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In this paper we propose the weighted energy method as a way to study estimates of solutions of boundary-value problems
with non-homogeneous boundary conditions in elasticity. First, we use this method to study spatial decay estimates in two-
dimensional elasticity when we consider non-homogeneous boundary conditions on the boundary. Some comments in the
case of harmonic vibrations are considered as well. We also extend the arguments to a class of three-dimensional problems
in a cylinder. A section is devoted to the study of an ill-posed problem. Some remarks are presented in the last section of
the paper.
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1. Introduction

The energy method is an appropriate tool in the study of
the behaviour of solutions of partial differential equations.
There is an important amount of literature on this method
with references to the case of problems with homoge-
neous boundary conditions. This is not the case when the
boundary conditions are not homogeneous. If we restrict
our attention to the study of spatial estimates of solutions
of elliptic partial differential equations, we only know a
few contributions (Ames and Payne, 2000; Horgan and
Payne, 1992; Knops and Payne, 1998; Quintanilla, 1997a;
1997b; 1998). If we take a look at the history of these
studies, we can recall the paper of Lin and Payne on two
ill-posed parabolic problems (Lin and Payne, 1993), see
also (Franchi and Straughan, 1994). In that paper, an idea
was outlined that inspired the contribution in the refer-
ence (Quintanilla, 1997a). The main thought was to con-
sider estimates on smaller domains in several directions.
When the boundary conditions were known, an alterna-
tive method (Horgan and Payne, 1992) was proposed in
their studies concerning the stability with respect to the
geometry of the cross-section.

Some contributions to the Laplace equation and the
biharmonic equation were obtained by Ames and Payne
in the recent work (Ames and Payne, 2000). Some con-
tributions to the elasticity system were obtained in the
references (Knops and Payne, 1998; Quintanilla, 1997b;
1998). In (Quintanilla, 2000), the author proposed an ap-
proach to this kind of questions also based on the energy
methods in order to deal with non-homogeneous bound-

ary conditions. The main idea was to introduce a weight
function in the energy function. This kind of procedure
resembles the one used by Straughan (1982), and Galdi
and Rionero (1985) in the study of unbounded domains,
when we allow for unbounded behaviour at the infinity. It
is worth noticing that our weight functions concern only
bounded directions. Here, we try to extend these methods
to the system of elasticity. In this situation things seem
more difficult than for the Laplace equation or the heat
equation. We have to restrict our attention to a particu-
lar family of isotropic and homogeneous materials. It is
known that considerations of positive definite energy re-
strict the range of Poisson’s ratio to−1 < ν < 1/2, but
our method only applies whenν < 1/4.

As the results that we present here are related to the
Saint-Venant principle, it is worth recalling the references
(Horgan, 1989; 1996; Horgan and Knowles, 1983), where
the history and the state of the art of this study are well
described.

It is worth noticing that the results hold for solutions
having a priori suitable behaviour at the spatial infinity
(e.g. going to zero or having derivative going to zero), and
to eliminate this restrictions seems a (fundamental) open
problem.

In Section 2 we recall some preliminaries related to
inequalities of Poincaré’s type. The evolution of the so-
lutions of a non-homogeneous ordinary differential equa-
tion is also recalled. Section 3 is devoted to the study of
the solutions of the Navier equations in the case of a strip,
when we assume non-homogeneous boundary conditions
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in a great part of the boundary. In Section 4 we consider a
similar question for the solutions of the amplitude terms of
the steady-state vibrations. The extension to the case of a
cylinder is developed in Section 5. The last section of the
paper considers the case where we have no information on
a part of the boundary.

2. Preliminaries

Summation and differentiation conventions will be used
throughout this paper. We recall that summation over re-
peated indices is implied and that the suffix ‘, i’ denotes
∂/∂xi.

We recall that the functionsinπx satisfies the
clamped eigenvalue problem

∆φ + λφ = 0, (0, 1), (1)

φ = 0, {0, 1}. (2)

We shall denote byφ[0,1] the eigenfunction that satis-
fies sup[0,1] φ = 1. We know that if x 6= 0, 1, then
φ[0,1](x) > 0. Thus, for all0 < ε < 1 we may define the
subdomain

[0, 1](ε) =
{
x ∈ [0, 1], φ[0,1](x) ≥ ε

}
. (3)

In the next sections we will obtain estimates of the
form

E(z) ≤ −A−1 dE

dz
+ R(z), (4)

where R(z) is a given function. If we want to study the
asymptotic behaviour of the functionE(z), we may use

exp(−Az)
d
dz

(
exp(Az)E(z)

)
≤ AR(z). (5)

After a quadrature, it follows that

E(z) ≤
(
E(0) + A

∫ z

0

exp(Aξ)R(ξ) dξ
)

exp(−Az),

z ≥ 0. (6)

Equation (4) will appear (in several points) in the
case where there exists a functionr(τ) such that

R(z) =
∫ ∞

z

r(τ) dτ. (7)

After integration by parts, we obtain the equality

A

∫ z

0

exp(Aξ)R(ξ) dξ exp(−Az) = R(z)

−
(

R(0)−
∫ z

0

exp(Aξ)r(ξ) dξ

)
exp(−Az). (8)

From (6) and (8) we see that

E(z) ≤ E(0) exp(−Az) + R(z)

−
(

R(0)−
∫ z

0

exp(Aξ)r(ξ) dξ

)
exp(−Az),

z ≥ 0. (9)

In this paper we will use several inequalities of
Poincaré’s type. Let us recall that there exists a positive
constantλ1 such that the estimate∫ 1

0

xu2 dx ≤ λ−1
1

∫ 1

0

x(u′)2 dx (10)

is satisfied for any functionu that vanishes whenx = 1,
and u and its derivative are bounded atx = 0. We may
recall thatλ1 is the first eigenvalue of the Sturm-Liouville
singular problem

(xu′)′ + λxu = 0, (0, 1),

u(1) = 0, u(0) bounded andxu′(x) → 0 asx → 0.

This first eigenvalue agrees with the square of the first zero
of the Bessel functionJ0(x) (Weinberger, 1995, pp. 176–
180). Approximations to this constant are well known in
the literature. We have

√
λ1 = 2.4048 . . .

We also need another differential inequality of this
kind. We know that there exists a positive constant such
that the estimate∫ 1

0

u2 dx ≤ µ−1
1

∫ 1

0

x(u′)2 dx (11)

is satisfied for every functionu that vanishes whenx =
1, andu and its derivative are bounded atx = 0. It is well
known that this constant corresponds to the first eigen-
value of the singular Sturm-Liouville eigenvalue problem

(xu′)′ + µu = 0, (0, 1),

u(0), u′(0) bounded, andu(1) = 0.
(12)

3. Problem in a Strip

We consider a problem modelled by the system of the ho-
mogeneous and isotropic linear elasticity (Navier’s sys-
tem):

ui,jj + αuj,ji = 0, (13)

in the semi-infinite strip(0,∞)× (0, 1). Here ui are the
components of the displacement with respect to a given
Cartesian coordinates system andα is a positive constant.
We assume that0 ≤ α < 2, but it is possible to extend
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the arguments to some cases whenα < 0. We recall the
relation

α = (1− 2ν)−1. (14)

Here ν is the Poisson ratio. Thus the range of the applica-
bility of our approach requires the Poisson ratio to satisfy
ν < 1/4.

We assume the boundary conditions

ui(x1, 0) = fi(x1), ui(x1, 1) = gi(x1), (15)

and
ui(0, x2) = hi(x2). (16)

The functionsfi, gi, hi are data. We assume that

fi(0) = hi(0), gi(0) = hi(1).

For later use, we recall that ifφ is a function that de-
pends only on the variablex2 and (ui) is an arbitrary so-
lution of the two-dimensional version of the system (13),
the relation[

φ(2ui,j + αδijuk,k + αuj,i)ui

]
,j

− α
[
(φu1u2),2 − φu1,2u2 − φu1u2,2

]
,1

= φF (ui,j , ui,j)− φ′′uiui − αφ′′u2
2

+
[
φ′(uiui + αu2

2),
]

,2
(17)

is satisfied.
It is worth noticing that whenever0 ≤ α < 2, the

function

F (ui,j , ui,j) = 2ui,jui,j + αui,iuj,j + αui,juj,i (18)

satisfies

F (ui,j , ui,j) ≥ (2− α)ui,jui,j + αui,iuj,j , (19)

which is positive. Thus it can be used to define a measure
on the solutions.

In this section we assume that the energy

E(0) =
∫ ∞

0

∫ 1

0

φ[0,1]

[
F (ui,j , ui,j)

+ π2(uiui + αu2
2)
]
da (20)

is bounded and that the asymptotic condition

lim
x1→∞

∫ 1

0

φ[0,1](2ui,1ui + αuk,ku1 + αu1,iui

+αu1,2u2 + αu1u2,2) dx2 = 0 (21)

is satisfied.

If we define

E(z) =
∫ ∞

z

∫ 1

0

φ[0,1]

[
F (ui,j , ui,j)

+ π2(uiui + αu2
2)
]
da, (22)

the use of the divergence theorem allows us to obtain the
relation

E(z) = −
∫ 1

0

φ[0,1](2ui,1ui + αuk,ku1 + αu1,iui

+ αu1,2u2 + αu1u2,2) dx2

+ π

∫ ∞

z

(
(f2

1 +g2
1)+(1+α)(f2

2 +g2
2)
)
dξ. (23)

We also have

dE

dz
= −

∫ 1

0

φ[0,1]

[
F (ui,j , ui,j)

+ π2(uiui + αu2
2)
]
dx2. (24)

In the next step we estimateE(z) in terms of its spatial
derivative and the boundary conditions. It will be useful
to consider the integrals

I1 = −2
∫ 1

0

φ[0,1]ui,1ui dx2, (25)

I2 = −α

∫ 1

0

φ[0,1]αuk,ku1 dx2, (26)

I3 = −α

∫ 1

0

φ[0,1]u1,iui dx2, (27)

I4 = −α

∫ 1

0

φ[0,1]u1,2u2 dx2, (28)

and

I5 = −α

∫ 1

0

φ[0,1]u1u2,2 dx2. (29)

The Hölder inequality and the arithmetic-geometric
mean inequality imply

I1 ≤ 2
(∫ 1

0

φ[0,1]ui,1ui,1 dx2

)1/2(∫ 1

0

φ[0,1]uiui dx2

)1/2

≤
(
ε1

∫ 1

0

φ[0,1]ui,1ui,1 dx2

+
1
ε1

∫ 1

0

φ[0,1]uiui dx2

)
, (30)
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I2 ≤ α
(∫ 1

0

φ[0,1]ui,iuj,j dx2

)1/2(∫ 1

0

φ[0,1]u
2
1 dx2

)1/2

≤ α
(ε2

2

∫ 1

0

φ[0,1]ui,iuj,j dx2

+
1

2ε2

∫ 1

0

φ[0,1]u
2
1 dx2

)
, (31)

I3 ≤ α
(∫ 1

0

φ[0,1]u1,iu1,i dx2

)1/2(∫ 1

0

φ[0,1]uiui dx2

)1/2

≤ α
(ε3

2

∫ 1

0

φ[0,1]u1,iu1,i dx2

+
1

2ε3

∫ 1

0

φ[0,1]uiui dx2

)
, (32)

I4 ≤ α
(∫ 1

0

φ[0,1]u1,2u1,2 dx2

)1/2(∫ 1

0

φ[0,1]u
2
2 dx2

)1/2

≤ α
(ε4

2

∫ 1

0

φ[0,1]u1,2u1,2 dx2

+
1

2ε4

∫ 1

0

φ[0,1]u
2
2 dx2

)
, (33)

and

I5 ≤ α
(∫ 1

0

φ[0,1]u
2
2,2 dx2

)1/2(∫ 1

0

φ[0,1]u
2
1 dx2

)1/2

≤ α
(ε5

2

∫ 1

0

φ[0,1]u
2
2,2 dx2

+
1

2ε5

∫ 1

0

φ[0,1]u
2
1 dx2

)
. (34)

Here εi, i = 1, . . . , 5 are arbitrary positive constants.
One would like to optimize these quantities in order to
make a comparison with (22). It does not seem an
easy task, because it involves solving nonlinear equations
(polynomials). Thus we obtain an estimate by taking some
values for the parametersεi.

For instance, if we takeε2 = ε3 = ε4 = ε5 = 1 and
ε1 = αε4/2, it follows that

∑
1≤i≤5

Ii ≤ α

∫ 1

0

φ[0,1]ui,jui,j dx2

+
α

2

∫ 1

0

φ[0,1]ui,iuj,j dx2

+
(

3α

2
+

2
α

)∫ 1

0

φ[0,1]uiui dx2. (35)

As α ≥ 0, we have∑
1≤i≤5

Ii ≤ −M
∂E

∂z
, (36)

where

M = max
(

α(2− α)−1,
1
2
, π−1

(3α

2
+

2
α

))
. (37)

From (23) and (36), we obtain

E(z) ≤ −M
∂E

∂z
+ S(z), (38)

where

S(z) = π

∫ ∞

z

(
f2
1 + g2

1 + (1 + α)(f2
2 + g2

2)
)

dξ. (39)

As (38) is an estimate of the type (4), we deduce the esti-
mate

E(z) ≤ E(0) exp(−M−1z) + S(z)−
(
S(0)

−
∫ z

0

exp(M−1ξ)s(ξ) dξ
)

exp(−M−1z), (40)

where

s(ξ) = π
(
f2
1 (ξ)g2

1(ξ) + (1 + α)
(
f2
2 (ξ) + g2

2(ξ)
))

. (41)

Thus we have proved the following result:

Theorem 1. Let (ui) be a solution to the problem defined
by the system (13), boundary conditions (15) and asymp-
totic conditions (19), (20). Then the energy function de-
fined in (22) satisfies the estimate (40).

If we assume that there exist two positive constants
K, and ω such that|s(ξ)| ≤ K exp(−ωξ), we conclude
a decay of exponential type for the functionE(z).

If we write

E(ε, z) =
∫ ∞

z

∫
{φ[0,1]≥ε}

[
F (ui,j , ui,j)

+ π2(uiui + απ2u2
2)
]
da, (42)

we see that
E(ε, z) = ε−1E(z). (43)

Estimates (40) and (43) give an estimate for the decay uni-
form in the domains of the form[x1,∞)× {φ[0,1] ≥ ε}.

As the estimate used in (19) could be improved, we
may conclude that the estimate (40) could be also im-
proved. We do not consider this analysis to save cum-
bersome calculations.
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If we assume thatgi = 0, we could consider an alter-
native approach. In this case we can use the weight func-
tion φ = x2. We haveφ′′ = 0, and relation (17) reduces.
Assuming suitable asymptotic conditions, we define

E∗(z) =
∫ ∞

z

∫ 1

0

x2F (ui,j , ui,j) da. (44)

We can adapt the arguments proposed previously in this
situation, but we need to use some kind of the Poincaré
inequality. In this sense, we can recall the estimate (10).
We could obtain an estimate of the type (40) after obtain-
ing the fit constants in this case.

It is also worth considering another measure on the
solutions. We write

W (z) =
∫ ∞

z

∫ 1

0

uiui da. (45)

Using estimates (11) and (19), we obtain

W (z) ≤ (2− α)−1µ−1
1 E∗(z). (46)

The results obtained by Horgan and Payne (1992)
apply to the problem considered here. Nevertheless, in
our approach the measure considered is different from that
used in (Horgan and Payne, 1992).

4. Steady-State Vibrations in a Strip

Now, we look at a problem of the steady-state vibrations
of the form

ui(t, x, y) = vi(x, y) exp(iςt), (47)

whereς is a strictly positive constant. The amplitude term
(vi) satisfies the system

vi,jj + αvj,ji + C2vi = 0. (48)

Here C can be obtained in terms of the Lamé constantµ,
the mass densityρ and ς. In fact, we have

C2 = ς2ρµ−1.

In this section, we consider a problem determined by sys-
tem (48) and boundary conditions (15) and (16).

From now on, we assume that2C2 < π2. Let us
consider the weight functionφ[0,1], analysed in Section 3.

In this section we assume that the energy

EC(0) =
∫ ∞

0

∫ 1

0

φ[0,1]

[
F (vi,j , vi,j)

+ (π2 − 2C2)vivi + απ2v2
2

]
da (49)

is bounded and that the asymptotic condition

lim
x1→∞

∫ 1

0

φ[0,1](2vi,1vi + αvk,kv1 + αv1,ivi

+ αv1,2v2 + αv1v2,2) dx2 = 0 (50)

is satisfied. If we define the function

EC(z) =
∫ ∞

z

∫ 1

0

φ[0,1]

[
F (vi,j , vi,j)

+ (π2 − 2C2)vivi + απ2v2
2 ] da, (51)

we have

EC(z) = −
∫ 1

0

φ[0,1](2vi,1vi + αvk,kv1 + αv1,ivi

+ αv1,2v2 + αv1v2,2) dx2

+ π

∫ ∞

z

(
(fifi+gigi) + α(f2

2 +g2
2)
)
dξ (52)

and

dEC

dz
= −

∫ 1

0

φ[0,1]

[
F (vi,j , vi,j)

+ (π2 − 2C2)vivi + απ2v2
2

]
dx2. (53)

We can reproduce the arguments developed in the
previous section. Doing so, we obtain

EC(z) ≤ EC(0) exp(−M−1
C z) + S(z)−

(
S(0)

−
∫ z

0

exp(M−1
C ξ)s(ξ) dξ

)
exp(−M−1

C z), (54)

where

s(ξ) = π
(
fi(ξ)fi(ξ) + gi(ξ)gi(ξ) + α

(
f2
2 (ξ) + g2

2(ξ)
))

,

S(z) =
∫ ∞

z

s(ξ) dξ.

Here the constantMC is defined as in (31), but changing
the constantπ by

√
π2 − 2C2.

If we set

EC(ε, z) =
∫ ∞

z

∫
{φ[0,1]≥ε}

[
F (vi,j , vi,j)

+ (π2 − 2C2)vivi + απ2v2
2

]
da, (55)

we see that
EC(ε, z) = ε−1EC(z). (56)

Estimates (54) and (56) give an estimate for the decay uni-
form in domains of the form[x1,∞)× {φ[0,1] ≥ ε}.



R. Quintanilla96

If we assume thatgi = 0, we can consider an al-
ternative approach. Let the weight function beφ =
sin
√

2Cx2. We may use similar results as in the previ-
ous section, but in this case we need to work with the first
eigenvalues (λφ

1 and µφ
1 ) of the singular problems(

φ(x)u′
)′ + λφ(x)u = 0, (0, 1),

u(1) = 0, u(0) bounded, andxu′(x) → 0 asx → 0,

and (
φ(x)u′

)′ + µφ′(x)u = 0, (0, 1),

u(0), u′(0) bounded, andu(1) = 0,
(57)

respectively.

This also allows us to obtain decay estimates in the
L2 measure of the solutions.

5. The Case of the Cylinder

It is not difficult to extend our arguments to three dimen-
sions in some cases, but the geometry of the cross-section
produces some difficulties in many situations. We con-
sider a problem determined by the three-dimensional ver-
sion of the system of equations (13) in the semi-infinite
cylinder (0,∞) ×D, whereD is a two-dimensional re-
gion (not necessarily bounded) such that we can apply the
divergence theorem. We assume that the boundary ofD
can be expressed as the union of two subsetsD1 and D2,
whereD1 ∩D2 = ∅. The boundary conditions are

ui(x1, x2, x3)=

{
fi(x1, x2, x3) if (x2, x3) ∈ D1,

0 if (x2, x3) ∈ D2,
(58)

and
ui(0, x2, x3) = hi(x2, x3). (59)

Here we assume that

fi(0, x2, x3) = hi(x2, x3) if (x2, x3) ∈ D1,

hi(x2, x3) = 0 if (x2, x3) ∈ D2.

If φ is a function that depends only on the variables
(x2, x3) and (ui) is an arbitrary solution of the three-
dimensional version of the system (13), the following re-
lation holds:[

φ(2ui,j + αδijuk,k + αuj,i)ui

]
,j

− α
[
(φu1uβ),β − φu1,βuβ − φu1uβ,β

]
,1

= φF (ui,j , ui,j)−∆φuiui − αφ,βγuβuγ

+
∂

∂xβ
(φ,βuiui) + α

∂

∂xβ
(φ,γuβuγ). (60)

Here δij is the Kronecker symbol, and indicesβ and γ
are restricted to values 2 and 3. It is worth noticing that,
when φ depends only on the variablex2, this equality
reduces to[

φ(2ui,j + αδijuk,k + αuj,i)ui

]
,j

− α
[
(φu1u2),β − φu1,2u2 − φu1u2,2

]
,1

= φF (ui,j , ui,j)−∆φ,22uiui − αφ,22u
2
2

+
∂

∂x2
(φ,2uiui) + α

∂

∂xβ
(φ,2uβu2). (61)

Our goal in this section is to develop our study in a
similar way to the one followed in Section 3. Due to (60),
we have to make some changes in the approach.

In the sequel we are going to work with non-negative
functionsφ(x2, x3) that satisfy the following conditions:
(i) φ(x2, x3) = 0 if and only if (x2, x3) ∈ D1,
(ii) there exists a positive constantζ(α) such that∫

D

[
φ(2−α)(ξβ,γξβ,γ)−∆φ(ξ2

2+ξ2
3)−αφ,βγξβξγ

]
da

≥ ζ(α)
∫

D

φ(ξβ,γξβ,γ + ξ2
2 + ξ2

3) da (62)

for every vector field(ξ2, ξ3) that vanishes inD2.

Condition (ii) on the functionφ is imposed to guar-
antee that the function∫

D

(
φF (ui,j , ui,j)−∆φuiui − αφ,γβuβuγ

)
da (63)

can be seen as a measure on the solutions of the three-
dimensional version of the system (13), satisfying the
boundary conditions (58) and (59).

Example 1. Let us assume thatD is the unit square
(0, 1)2 and D1 is the point of the form(x2, x3), 0 ≤
x3 ≤ 1 and x2 = 0 or 1. We may consider the function
φ(x2, x3) = sin πx2. The conditions are satisfied for ev-
ery α < 2. When D1 is the subset of points of the form
(0, x3), the functionφ(x2, x3) = x2 works. �

Example 2. In caseD = (0, 1) × (−∞,∞) and D1 =
∂D, we may consider again the functionφ(x2, x3) =
sinπx2. Furthermore, ifŜ is a subset in the interior of
(0, 1)× (−∞,∞), D = (0, 1)× (−∞,∞)− Ŝ and D1

is the set of point(x2, x3), x2 = 0 or 1, we may consider
the same function. It is worth remarking that in this case
the cross-section is unbounded. Again, ifD1 is the set of
points of the form(0, x3), the functionφ(x2, x3) = x2

works. �
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Example 3. Let 0 < a < b be two arbitrary positive
constants andD = {(x2, x3), a < r < b}, where r2 =
(x2

2 + x2
3), and D1 = ∂D. If we consider the function

φ = (r − a)(b− r), (64)

we have

φ,βγ = −2δβγ +
δβγr2 − xβxγ

r3
(a + b). (65)

Thus

∆φ = −4 +
a + b

r
, (66)

and the matrix(∆φδβγ + αφ,βγ) is

M̂ =

(
m11 m12

m21 m22

)
, (67)

where

m11 = −4− 2α +
(a + b)

r

(
1 + α

x2
2

r2

)
,

m12 = −α(a + b)
x1x2

r3
,

m21 = −α(a + b)
x1x2

r3
,

m22 = −4− 2α +
(a + b)

r

(
1 + α

x2
1

r2

)
.

Whenever this matrix is negative definite, condition (ii) is
satisfied. As the trace of̂M is r−1(2 + α)(a + b − 4r)
and the determinant is

(4− 2α)2 +
(a+b

r

)2

(1+α)− (4−2α)(2+α)
a+b

r
,

the matrixM̂ is negative definite wheneverb < 3a and

(4− 2α)2 +
(a+b

b

)2

(1+α)− (4−2α)(2+α)
a+b

a
.

In order to illustrate the possibilities of the example,
we consider some particular cases. Whenα = 1/3, we
have (

10
3

)2

+
4
3

(
a + b

b

)2

− 70
9

a + b

a
,

which is always positive ifa/b is greater than the unique
positive solution of the equation

4x3 + 8x2 + 14x− 70
3

= 0.

This solution is

− 2
3

+
409 + 15(763)1/3

322/3

− 13
3(2(409 + 15

√
763))1/3

∼= 0.934491.

It is clear that we can extend this process wheneverα <
1/2, because whenα = 1/2, the corresponding equation
is

3x3 + 6x2 + 6x− 15 = 0.

One thinks that alternative selections of the functionφ
could open many other possibilities. In this case the region
D is not simply connected. �

Now, we extend the arguments of Section 3 to the
three-dimensional case.

We assume that the energy

Eφ(0) =
∫ ∞

0

∫
D

(
φF (ui,j , ui,j)

−∆φuiui − αφ,γβuβuγ

)
dv (68)

is bounded and that the asymptotic condition

lim
x1→∞

∫
D

φ
[
2ui,1ui + αuk,ku1 + αu1,iui

+ αu1,βuβ + αu1uβ,β

]
da = 0 (69)

is satisfied. If we define the function

Eφ(z) =
∫ ∞

z

∫
D

(
φF (ui,j , ui,j)

−∆φuiui − αφ,γβuβuγ

)
dv, (70)

the use of the divergence theorem and the boundary con-
ditions allow us to see that

Eφ(z) = −
∫

D

φ
[
2ui,1ui + αuk,ku1 + αu1,iui

+ αu1,βuβ + αu1uβ,β

]
da

−
∫ ∞

z

∫
D1

(
φ,βnβfifi+αφ,γnβfβfγ

)
da, (71)

where nβ are the components of the outward normaln
to the boundary ofD.

In this situation, it is not very difficult to reproduce
the arguments of Section 3. If we write

I1 = −
∫

D

2φui,1ui da, (72)

I2 = −α

∫
D

φαuk,ku1 da, (73)

I3 = −α

∫
D

φu1,iui da, (74)

I4 = −α

∫
D

φu1,βuβ da, (75)
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and

I5 = −α

∫
D

φu1uβ,β da, (76)

then, after some calculations similar to those followed in
Section 3, we see that∑

i=1,5

Ii ≤ Nφ
∂Eφ

∂z
, (77)

where Nφ is a constant that is easily computable. We
obtain

Eφ(z) = −Nφ
dEφ

dz
+ P (z), (78)

where

P (z)=−
∫ ∞

z

∫
D1

(
φ,βnβfifi+αφ,γnβfβfγ

)
da. (79)

Thus we have proved the following result:

Theorem 2. Let (ui) be a solution to the problem deter-
mined by the system (13), boundary conditions (58), (59)
and asymptotic conditions (69). Then the energy function
defined in (70) satisfies the estimate

Eφ(z) ≤ Eφ(0) exp(−N−1
φ z) + P (z)

(
P (0)

−
∫ z

0

exp(N−1
φ ξ)p(ξ) dξ

)
exp(−N−1

φ z), (80)

where

p(ξ) = −
∫

D1

(
φ,βnβfifi + αφ,γnβfβfγ

)
dl. (81)

Defining the domains

D(ε) =
{
x ∈ D,φ(x) ≥ ε

}
, (82)

and setting

Eφ(ε, z) =
∫ ∞

z

∫
D(ε)

(
φF (ui,j , ui,j)

−∆φuiui − αφ,γβuβuγ

)
dv, (83)

we obtain
Eφ(ε, z) ≤ ε−1Eφ(z). (84)

Estimates (79) and (84) give a uniform decay in the do-
mains of the form[x1,∞)×D(ε).

In the remainder of this paper, we consider the case
whereD = (0, 1)2 and D1 is the set of the points of the
form (0, x3), where0 ≤ x3 ≤ 1. If we define

W (z) =
∫ ∞

z

∫
D

uiui dv, (85)

estimates (11) and (19) allow us to obtain

W (z) ≤ (2− α)−1µ−1
1 Ex2(z). (86)

Then (79) and (85) allow us to obtain the estimate

W (z) ≤ (2− α)−1µ−1
1

(
Ex2(0) exp(−M−1

x2
z)

+ Px2(z)−
(
Px2(0)−

∫ z

0

exp(M−1
x2

ξ)

× px2(ξ)dξ
)

exp(−M−1
x2

z)
)

. (87)

The constantMx2 that arises in this estimate can be ob-
tained as the one determined in Section 3 for the decay of
E∗(z) and

px2(ξ) =
∫

D1

(fifi + αf2f2) dl.

This estimate is uniform on the whole cross-sectionD.

It seems possible to extend the arguments used to
study the steady-state vibrations in the case of a cylinder.

Remark 1. In order to possess a more explicit knowl-
edge of the estimates (75) and (82), it is suitable to ob-
tain an upper bound for the termEx2(0) in terms of the
boundary conditions. We do it whenever we assume that
hi(0, x3) = fi(0, 0, x3) = 0 for all 0 ≤ x3 ≤ 1.

We see that

Ex2(0) ≤ (2 + α)
∫ ∞

0

∫
D

(ui,jui,j + αui,iuj,j) dv. (88)

The integral on the right-hand side of (88) was studied
in (Quintanilla, 1997b). In this situation the solution to
the problem determined by conditions (58) and (59) is the
sum of the solutions̃ui and ûi that correspond to the
case whenfi = 0 and hi = 0, respectively. Thus we see
that ∫ ∞

0

∫
D

(ui,jui,j + αui,iuj,j) dv

=
∫ ∞

0

∫
D

(
(ũi,j + ûi,j)(ũi,j + ûi,j)

+ α(ũi,i + ûi,i)(ũj,j + ûj,j)
)

dv

≤ 2
(∫ ∞

0

∫
D

(ũi,j ũi,j + αũi,iũj,j) dv

+
∫ ∞

0

∫
D

(ûi,j ûi,j + αûi,iûj,j) dv
)
. (89)
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To calculate these integrals, we can use the arguments pre-
sented in (Quintanilla, 1997b). We obtain∫ ∞

0

∫
D

(ũi,j ũi,j + αũi,iũj,j) dv

≤ (1 + 3α)
∫

D

(hi,2hi,2 + hi,3hi,3) da

∫
D

hihi da,

(90)

and∫ ∞

0

∫
D

(ûi,j ûi,j + αûi,iûj,j) dv

≤ (1 + 3α)
(∫ ∞

0

∫ 1

0

(fi,1fi,1 + fi,3fi,3) da

+
∫ ∞

0

∫ 1

0

fifi da
)
. (91)

The combination of the estimates (88)–(91) gives the de-
sired upper bound.

6. An Ill-Posed Problem

This section is devoted to the study of spatial estimates for
an ill-posed problem determined by the three-dimensional
version of the system of equations (13) and the boundary
conditions

ui(x1, x2, 1) = 0,

ui(x1, 0, x3) = fi(x2, x3),

ui(x1, 1, x3) = 0,

(92)

but we have no information on the displacement on the
part of the boundary consisting of the points of the form
(x1, x2, 0). This result will be an extension of the one
obtained in (Quintanilla, 1997a), when we allow for non-
homogeneous boundary conditions on a part of the lateral
surface.

We assume that

Σ(0, 0) =
∫ ∞

0

∫
D

x2F (ui,j , ui,j) dv < ∞, (93)

and the asymptotic conditions (68) are satisfied. If we de-
fine the function

Σ(z1, z3) =
∫ ∞

z1

∫ 1

z3

∫ 1

0

x2F (ui,j , ui,j) dv, (94)

we obtain

Σ(z1, z3) = −
∫ ∞

z1

∫ 1

0

x2(2ui,3ui + αuk,ku3

+ αu3,iu3 + αu3,2u2 + αu3u2,2) da

−
∫ 1

z3

∫ 1

0

x2(2ui,1ui + αuk,ku1 + αu1,iu1

+ αu3,iu3 + αu1,2u2 + αu1u2,2) da

+
∫ ∞

z1

∫ 1

z3

(fifi + αf2
2 ) da, (95)

∂Σ
∂z1

= −
∫ 1

z3

∫ 1

0

x2F (ui,j , ui,j) da, (96)

and

∂Σ
∂z3

= −
∫ ∞

z1

∫ 1

0

x2F (ui,j , ui,j) da. (97)

From (95)–(97) we can obtain an estimate of the form

Σ ≤ −Mx2

(
∂Σ
∂z1

+
∂Σ
∂z3

)
+ Q, (98)

where

Q =
∫ ∞

z1

∫ 1

z3

(fifi + αf2
2 ) da. (99)

If we integrate (98) along the lines of the form

z1 − z0
1 = z3 − z0

3 , (100)

we obtain the estimate

Σ(z1, z1 + z0
3 − z0

1)

≤ Σ(z0
1 , z0

3) exp
(
−M−1

x2
(z1 − z0

1)
)

+ M−1
x2

×
(∫ z1

z0
1

exp
(
M−1

x2
(ξ − z0

1)
)
Q
(
ξ, ξ + z0

3 − z0
1) dξ

)
× exp

(
−M−1

x2
(z1 − z0

1)
)
, z1 ≥ z0

1 . (101)

Thus we have proved the following result:

Theorem 3. Let (ui) be a solution to the problem deter-
mined by the system (13), boundary conditions (92) and
asymptotic conditions (69). Then the energy function de-
fined in (94) satisfies the estimate (101).

This result is a natural extension of that obtained in (Quin-
tanilla, 1997a).
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7. Some Remarks

In (Quintanilla, 2000) the author proposed to apply en-
ergy arguments when non-homogeneous conditions are
imposed on the whole boundary. But we could not do
it (in general) due to the term of the formuj,ji in the
Navier system of equations (13). Furthermore, this is the
reason why we have to restrict our attention to the cases of
α < 2. We have also seen by means of a remark that the
condition onα should be more restrictive when the rel-
ative geometry of the cross-section and the subset of the
boundary with non-homogeneous conditions are complex.

We can recall that in other contributions of this kind
in elasticity the restriction is more relaxed (see, e.g.,
Flavin et al., 1989; Horgan and Payne, 1992; Quintanilla,
1997a). Thus there are some natural open questions:

1. Extension of the energy arguments to the case where
the non-homogeneous boundary conditions are im-
posed in the whole of the boundary.

2. Analysis whenα ≥ 2.

3. The results hold for solutions havinga priori suitable
behaviour at the spatial infinity. For instance, it is as-
sumed that the solutions tend to zero. A (fundamental)
open problem is to eliminate this restriction.

It is worth remarking that the anti-plane deforma-
tions of an isotropic and homogeneous elastic solid are
governed by the Laplace equation. This equation was
studied in (Quintanilla, 2000) and it was proved there
that we may obtain spatial decay estimates when the non-
homogeneous conditions are imposed on the whole of the
boundary. We also note that the weight functions used
here concern only bounded directions.
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