( )0v X  are the displacements of the centroid of the beam cross-
section in the X  and Y  directions, respectively. Moreover, θ  is the slope of the neutral axis of the beam and 
also the rotation of the beam cross section. 
The strain components are based on the Green-Lagrange strain relationship as follows [14]: 
 

  ,  , , , ji m m
ij

j i i j

uu u u1 1 i j 1 2 3
2 X X 2 X X
   ∂∂ ∂ ∂

ε = + + =      ∂ ∂ ∂ ∂   
 (2.4) 

 
where 1u u= , 2u v= , 3u w= , 1X X= , 2X Y=  and 3X Z= . 
Based on the Euler-Bernoulli theory, the only non-zero strain is the normal component,  xxε : 
 

  cos cos sin
2 2

0 0 0
xx

du du dvd 1 d 1 dY Y Y
dX dX 2 dX dX 2 dX dX

θ θ θ     ε = − θ + − θ + − θ     
     

. (2.5) 

 

 
 

Fig.1. Beam deformation based on the Euler-Bernoulli beam theory. 
 
2.1.1. The first method 
 
 In the first approximation of the Euler-Bernoulli beam theory [1, 5, 8, 10, 11, 13, 15-27], the following 
simplifying assumptions are considered in calculating the displacement field: 
 

• Failure to change the axial length, i.e., 0u 0= . 
 

• cos 1θ ≈ , 
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• i i
ij

j j

u u1
2 X X
 ∂ ∂

ε ≈ +  ∂ ∂ 
. 

 
Finally, the strain of xxε  can be obtained as follows [28]: 
 

  cosxx
du d dx d d YY Y Y
dX dX ds dx dS

θ θ θε = = − θ = − = − = −
ρ

. (2.6) 

 
where,  ρ  is the radius of curvature of the neutral axis of the beam. 
In other words, in this method, the normal strain is approximated by the engineering strain resulting from the 
pure bending: 
 

  0
xx

0 0

l l Y
l l

−δε ≈ = = −
ρ

. (2.7) 

 

 
 

Fig.2. Display ( ) S − θ  on a cantilever beam. 
 
2.1.2. The second method  
 
 In the second approximation of the Euler-Bernoulli beam theory [29-31] the following simplifying 
assumptions are considered in calculating the displacement field: 
 

• sin tan 0dv
dX

θ ≈ θ ≈ , 

 
• cos 1θ ≈ , 
 
• Consideration of the von Karman strains. 

 
The strain of xxε  is as follows: 
 

  

2 22 2
0 0 0 0 0

xx 2 2
du d v du d v dv1Y Y
dX 2 dX dXdX dX

       ε = − + − +               
. (2.8) 
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Assuming the von Karman strains, the terms 
22

0 0
2

du d vY
dX dX

 
−  

 
 can be omitted from the rest of the expressions, 

such that: 
 

  
22

0 0 0
xx 2

du d v dv1Y
dX 2 dXdX

   ε ≈ − +       
. (2.9) 

 
2.2. Methods of large deflection analysis of beams based on Timoshenko’s theory 
 
 According to Fig.3., the most general displacement field in this analysis method [7, 9, 32, 33] is: 
 
  ( ) ( ) ( )( ), , sin0u X Y Z u X Y X= − ϕ , (2.10) 
 
  ( ) ( ) ( )( ){ }, ,  cos0v X Y Z v X Y 1 X= − − ϕ , (2.11) 
 
  ( ), ,w X Y Z 0= , (2.12) 
 
where ( ), ,u X Y Z , ( ), ,v X Y Z  and ( ), ,w X Y Z  are the displacements of a point on the beam cross section, in 
the X , Y , and Z  directions. In addition, ( )0u X  and ( )0v X  are the displacements of centroid of the beam 
cross-section, in the X  and Y  directions. Moreover, θ  and ϕ  denote the slope of the neutral axis of the beam 
and the rotation of the beam cross-section, respectively. Based on the Timoshenko beam theory, γ = θ − ϕ  is 
the mean shear strain in the beam cross-section. 
 

 
 

Fig.3. Beam deformation based on the Timoshenko beam theory. 
 
 The strain components can be determined based on the Green-Lagrange strain relationship and the only 
non-zero strains based on the Timoshenko theory are the shear strain xy xy2γ = ε  and the vertical strain xxε : 
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  cos cos sin
2 2

0 0 0
xx

du du dvd 1 d 1 dY Y Y
dX dX 2 dX dX 2 dX dX

ϕ ϕ ϕ     ε = − ϕ + − ϕ + − ϕ     
     

, (2.13) 

 

  sin cos0 0
xy xy

du dv2 1
dX dX

 γ = ε = − ϕ + + ϕ 
 

. (2.14) 

 
2.2.1. The third method 
 
 In the first approximation of the Timoshenko beam theory [5, 32, 33], the simplifying assumptions for 
calculating the displacement field are: 

 
• sin tan  θ ≈ θ ≈ϕ , 
 
• cos 1θ ≈ , 
 
• Using the von Karman strains. 

 
Finally, the strains of xxε  and xyγ  can be calculated as follows: 
 

  
2 2

0 0 0
xx

du du dvd 1 dY Y
dX dX 2 dX dX dX

 ϕ ϕ      ε = − + − +      
       

, (2.15) 

 

  0 0
xy xy

dv du d2 Y
dX dX dX

ϕ   γ = ε = − ϕ − ϕ −   
   

. (2.16) 

 

Assuming the von Karman strains, the terms 
22

0 0
2

du d vY
dX dX

 
−  

 
and 0du dY

dX dX
ϕ ϕ − 

 
 can be eliminated from 

the rest of the expressions, so: 
 

  
2

0 0
xx

du dvd 1Y
dX dX 2 dX

ϕ   ε ≈ − +   
   

, (2.17) 

 

  0
xy xy

dv2
dX

γ = ε ≈ − ϕ . (2.18) 

 
2.2.2. The fourth method 
 
The second approximation of the Timoshenko beam theory [5] does not involve any simplistic assumptions in 
calculating the displacement field. However, the nonlinear part of the strain was removed from  xxε . Finally, 
the strains are defined as follows: 
 

   cos0
xx

du dY
dX dX

ϕε ≈ − ϕ , (2.19) 
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  sin cos0 0
xy xy

du dv2 1
dX dX

 γ = ε = − ϕ + + ϕ 
 

. (2.20) 

 
2.2.3. The fifth method  
 
 In the third approximation of the Timoshenko beam theory [7, 9, 33], the displacement field is as 
simple as possible without simplifying assumptions; only the strain xxε  is simplified using the consistent 
linearization method as follows: 
 

  cos sin0 0
xx

du dv d1 Y 1
dX dX dX

ϕ ε = + ϕ + ϕ − − 
 

, (2.21) 

 

  sin cos0 0
xy xy

du dv2 1
dX dX

 γ = ε = − ϕ + + ϕ 
 

. (2.22) 

 
2.3. Selection of the most accurate method 
 
 In this research, the most accurate method is the fifth method. A code was used based on the finite 
element components to solve the equations of the fifth method as mentioned by Felippa [33]. The results of 
the finite element program were compared with experimental results [7]. The comparison results are depicted 
in Fig.4. for emphasis and reminder. 
 The assumed cantilever beam is made of steel. It is subjected to a uniformly distributed load along the 
length (the weight of the beam, 0.758 N/m) and a vertical concentrated force F at the free end. The width, 
height, and length of the cross-sectional area of the rectangular beam were 0.025, 0.0004, and 0.4 m, 
respectively [2]. 
 

 
 

Fig.4. Comparison of the results of the fifth method for large deflections of a steel cantilever beam under 
distributed and concentrated force with experimental data [7]. 

 
 As mentioned before, it was decided to obtain the functions of the displacement field from the most 
accurate analytical methods, i.e., the fifth method. 
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3. The second step of the problem-solving approach for a sample 
 
 The steel cantilever beam was under a uniformly distributed load along the length (weight of the beam, 
0.758 N/m) and a vertical concentrated force at the free end (0.196 N). The width, height, and length of the 
cross-sectional area of the rectangular beam were 0.025, 0.0004, and 0.4 m, respectively [2]. 
The final position functions of the nodes were obtained from the results of the fifth method. The results of the 
fifth method included the values of displacement in the horizontal, X , and vertical, Y , directions. The rotation 
of the cross-sectional area of the beam also involved  u , v , and ϕ , components. 
The following high order polynomials were used to obtain ( )y x , ( )u X , ( ) ,v X  and ( )Xϕ  functions: 
 

  
( )    

            ,

6 5 4

3 2

y x 29 319 x 35 342 x 13 099 x

3 3901x 2 3459 x 0 0004 x

= − ⋅ + ⋅ − ⋅

+ ⋅ − ⋅ +

+

⋅
 (3.1) 

 

  
( )    

                 ,

6 5 4

3 2

u X 8 2195 X 14 895 X 11 052 X

3 5053 X 0 0102 X 0 0003 X

= + ⋅ − ⋅ + ⋅

− ⋅ − +

+

⋅ ⋅
 (3.2) 

 

  
( )     

   ,

6 5 4

3 2

v X 3 2648 X 2 4104 X 1 9777 X

3 8114 X 2 364 X 0 0007 X

= + ⋅ − ⋅ − ⋅

⋅ − ⋅ + ⋅

+

+
 (3.3) 

 
  ( )      6 5 4 2X 17 814 X 23 575 X 8 2908 X 6 7071 X 4 6591 Xϕ = − ⋅ + ⋅ − ⋅ − ⋅− ⋅ . (3.4) 
 
 According to Fig.4., it is not possible to determine the functions of the displacement field from the 
values of the experimental method with a smooth function. In experimental measurements – as can be seen in 
Fig.4.– some deflections were slightly under-reported or over-reported while some were reported accurately. 
In addition, it is not easy or maybe impossible to obtain experimental results under various conditions. 
Therefore, the function obtained from analytical measurements of an analysis method with acceptable accuracy 
will be much smoother, more realistic and computable for different conditions.  

 
4. The third step of the problem-solving approach 
 

The strain was calculated using the simplification hypotheses described in the previous section and the 
polynomial functions obtained from adaptation to the displacement values. In strain calculations, the Y-
coordinate of the beam was 0.0002 m; that is, the vertical strain at the top of the neutral level. The maximum 
vertical strain at each point of the beam should be examined. 

The strain charts obtained by means of the described method were based on simplifying assumptions 
for the displacement field in Figs 5-7. 

The shear strain was omitted in the first and second methods. Among the third, fourth, and fifth 
methods, only in the third one, the shear strain had a formulation different from the reference strain. Therefore, 
it was compared in Fig.7. The reference shear strain values ranged between 0 and 0.001. 

For a more accurate comparison of the results, the deflections of beams were assessed under different 
situations. 

Uniformly distributed loads and concentrated forces (at the free end of the cantilever beam and 
centrally-loaded for the simply-supported beam) were applied and examined in separate cases. 

In all cases, the length and width of the beam were 0.4 and 0.025 m, respectively. But for analyzing 
thin to thick beams, heights or thicknesses were considered 0.0004, 0.05, and 0.2 m. 



Y. Taghipour and S. Darfarin  187 

For analyzing small to large deflections, the deflection ratio was defined by the following equation, 
considering deflection ratios of 0.000025, 0.01, 0.1, and 0.5: 
 

     
  

Maximumbeam deflectionDeflection ratio
Lengthof beam

= . (4.1) 

 

 
 

Fig.5. Comparison of maximum normal strains of the first and fifth method with maximum reference maximum 
normal strains along the length of a cantilever beam under uniformly distributed load (0.758 N/m) and 
concentrated force at the free end (F=0.196 N). 

 

 
 

Fig.6. Comparison of maximum normal strains of the second, third, and fourth method with maximum 
reference normal strains along the length of a cantilever beam under a uniformly distributed load (0.758 
N/m) and concentrated force at the free end (F=0.196 N). 
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Fig.7. Comparison of shear strains of the third method with reference shear strains along the length of a cantilever 
beam under a uniformly distributed load (0.758 N/m) and concentrated force at the free end (F=0.196 N). 

 
Calculations were performed for beams under different conditions, but the results are presented in this 

study. In addition to the previous example, the results of simple and clamped beams, with a thickness of 0.05 
m and deflection ratio of 0.1 are presented under uniformly distributed loads. 

 

 
 

Fig.8. Comparison of maximum normal strains of the first and fifth method with maximum reference normal 
strains along the length of a cantilever beam with a thickness of 0.05 m and deflection ratio of 0.1, under 
a uniformly distributed load. 

 

 
 

Fig.9. Comparison of the maximum normal strain of the second, third, and fourth method with maximum 
reference normal strain along the length of a cantilever beam with a thickness of 0.05 m and deflection 
ratio of 0.1, under a uniformly distributed load. 
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Fig.10. Comparison of shear strains of the third method with reference shear strains along the length of a 
cantilever beam with a thickness of 0.05 m and deflection ratio of 0.1, under a uniformly distributed load. 

 

 
 

Fig.11. Comparison of maximum normal strains of the first and fifth method with maximum reference normal 
strains along the length of the simply-supported beam with a thickness of 0.05 m and deflection ratio of 
0.1, under a uniformly distributed load. 

 

 
 

Fig.12. Comparison of the maximum normal strain of the second, third, and fourth method with maximum 
reference normal strain along the length of the simply-supported beam with a thickness of 0.05 m and 
deflection ratio of 0.1, under a uniformly distributed load. 
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Fig.13. Comparison of shear strains of the third method with reference shear strains along the length of the 
simply-supported beam with a thickness of 0.05 m and deflection ratio of 0.1, under a uniformly 
distributed load. 

 
5. Conclusion 
 

A large beam deflection was validated and with new comparison method. Most of the large deflection 
beam approaches were studied in this research. To provide useful and practical results, in this study we 
considered about 50 situations, from small to large deflections, with various height-to-length ratios (from thin 
to thick) for the cantilever and simple boundary conditions of the beams under concentrated forces and 
uniformly distributed loads. 

Functions of the displacement field can be obtained from analytical measurements, since experimental 
measurements are not available for all situations, as they are usually under- or over-estimated. 

The comparisons, make it possible to understand the scope of the applied modeling methods. The fifth 
method was employed to determine the functions of the displacement fields as it exhibited high precision in 
the analysis of the beam deflection.  

The results indicated that the strains of the fifth method were not significantly different from the 
reference values - which are the most accurate strain values in the analysis of beam deformation, i.e., strain 
values based on the Timoshenko method, without any simplifying hypotheses. This implies the proper 
accuracy of the fifth method. Therefore, it can be used to examine small to large deflections of beams under 
different boundary conditions and loadings. 

Similar to the second method, the third method applied von Karman’s strain theory. Concerning the 
shear strain in the calculations, it offered more accurate results compared to the second method for various 
thicknesses. On the other hand, the third method considered only the case of shear strain different from the 
reference values. At higher thicknesses, a comparison of shear strain exhibited more appropriate behavior.  

The fourth method does not have simplifying assumptions for the displacement field while assuming 
an approximation in calculations of the strain by removing the nonlinear part compared to the reference strain.  
Finally, the results can be presented as follows: 

1. The fifth method was very accurate in analyzing the beams; thus, it is suitable for determining the 
functions of the displacement field. 

2. For small to large deflections under different loading and boundary conditions and height-to-length 
ratios, the fifth method showed the highest compatibility with the reference strain. 

3. The fifth method can model beams, under different loading and boundary conditions. 
4. In small deflections, the third, fourth, and fifth method had sufficient accuracy. 
5. Large deflection assumption (i.e., deflection due to large displacement and small strains) is the basic 

assumption in these results. For the beam with a thickness of 0.2 m, the difference between the results 
of the fifth method and the reference strain values was significant which can be due to the big deflection 
with great strain values. 
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The present comparative model and the method of determining the displacement field functions can 
be used for comparing different theories of analysis and simulation of deformations without fully 
understanding all the methods used for solving the equations. 

Prediction of the mechanical response of beams is very important in designing mechanical systems 
and structures.  
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Nomenclature 
 
 d  – differentiation 
 F  – concentrated force 

 l  – current length of the beam 
 0l  – initial length of the beam 
 S  – arc length of the beam between the fixed end and the desired point 

 u  – displacement in the x  co-ordinate direction 
 0u  – displacement of the neutral axis of the beam in x  co-ordinate direction 

 v  – displacement in the y  co-ordinate direction 

 0v  – displacement of the neutral axis of the beam in y  co-ordinate direction 

 w  – displacement in the z  co-ordinate direction 
 0w  – displacement of the neutral axis of the beam in z  co-ordinate direction 

 x  – current x  co-ordinate 

 X  – initial x  co-ordinate 
 y  – current y  co-ordinate 

 Y  – initial y  co-ordinate 

 z  – current z  co-ordinate 

 Z  – initial z  co-ordinate 
 xyγ  – shear strain component 

 δ  – displacement in the y  co-ordinate direction 
 ijε  – strain component 

 xxε  – normal strain component 
 xyε  – shear strain component 

 θ  – slope of the beam axis 
 ρ  – radius of curvature of the neutral axis of the beam 

 ∂  – partial differentiation 
 ϕ  – rotation of the cross-sectional area of the beam 
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