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The present work studies the effects of the physical parameter characterizing the laminar flow regime, namely 

the Strouhal number, on the evolution of the unsteady dynamic boundary-layer developed along a wedge surface. 
Similarity method is used to transform unsteady momentum equation to dimensionless form. Using superposition 
method between diffusion and convective flows solutions, an ad hoc velocity profile formula is proposed. The 
obtained results confirm perfectly the numerical data given by Blasius, Falkner-Skan and Williams-Rhyne for all 
Strouhal numbers. A new accurate analytical function of the local skin friction is established for all time values and 
for different wedge surface directions. In order to give further clarification on the flows evolutions from diffusion 
flow to convective flow, in the whole space domain, new skin friction coefficient curves are plotted for all Strouhal 
numbers and for different wedge surface directions.  
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1. Introduction 
  
 Our main objective is to find an analytical approach allowing a solution of nonlinear equations 
governing the fluid flow, with the aim of applying it to thermal and mass transfers. In addition, the approximate 
solution of the dynamic boundary layers should be simple and with a maximum of three terms to render to  it 
possible use it in the coupling equations. The literature shows that among many theoretical attempts, the 
similarity is considered the most suitable transformation to reduce the number of variables in nonlinear 
differential equations in fluid mechanics. Stewartson [1, 2] studied numerically the unsteady momentum 
equation of viscous incompressible fluid flows past an impulsively semi-infinite horizontal surface started 
from rest. The authors outlined the main result, i.e. the independence in time disappears in an exponential. 
Tokudi [3] investigated fluid flow in a dynamic boundary layer on the plate stretching suddenly from rest. The 
author showed that the flow evolves from the initial Rayleigh flow to the final Blasius flow and the solution 
develops in temporal power series. Numerical solutions describe the unsteady laminar thermal boundary layer 
on a semi-infinite flat plate impulsively moving for several Prandtl numbers. A temperature condition imposed 
on the wall is taken as a parietal condition, Watkins [4]. Hall and Dennis [5, 6] used a numerical iterative 
method to solve the unsteady boundary layer equations along an impulsive flat surface. In the study, the 
velocity profile and shear stress are presented in two flow regimes namely: Rayleigh and Blasius. Seshadri et 
al. [7] studied unsteady mixed convection of a heated vertical wall in impulsive motion of the free flow. They 
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solved numerically the unsteady boundary layer equations of momentum and heat by using the finite difference 
approach. Williams and Rhyne [8] carried out a study of the unsteady dynamic boundary layer on a wedge 
subjected to a sudden movement (Falkner-Skan type, ( )mu Cx= . The boundary layer equation is solved 

numerically by using similarity transformations called Williams-Rhyne transformations. Nazar et al. [9] 
studied the unsteady momentum equation of a suddenly stretched surface in a rotating fluid. Using similarity 
transformation, perturbation and asymptotic solutions are given for small times and large times, respectively.  
Other similar problems have been solved numerically by many researchers using the Williams-Rhyne 
transformation, e.g., the study of the stretching plate for various positions in heat transfer and in the presence 
of a magnetic field. Liao [10] developed a new analytical approach, a homotopy analysis method (HAM), for 
nonlinear problems. Liao [11] achieved an analytic expression of the friction coefficient valid over a large time 
interval on a flat plate pulled sharply into its plane from rest. The solved equations are those of the dynamic 
boundary layer where the Rhyne similarity transformations are adopted. Hang [13-14] used a homotopy 
analysis method to resolve the dynamic and thermal problems in unsteady boundary layer evolved in an electric 
fluid flowing on the plate exposed at once to a sudden movement and to a thermal shock. The author illustrated 
that the serial solution results are accurate. Zheng and Ghate [18] solved the problem of the unsteady boundary 
layer on a flat plate. They worked out an adequate solution using two parameters, the Blasius parameter and 
dimensionless time. The authors found closed-form solutions valid for other types of flow. Hafidzuddin et al. 
[19] by using appropriate similarity variables resolved both the dynamic and thermal problems of flow over 
permeable stretching/shrinking surface. The EDP equations were transformed to ordinary equations. The 
researchers showed the solution stability. Recently, J. Nagler [20] found a higher-order solution of the 
boundary layer in terms of velocity profile on cylindrical surface subject to sudden movement. The author 
found that the velocity profiles are identical to those described in the literature which confirms Watson theory. 
Bulgakov et al. [21] used special coordinates to resolve the equation of movement over a blunt body. The 
Paulhasen approximation is adopted to find different thicknesses in dynamic and thermal boundary layers. 
Bachiri and Bouabdallah [16], presented an approximate analytical solution of the unsteady dynamic boundary 
layer equation over a plate by using ad hoc solution for all values of the Strouhal number. The principal result 
concerned the evolution of the skin friction coefficient in two regime flows from initial to steady solutions. 
They also [17] studied the steady state momentum and energy equations over an isothermal wedge surface and 
gave a new expression of the Nusselt number valid for all Prandtl numbers and for different wedge surface 
positions. So, as a complementary investigation given in [17], we investigate the unsteady dynamic boundary 
layer over a wedge surface to establish an analytical formulation of the velocity profile as a function of Strouhal 
numbers over all time values. In addition, in this paper, an analytical expression of the velocity is proposed by 
superposition method, which must consider the boundary conditions, the solutions of Rayleigh, Blasius and 
Falkner-Skan, and the equilibrium of the unsteady momentum equation.  
 
2. Mathematical formulations 
 
 The geometry of this phenomenon is illustrated in Fig.1, where an unsteady laminar flow expanded 
along a wedge surface. The velocity components according to the x and y coordinates are u and v, respectively, 
where x is tangent to the wedge surface and y is perpendicular to x. Along the wedge surface and at any time, 
the velocity vector is equal to zero (adhesion condition). The volume force and the dissipation terms are 
neglected, and the fluid flow is assumed incompressible. Hence, the continuity and the unsteady momentum 
equations are: 
 

  u v 0
x y

∂ ∂+ =
∂ ∂

, (2.1) 

 

  ( )( )
2

e
e 2

du xu u u uu v u x
t x y dx y

∂ ∂ ∂ ∂+ + = + ν
∂ ∂ ∂ ∂

 (2.2) 



28  Strouhal number effects on dynamic boundary layer… 

where ( ) m
e 0u x u x=  is the fluid velocity at infinity, m is the Falkner-Skan parameter given by ( )/m b 2 b= −  

and 0u  is a constant, ν and t are, respectively, the kinematic viscosity and the time. These equations are subject 
to the following conditions: 
 
  :t 0≥    
 
  ( , , ) ( , , )u x 0 t v x 0 t 0= = , 
 
  ( , , ) ( )eu x y t u x→ ∞ = , (2.3) 
 
  :t 0=   
 
  ( , , ) ( , , )u x y 0 v x y 0 0= = . 
 
In order to reduce the number of variables in the momentum equation, it was a question of finding the physical 
parameter that characterizes the fluid flow, then performing an adequate scale analysis. The scale analysis is 
based on the dimension order of the boundary layer thicknesses of two limits solutions; initial solution ( )t 0=  
and steady solution ( .)t → ∞   

It was found that, for the initial solution the scale is /)/ ( 1 2
d y ntη =  where the dimension order of diffusion 

thickness is / ,( ). 1 2
d 3 64 ntδ ≈  and for the steady solution the scale is //( )1 2

c ey u nxη =  where the dimension 

order of convective boundary layer thickness is equal to // .( )1 2
c e5 nx uδ ≈  The scale analysis permits us to 

deduce the following dimensionless number: /1 2c
x

d e

x St
u t

δ
= =

δ
 where  x

e

xSt
u t

=  is the local Strouhal number. 

The flow regime characterization can be given by the Strouhal number; for xSt 1<<  the flow is convective 
(Falkner-Skan flow), for xSt 1>>  the flow is diffusive (Rayleigh flow) (see Fig.1). 
 

 
 

Fig.1. Unsteady flow along a wedge surface.  
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Thus, the y-coordinate scaling is like ( ) // 1 2y nt  for a short time ( )xSt 1>>  and ( ) // 1 2
ey u nx  for large times 

( )xSt 1<< . The time scale is chosen so that the region of time integration may become finite. Taking into 
account the previous analysis, the transformations looked for are given by Williams and Rhyne [8]:  
 

  ( )eu x
y

x
η =

ν ξ
, exp expe

x

u t 11 1
x St

  ξ = − − = − −  
   

 and ( ) ( ) ( ), , ,ex y t x u x Fψ = ν ξ ξ η  

 
where η  and ξ  are the similarity variables, ( ), ,  x y tψ  and ( ),F η ξ  are the streamliness function and the 
dimensionless stream function, respectively.  
Using the similarity transformation and reduced stream function ( ),F η ξ  in Eq.(2.2), the unsteady momentum 
equation is reduced to 
 

  

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ln

ln

ln .

3 2 2

3 2 2

22

2

F 1 F 1 F1 m 1 m 1 1 1 F
2 2

F F Fm 1 1 1 m 1

F F1 1 m 1 1 0

∂ ∂ ∂+ η − ξ +  + ξ − − − ξ − ξ  + ∂η ∂η ∂η
    ∂ ∂ ∂ − − ξ − ξ − ξ + ξ − +  ∂ξ ∂η∂η      

   ∂ ∂ ∂+ξ − ξ − − − ξ =  ∂η ∂ξ ∂η   

 (2.4) 

 
Subject to boundary conditions: ( ( ), ,)F F 0η∞ ξ = ∞ ξ =  and ,( )F 1η ∞ ξ = . 
  
3. Analytical approach 
 
3.1. Case of diffusion flow ( ),xSt 1 0>> ξ =   
 
When ,0ξ =  corresponding to ,xSt → ∞  Eq.(2.4) becomes the Rayleigh type of equation 
 

  
3 2

3 2
F 1 F 0

2
∂ ∂+ η =
∂η ∂η

 (3.1) 

 
subject to: ( ) ( ), , ,  F 0 0 0 F 0 0 0η= =  and . ( ),F 0 1η ∞ =   
Rayleigh found the exact solution:  
 

  ( ),F 0 erf
2η
η η =  

 
 (3.2) 

  
where ( )erf h  is the error function. 
 
3.2. Case of convective flow (Stx << 1, ξ =1) 
 
At ,( ),  x1 St 0ξ = →  Eq.(2.4) becomes the Falknar-Skan equation  
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23 2

3 2
F m 1 F FF m m 0

2
 ∂ + ∂ ∂+ − + = ∂η∂η ∂η  

. (3.3) 

 
subject to: ( ),  F 0 1 0= , ( ),  F 0 1 0η = and ( ), . F 1 1η ∞ =  
To our knowledge the exact analytic solution of the non-linear equations such as Eq.(3.3) does not exist. 
Equation (3.3) admits numerical solutions and analytical approaches with a high order of approximation. In 
our study given in [17], an accurate analytical approach is proposed using a dimensionless velocity profile 
formula ( ),  F 1η η . The choice of ( ),  F 1η η  expression is constrained to satisfy two fundamental restrictions 
which are the boundary conditions and the equilibrium of the momentum equation. The proposed 
dimensionless velocity profile is written as:  
 
  ( , ) exp( ) ( )exp( )2

0 0F 1 A B C 1η η = − −α η − η + −β η +  (3.4) 
 
where A, B, C, α0 and β0 are and their determination takes into account the above conditions: 
 
- Boundary conditions give: 
 
  ( , )F 0 1 A C 1 0η = − − + = , 
   (3.5) 
  ( , )F 1 1η ∞η = . 
 
- At η=0, the Falkner-Skan equation gives: 
 
  ( , ) 2

0 0 0F 0 1 2A 2B Cηηη = α + β − β . (3.6) 
 
And from the second derivative of Eq.(3.4) at η=0:  
 
  ( , ) 0F 0 1 B C cteηη = − + β =  (3.7) 
 
which represents the local shear stress.  

( , )F 0 1ηη  and ( , )F 0 1ηηη vary according to the wedge surface directions.  
From Eq.(3.7): ( , )F 0 1 mηηη = −  and ( , )F 0 1ηη are given numerically.  
At any wedge surface directions, the constants A and C are positives and less than one. 
  
  A + C=1 with 0 < A < 1 and 0 < C < 1  (3.8) 
 
From Eq.(3.7): 
 
  ( ) ( )- - ,0B 1 A F 0 1ηη= β  (3.9) 
 
Equations (3.6)-(3.9) reduce the number of variables like:  
 
  ( ) ( , ) ( )2

0 0 01 A 2F 0 1 2A m 0ηη− β − β + α + =  (3.10) 
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Because all constants are positives, the solution of this last equation is written as  
 

  ( ) ( , ) ( , ) ( )( )2
0 0B 1 A F 0 1 F 0 1 1 A 2A mηη ηη= − β − = − − α + ,  (3.11) 

 
  ( , ) ( , )2

0F 0 1 Aηη σ α  (3.12) 
 
where ( , ) ( )( )0 0A 1 A 2A mσ α = − α + . 
To find the three constants in Eq.(3.12), the idea is to fix the constant α0 to a maximum value for all A ∈] 0, 1[ 
for all wedge surface directions. Figure 2 presents max( , )0Aσ α  and ( , )2F 0 1ηη  according to A for five wedge 

surface directions. It noticed that max( , )0Aσ α  < ( , )2F 0 1ηη  with 0 < α0 ≤ α0max.  
Thus, the values of α0max are 0.2203, 0.4055, 0.55, 0.7768 and 1.9095 for m=0, 1/9, 1/5, 1/3 and 1, respectively. 
Using the dichotomous method and Eq.(3.11), it is easy to determine B and β0 by fixing α0 ∈] 0, α0max [then 
selecting the values of A ∈] 0, 1[. The constants in Eq.(3.4) must be justified by the calculation of the residual 
errors Δε of Eq.(3.13). 
 

  
23 2

3 2
F m 1 F FF m m

2
 ∂ + ∂ ∂+ − + = Δε ∂η∂η ∂η  

 (3.13) 

 

 
Fig.2. max( , )0Aσ α and ( , )2F 0 1ηη  variations according to A∈]0, 1[ for five wedge surface directions. 

 
Table 1 gives the values of A, B, C, α0 and β0 for five wedge surface directions. 
 
Table 1. Values of constants for different wedge surface directions. 

 
m A B C α0 β0 
0 0.64 0.18123 0.36 0.168 1.42581 

1/9 0.37 0.27494 0.63 0.25 1.24913 
1/5 0.31 0.3397 0.69 0.31 1.39275 
1/3 0.235 0.40938 0.765 0.42 1.52520 
1 0.132 0.65849 0.865 0.95 2.17867 
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As shown in Fig.3, the results attained denote that Eq.(3.13) converges in the whole spacial domain 0 ≤ η < ∞ 
to the solution ( , )F 1η η  of Eq.(3.4) and the mean residual error ε < 0.003 in the whole spacial domain. Indeed, 
the present analytic approach coincides completely with the numerical results of Blasius and Falkner-Skan for 
the horizontal and vertical wedge surface. 
Thus, we can easily deduce analytically all functions appearing in the momentum equation such as : 
 

  ( )( , ) exp( )0 02 2
0 0 00 0 0

A B B C B CF 1 erf
2

    πη = − α η + η + + −β η + η − +       β β βα β β     
, (3.14) 

 
  ( , ) exp( ) ( )exp( )2

0 0 0 0 0F 1 2A B C Bηη η = α η −α η + β η + β − −β η , (3.15) 
 
  ( , ) ( )exp( ) ( )exp( )2 2 2 2 2

0 0 0 0 0 0 0F 1 4A 2A B C 2Bηηη η = − α η + α −α η + − β η − β + β −β η . (3.19) 
 
Figures 4-5 illustrate the stream function and the velocity profiles for five wedge surface directions. It is found 
that when the wedge angle increases the velocity profiles become narrower because in the dynamic boundary 
layer the velocity gradient from the wedge surface to the ambient free flow is more rapid when the wedge 
angle increases. The graphical presentation of Eqs.(3.15)-(3.19), for five wedge surface directions, is given in 
Figs 6-7, respectively. The main observation from these figures is the competitiveness between convective and 
diffusion forces, especially near the wall, in which ( , )F 0 1ηη  and ( , )F 0 1ηηη  increase when m increases. 
 
a) b) 

 
Fig.3. Dimensionless velocity profile for a) Blasius flow and b) Falkner-Skan flow: scatter points numerical 

results; solid lines present analytic approach. 
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Fig. 4. Dimensionless stream function evolutions for five wedge surface directions.  
 

 
 

Fig.5. Dimensionless velocity profile distributions for five wedge surface directions. 
 

 
 

Fig.6. Variation of dimensionless local shear for five wedge surface directions. 
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Fig.7. Variation of ( , )F 1ηηη η  for five wedge surface directions. 
 

3.3. Case of all Strouhal numbers 
 
In order to study analytically the unsteady boundary layer evolution for all Strouhal numbers, an ad hoc analytic 
expression of the dimensionless velocity profile Fη (η,ξ) is proposed. This formula is the superposition of initial 
exact solution and steady approach solution with a minor perturbation of these solutions. The potency of this 
approach will be confirmed by the calculation of the mean residual error Δε of the below equation for all time 
values 0 ≤ ξ ≤ 1 in the whole spacial domain 0 ≤ η < η∞. 
 

  

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ln

ln

ln .

3 2 2

3 2 2

2

2

2

F 1 F 1 F1 m 1 m 1 1 1 F
2 2

F Fm 1 1 1

F F Fm 1 1 1 m 1 1

∂ ∂ ∂+ η − ξ +  + ξ − − − ξ − ξ  + ∂η ∂η ∂η

 ∂ ∂− − ξ − ξ − ξ + ∂ξ ∂η 
      ∂ ∂ ∂ ∂ + ξ − + ξ − ξ − − − ξ = Δε    ∂η ∂η ∂ξ ∂η       

 (3.17)  

 
Under the above conditions, we express the velocity profile of the unsteady problem as the superposition of 
both the initial and steady solutions with a minor perturbation 
 
  ( )( , ) ( ) ( ) ( , )F 1 erf F 1η ηη ξ = − ξ  ηφ ξ  + ξ η    (3.18) 
 
where ( )φ ξ is a function depending on the wedge surface directions. Equation (3.18) verifies the boundary 
conditions and the two limits solutions as follows:  
  

  
( , ) ( , ) ,
( , ) ,

F 0 F 0 0

F 1
η

η

ξ = ξ =

∞ ξ =
  

at ( ) ,x0 St 1ξ = >>  we find the initial solution of Rayleigh ( , ) 1F 0 erf
2η

 η = η 
 

, with ( ) 10
2

φ =  and at 

( ) ,x1 St 1ξ = <<  we find the steady approach solution Eq.(3.4) of Falkner-Skan equation. 
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The function ( ) 0
1
2

φ ξ = γ ξ +  verifies the two limits solutions and the determination of γ0 constant can be found 

by the substitution of ( , )Fη η ξ  in the momentum equation in which Δε must approach zero. Indeed, the results 
indicate that the dimensionless velocity profile corroborate well the equilibrium of the momentum equation 
for each wedge surface directions, with the maximum averaged residual errors Δε < 0.007 for all Strouhal 
numbers in the whole domain of η∈ [0, η∞ =5]. Therefore, the simplicity of terms existing in ( , )Fη η ξ  
converges well with the complexity of the unsteady momentum equation of the boundary layer flows over the 
wedge surface for all Strouhal numbers and for different wedge surface directions. An important physical 
function ( , )F 0ηη ξ  (shear stress) is given after derivation of Eq.(3.18),  
 

  ( )
( , )

( , ) ( , )0
0

dF 2 1F 0 1 F 0 1
d 2

η
ηη ηη

η=

η ξ  ξ = = − ξ γ ξ + + ξ η π  
  (3.19) 

 
The local shear stress ( , )F 0 1ηη  and γ0 depend on the position of the wedge surface. Table 2 gives the values 
of γ0 for different positions of the wedge surface. 
 
Table 2. Values of γ0  for different wedge surface positions. 

 
m 0 1/9 1/5 1/3 1 
( , )F 0 1ηη  0.3320 0.5120 0.6213 0.7570 1.2326 

γ0 0.10 -0.08 -0.10 -0.12 0.06 
 
Figure 8 shows that the local shear stress determined from Eq.(3.19) is in a good accord with the of Williams-
Rhyne numerical results for all-time values 0 ≤ ξ ≤ 1. Therefore, the present approach confirms, in all spatial 
and temporal domains, the Rayleigh’s, Blasius’, Falknar-Skan’s solutions and the general solution. Figure 9 
presents the proposed velocity profile variation for different Strouhal number values in the spatial domain of 

],[0 5∞η∈ η ≈  and for different wedge surface directions. It is observed that for all Strouhal numbers, the 
velocity gradients are rapid when the wedge tends towards the vertical direction.  
 

 
Fig.8. Local shear stress ( , )F 0ηη ξ  for vertical and horizontal wedge surface. 
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a) b) 

    
c) d) 

    
e)   

    
Fig.9. Dimensionless velocity profiles for all Strouhal numbers and for different wedge surface directions: 

a) ,m 0=  b) ,1m 9=  c) ,1m 5=  d) 1m 3= , e) .m 1=   
 
These results are well explained in Figs 10-11. Furthermore, when the wedge surfaces are horizontal or vertical, 
the curves of the velocity evolutions are clearly separated for each St  number value. However, in case of 
inclination positions of the wedge surface the velocity evolutions are identical when St 1>  and with a light 
variation when .St 1<   
The skin friction coefficient on the surface can be expressed as: 
 

  f 2
ey 0

u 1C 2
y u=

 ∂= μ ∂ ρ 
. 
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Using similarity solution, we find  
 

  ( ) ( )/
/ ,

Re
f 1 2

01 2
x

C 2 12 1 F 0 1
2

−
ηη−

  = ξ − ξ γ ξ + + ξ  π   
.  (3.20) 

 
To show the effect of the Strouhal number on the evolutions of the main physical parameters, the local shear 
stress and the skin friction coefficient are illustrated in Figs 10-11 for all Strouhal number values and for 
different wedge directions. Indeed, when Stx < 1, the variations of the skin friction coefficient are more 
significant for the horizontal surface (m=0) and becomes lightly less important for inclined and vertical 
positions of the wedge. On the other hand, when Stx > 1 the evolutions of the skin friction coefficient depending 
linearly on the Strouhal number and become equal for all Stx > 80. We explain this results by the fact that when 
Stx > 1 (δc > δd) the diffusion forces dominate, and when Stx < 1 (δd > δc) the convective forces dominate. 
 

 
 

Fig.10. Local shear stress evolutions for all Strouhal numbers and for different wedge surface directions. 

 
 

Fig.11. Skin friction coefficient for all Strouhal numbers and for different wedge surface directions. 
 

4. Conclusion  
 
 An analytic approach is employed to study an unsteady boundary layer flow along a wedge surface for 
all Strouhal numbers. An analytical formula of the velocity profile is proposed for converging the momentum 
equation at any wedge surface directions and for all time values. This approach has been well verified the 
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boundary conditions, Rhyleigh’s, Blasius’, Falknar-Skan’s and Williams-Rhyne’s solutions and the unsteady 
momentum equation for all Strouhal numbers and for all spatial and temporal domains. A new analytic law of 
the skin friction coefficient is given for all Strouhal numbers and at any wedge surface directions 0 ≤ m ≤ 1. It 
is clear that the simplicity of terms existing in the velocity formula converges well with the complexity of 
nonlinear partial differential equation of the unsteady boundary layer developed over the wedge surface.  
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Nomenclature 
 
 A, B, C – constants 
 Cf – skin friction coefficient 
 F – dimensionless stream function  
 Fη – dimensionless velocity profile  
 m – Falkner-Skan parameter 
 Re – Reynolds number 
 St – Strouhal number 
 t – time, s 
 ue – ambient velocity, m.s-1 
 u – velocity component in the x-direction, m.s-1 
 ν – velocity component in the y-direction, m.s-1 
 x, y – Cartesian coordinates along the wedge surface and normal to it, respectively, m  
 
Greek symbols 
 
 α0,β0,γ0 – constants 
 δc – convective flow thickness, m  
 δd – diffusion flow thickness, m  
 Δε – average residual error 
 η – independent similarity variable 
 μ – dynamic viscosity, kg. m-1.s-1 
 ν – kinematic viscosity, m2. s-1 
 ξ – independent similarity variable 
 πβ – wedge surface angle, rad 
 ρ – density, kg.m-3 
 σ – function 
 φ – function depending on ξ 
 ψ – stream function, m2.s-1  
 
Subscripts 
 
 η – differentiation with respect to η 
 max – maximum 
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