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TIME-VARIANT DARLINGTON SYNTHESIS

AND INDUCED REALIZATIONS

Derk PIK
∗

For a block lower triangular contraction T , necessary and sufficient conditions
are given in order that there exist block lower triangular contractions T1,1, T2,1
and T2,2 such that

UT =

[

T1,1 T

T2,1 T2,2

]

is unitary. For the case when T ∗1,1 and T2,2 have dense ranges, all such em-
beddings are described. Each unitary embedding of UT induces a contractive
realization of T , and various properties of this realization are characterized in
terms of the unitary embedding.

Keywords: contractive linear systems, Darlington synthesis, time-variant linear

systems

1. Introduction

Let T be a block lower triangular contraction, i.e., a contractive operator T =
(ti,j)

∞
i,j=−∞ acting from a doubly infinite Hilbert space direct sum

⊕∞
j=−∞Kj into

a doubly infinite Hilbert space direct sum
⊕∞
j=−∞ Lj . The operator ti,j , which maps

Kj into Li, is the (i, j)-th entry in the operator matrix representation of T relative
to the natural Hilbert space direct sum decompositions. In this paper we study the
problem of finding block lower triangular contractions T1,1, T2,1 and T2,2 such that
the operator matrix

UT =

[

T1,1 T

T2,1 T2,2

]

(1)

is unitary. If such operators T1,1, T2,1 and T2,2 exist, then the embedding (1) is re-

ferred to as a D̃-embedding of the block lower triangular contraction T . If, in addition,
both the image of T ∗1,1 and the image of T2,2 are dense, then the embedding (1) is
referred to as a Darlington embedding or a D-embedding of the block lower triangular
contraction T .

∗ Division of Mathematics and Computer Sciences, Faculty of Sciences, De Boelelaan 1081 a,

1081 HV Amsterdam, The Netherlands, e-mail: drpik@cs.vu.nl



1332 D. Pik

The problem of embedding a block lower triangular contraction into a block
lower triangular unitary operator has its roots in the Darlington synthesis problem
from electrical network theory (Belevitch, 1968, Sec. 9.13). In this original setting,
the block lower triangular contractions are replaced by operator-valued Schur class
functions. To state the corresponding problem explicitly, let a Schur class function θ(·)
acting from a Hilbert space V into a Hilbert space W be given. The D-embedding
problem consists in finding appropriate Hilbert spaces V ◦ and W ◦ as well as Schur
class functions θ1,1(·), θ2,1(·), θ2,2(·), such that

Θ(eit) =

[

θ1,1(e
it) θ(eit)

θ2,1(e
it) θ2,2(e

it)

]

: V ◦ ⊕ V → W ⊕W ◦ (2)

is bi-inner, i.e., Θ(·) is a Schur class function, which takes unitary values almost
everywhere on the unit circle, and

Mθ2,2 [L2(V )] = L2(W
◦), M∗θ1,1 [L2(W )] = L2(V

◦). (3)

Here Mθ2,2 : L2(V )→ L2(W
◦) and Mθ1,1 : L2(V

◦)→ L2(W ) are the multiplication
operators by θ2,2 and θ1,1, respectively.

Arov (1971) and Dewilde (1971) independently obtained necessary and sufficient
conditions such that a matrix-valued Schur class function θ admits a D-embedding;
these conditions are stated in terms of the pseudo-continuability of θ. In both the
papers the results from (Douglas et al., 1970) were used as a starting point. The
paper (Arov, 1971) also treats the operator-valued case. Moreover, in (Arov, 1971)
various different properties such as the minimality and optimality of a contractive
realization of θ induced by the embedding (2) are characterized in terms of the D-
embedding. In (Dewilde, 1971), the analysis is done with the upper half plane, and
the fundamental property which ensures a matrix-valued Schur class function θ to
admit a D-embedding is the requirement that θ allows for a so-called roomy contrac-
tive realization. Independently of (Arov, 1971), Douglas and Helton (1973) have also
constructed a unitary embedding for an operator-valued Schur class function which
allows for pseudo-continuation. Here only functional-theoretic methods are used. In
(Douglas and Helton, 1973) it is also shown that for the matrix case this condition is
sufficient as well.

The problem of embedding a block lower triangular contraction into a block
lower triangular unitary operator was solved in (Dewilde, 1999; Dewilde and Van der
Veen, 1998) for the class of block lower triangular contractions which appear as the
input-output map of an exponentially stable contractive system (see Section 8 for the
definition). The input-output map of an exponentially stable contractive system is
exponentially decaying off the main diagonal, i.e.,

‖ti,j‖ ≤Mα
i−j (4)

for some numbers M > 0 and 0 < α < 1. As a by-product of the main results of the
present paper it is shown that the converse of the latter statement is not true (see
Section 9). In fact, we will give necessary and sufficient conditions in order that a block
lower triangular contraction which is exponentially decaying off the main diagonal is
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the input-output map of an exponentially stable system. These conditions are stated
in terms of D̃-embeddings.

The present paper does not require the condition (4). We shall show (see Propo-
sition 1) that a block lower triangular contraction T admits a D̃-embedding if and
only if T admits a contractive realization which is both pointwise stable and point-
wise star-stable. (For the terminology concerning contractive systems, see Section 1
below.) A necessary condition for the operator UT in (1) to be unitary is the existence
of block lower triangular contractions T1,1 and T2,2 such that I − TT

∗ = T1,1T
∗
1,1

and I − T ∗T = T ∗2,2T2,2. It is well-known (Constantinescu, 1995, p.128) that in this
case there exist an outer block lower triangular contraction F and a star-outer block
lower triangular contraction G such that

I − T ∗T = F ∗F, I − TT ∗ = GG∗. (5)

Recall that an operator F :
⊕∞
j=−∞Kj →

⊕∞
j=−∞Nj is called outer if it is block

lower triangular and the image of
⊕∞
j=nKj under F is dense in

⊕∞
j=nNj , for each

integer n. An operator G :
⊕∞
j=−∞Mj →

⊕∞
j=−∞ Lj is called star-outer if it is block

lower triangular and the image of
⊕m
j=−∞ Lj under G

∗ is dense in
⊕m
j=−∞Nj , for

each integer m. Once F and G in (5) have been chosen, there exists (see Lemma 1)
a unique contraction H such that the operator block matrix

[

G T

H F

]

is unitary. However, the operator H does not need to be block lower triangular. If we
can find block lower triangular unitary operators U1, U2 such that U2HU1 is block
lower triangular, then the operator

T̃ =

[

GU1 T

U2HU1 U2F

]

(6)

is unitary, each of the blocks GU1, U2HU1, U2F is block lower triangular, and
both (GU1)

∗ and U2F have dense range. Thus (6) is a Darlington embedding or
D-embedding of T . The following, first main theorem of the present paper shows that
each D-embedding is obtained in this way.

Theorem 1. A block lower triangular contraction T admits a D-embedding if and
only if the following two conditions are satisfied:

(i) there exists an outer operator F such that I − T ∗T = F ∗F and there exists a
star-outer operator G such that I − TT ∗ = GG∗,

(ii) for the unique contraction H satisfying H∗F = −G∗T there exist block lower
triangular unitary operators U1 and U2 such that U2HU1 is a block lower
triangular.

If conditions (i) and (ii) are satisfied, then each D-embedding is obtained by (6),
where U1 and U2 are block lower triangular unitary operators such that U2HU1 is
block lower triangular.
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The second part of the paper concerns realizations induced by D-embeddings.
The operator UT in (1) is, after an appropriate reordering of the coordinate spaces,
a block lower triangular unitary operator . By Theorem 3.1 from (Kaashoek and Pik,
1998) it appears as the input-output map of a controllable, observable and unitary
system

Σ̃ =

(

A(n),
[

B1(n) B(n)
]

,

[

C(n)

C1(n)

]

,

[

D1,1(n) D(n)

D2,1(n) D2,2(n)

]

;

Hn,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

.

(See Section 4 for the notions of observability and controllability.) It follows that the
system Σ = (A(n), B(n), C(n), D(n); Hn, Kn, Ln) is a contractive realization
of T . We refer to Σ as the realization of T induced by the D-embedding UT . It will
be shown that the realizations of T induced by the D-embedding UT are unitarily
equivalent.

As in the time-invariant case, see (Arov, 1979), many properties of the system
Σ are reflected by properties of the blocks T1,1, T2,1, and T2,2 of the embedding
UT . To describe these we introduce the notion of a minimal D-embedding. We will
call a pair of block lower triangular unitary operators (U2, U1) such that U2HU1 is
block lower triangular a denominator of H . A pair of block lower triangular unitary
operators (Ũ2, Ũ1) is a divisor of (U2, U1) with respect to H if there exist block lower
triangular unitary operators B1 and B2 such that U2 = B2Ũ2 and U1 = Ũ1B1, and
Ũ2HŨ1 is block lower triangular. A denominator (U2, U1) of H is called minimal,
or a minimal denominator, if for each divisor (Ũ2, Ũ1) of (U2, U1) with respect to
H we have U2 = B2Ũ2 and U1 = Ũ1B1, where B1 and B2 are diagonal unitary
operators. A D-embedding (6) will be called minimal if (U2, U1) is a minimal denom-
inator of H . We shall show that such a definition makes sense, and is independent
of the particular choice of the outer operator F , the star-outer operator G and the
contraction H in the embedding (6). The controllability and observability of Σ can
now be characterized in terms of the minimality of the D-embedding UT .

Theorem 2. Let T be a block lower triangular operator which admits a D-embedding
UT as in (1), and let Σ be a realization induced by the D-embedding UT . Then UT
is a minimal D-embedding if and only if Σ is controllable and observable.

The above theorem appears in this paper as Theorem 5. The property that Σ is
optimal (star-optimal) can be also seen from the D-embedding. (For the definition of
an optimal system, see Section 8.)

Theorem 3. Let T be a block lower triangular operator which admits a minimal D-
embedding UT as in (1), and let Σ be a realization of T induced by the D-embedding
UT . Then Σ is controllable and observable. In this case,

(i) T2,2 is outer if and only if Σ is an optimal system,

(ii) T1,1 is star-outer if and only if Σ is a star-optimal system.
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The main results are taken from the author’s thesis (Pik, 1999). The analogues
of Theorems 1–3 for Schur class functions can be found in (Arov, 1979; 1985). The
research which lead to this paper was inspired by these two papers.

The present paper consists of eight sections, not counting this introduction. In
Section 2 we explain some notions from systems theory. We will introduce contractive
systems and their input-output map. In Section 3 the basic problem how to embed
a block lower triangular contraction in a block lower triangular unitary operator is
discussed. Necessary and sufficient conditions to admit such an embedding are given.
In Section 4 Darlington embeddings are introduced, and in this section we prove The-
orem 1. Section 5 deals deal with realizations induced by D̃-, and D-embeddings. In
Section 6 the notion of a minimal Darlington embedding is introduced, and elemen-
tary properties of a such an embedding are given. In Section 7 we prove Theorem 2,
and Theorem 3 is proved in Section 8. Section 9 specifies the theory on Darlington em-
beddings for the case when the operator T = (ti,j)

∞
i,j=−∞ is exponentially decaying

off the main diagonal.

We conclude this introduction with some notation. The symbol `2(K) denotes
the Hilbert space consisting of all square norm summable sequences (kj)j∈ � with
kj ∈ Kj . In other words,

`2(K) =
∞
⊕

j=−∞

Kj . (7)

Let G = (Gn)j∈ � and H = (Hn)j∈ � be two doubly infinite sequences of Hilbert
spaces. We define the operator WG,H acting from

⊕

n∈
� (Gn⊕Hn) into (

⊕

n∈
� Gn)⊕

(
⊕

n∈
� Hn) by

WG,H
(

(gj , hj)j∈ �
)

=
(

(gj)j∈ � , (hj)j∈ �
)

, (8)

and the operator ZG,H acting from
⊕

n∈
� (Gn⊕Hn) into (

⊕

n∈
� Hn)⊕ (

⊕

n∈
� Gn)

by

ZG,H
(

(gj , hj)j∈ �
)

=
(

(hj)j∈ � , (gj)j∈ �
)

. (9)

Notice that both WG,H and ZG,H are unitary operators. These two operators will
be used throughout the paper to transform an array of four block lower triangular
operators into one block lower triangular operator (see, e.g., (15)).

2. Preliminaries about Contractive Systems

In this section we will review some basic facts about time-variant contractive systems.
For a more extensive treatment we refer to the papers (Arov et al., 1998; Gohberg
et al., 1992), and the books (Constantinescu, 1995; Dewilde and Van der Veen, 1998;
Foias et al., 1998; Halanay and Ionescu, 1994).

Consider the time-variant system with discrete time n:

Σ

{

xn+1 = A(n)xn +B(n)un,

yn = C(n)xn +D(n)un
(10)
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for n ∈
�
. Here A(n) : Hn → Hn+1, B(n) : Kn → Hn+1, C(n) : Hn → Ln and

D(n) : Kn → Ln are bounded linear operators acting between Hilbert spaces. It will
be convenient to use the notation Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) instead
of (10).

With a system Σ we associate the operator matrix TΣ = (ti,j)
∞
i,j=−∞, where

ti,j =















0, i < j,

D(n), i = j,

C(i)τA(i, j + 1)B(j), i > j.

(11)

Here the operator τA(k, l) is defined by

τA(k, l) =















A(k − 1)A(k − 2) · · ·A(l + 1)A(l), k > l,

IHl , k = l,

0, k < l.

(12)

Starting the system with initial state xn = 0, the vector y = (. . . , 0, 0, yn, yn+1,
. . . )tr containing the outputs of the system (11) can be obtained by multiplication of
TΣ with the vector of inputs (. . . , 0, 0, un, un+1, . . . )

tr (in formula, y = TΣu).

The system Σ is called contractive (isometric, co-isometric, or unitary) if the
system matrix

MΣ(n) =

[

A(n) B(n)

C(n) D(n)

]

: Hn ⊕Kn → Hn+1 ⊕ Ln

is a contraction (isometry, co-isometry, or unitary operator) for each integer n.

If Σ is contractive, then the input-output operator TΣ induces a contractive
linear operator acting from `2(K) into `2(L), which is again denoted by TΣ (Arov
et al., 1998, Thm. 4.1). The operator TΣ is referred to as the input-output map of Σ.
On the other hand, each block lower triangular contraction T , acting from `2(K) into
`2(L), appears as the input-output map of a contractive system Σ (see, for instance
(Arov et al., 1998, Thm. 6.1). Such a system is called a realization of T .

To give a characterization of the property that a block lower triangular contrac-
tion T admits a D̃-embedding, we will introduce the notion of pointwise stability. A
system Σ = (A(n), B(n), C(n), D(n); Hn, Kn, Ln) is called pointwise stable if
its sequence of main operators (A(n) : Hn → Hn+1)n∈ � is pointwise stable, i.e.,

lim
p→∞

∥

∥τA(n+ p, n)x
∥

∥ = 0

for each integer n and each vector x ∈ Hn. The system Σ is called a pointwise
star-stable if its sequence of main operators is pointwise star-stable, i.e.,

lim
p→∞

∥

∥τA(n, n− p)
∗x
∥

∥ = 0

for each integer n and each vector x ∈ Hn.
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3. Unitary Embedding of a Block Lower Triangular Contraction

In this section we will consider the embedding of a block lower triangular contraction
T : `2(K)→ `2(L) into a unitary operator matrix

[

T1,1 T

T2,1 T2,2

]

: `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦), (13)

where K◦ = (K◦i )
∞
i=−∞ and L

◦ = (L◦i )
∞
i=−∞ are sequences of Hilbert spaces, and

T1,1, T2,1, T2,2 are required to be block lower triangular contractions. A unitary

embedding of the form (13) will be called a D̃-embedding of the block lower triangular
contraction T . First we will characterize the property that T admits a D̃-embedding
in terms of systems.

Proposition 1. A block lower triangular contraction T admits a D̃-embedding if and
only if T admits a pointwise stable and pointwise star-stable contractive realization.

Proof. Part (a). Let Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) be a pointwise stable
and pointwise star-stable contractive realization of T . Denote by MΣ(n) the system
matrix at time n. Moreover, for each integer n define the defect operators

DMΣ(n) =
(

I −MΣ(n)∗MΣ(n)
)1/2
: Hn ⊕Kn → Hn ⊕Kn,

DMΣ(n)∗ = (I −MΣ(n)MΣ(n)
∗)1/2 : Hn+1 ⊕ Ln → Hn+1 ⊕ Ln,

(14)

and the defect spaces DMΣ(n) = Im DMΣ(n) and DMΣ(n)∗ = Im DMΣ(n)∗ . Set

Ã(n) = A(n),

B̃(n) =
[

B(n) τ̃∗Hn+1DMΣ(n)∗ | DMΣ(n)∗
]

: Kn ⊕DMΣ(n)∗ → Hn+1,

C̃(n) =

[

C(n)

DMΣ(n)τHn

]

: Hn → Ln ⊕DMΣ(n),

D̃(n) =

[

D(n) τ̃∗LnDMΣ(n)∗ | DMΣ(n)∗

DMΣ(n)τKn −MΣ(n)∗ | DMΣ(n)∗

]

: Kn ⊕DMΣ(n)∗ → Ln ⊕DMΣ(n),

where

τHn : Hn → Hn ⊕Kn, τ̃Hn+1 : Hn+1 → Hn+1 ⊕ Ln,

τKn : Kn → Hn ⊕Kn, τ̃Ln : Ln → Hn+1 ⊕ Ln

are the canonical embeddings. Then

Σ̃ =
(

Ã(n), B̃(n), C̃(n), D̃(n);Hn,Kn ⊕DMΣ(n)∗ , Ln ⊕DMΣ(n)
)
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is a unitary system. Denote by TΣ̃ its input-output map. Since Σ is pointwise stable

and pointwise star-stable, the system Σ̃, having the same sequence of main opera-
tors A(n), is pointwise stable and pointwise star-stable too. From Theorem 3.1 from
(Kaashoek and Pik, 1998) it follows that TΣ̃ is unitary. Denote by D the doubly
infinite sequence of Hilbert spaces (DMΣ(n))n∈

� , and by D∗ the doubly infinite se-
quence of Hilbert spaces (DMΣ(n)∗)n∈

� , and let the operators WL,D and ZK,D∗ be
defined by (8) and (9), respectively. Let T1,1, T2,1 and T2,2 be defined by

WL,DTΣ̃Z
∗
K,D∗ =

[

T1,1 T

T2,1 T2,2

]

: `2(D∗)⊕ `2(K)→ `2(L)⊕ `2(D). (15)

The operators T1,1, T2,1 and T2,2 are block lower triangular contractions, because
TΣ̃ is a block lower triangular operator. Since WL,D, ZK,D∗ and TΣ̃ are unitary,

WL,DTΣ̃Z
∗
K,D∗ is unitary, and thus we have shown that T admits a D̃-embedding.

Part (b). Suppose that T admits a D̃-embedding. So there are sequences of Hilbert
spaces K◦ = (K◦n)n∈

� and L◦ = (L◦n)n∈
� , and block lower triangular contractions

T1,1, T2,1 and T2,2 such that

UT =

[

T1,1 T

T2,1 T2,2

]

: `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦)

is a unitary operator. The operator

VT =W
∗
L,L◦UTWK◦,K :

⊕

n∈
�

(K◦n ⊕Kn)→
⊕

n∈
�

(Ln ⊕ L
◦
n) (16)

is a unitary block lower triangular operator. By Theorem 4.1 from (Kaashoek and
Pik, 1998), the operator VT admits a unitary realization

Σ̃ =

(

A(n),
[

B̃(n) B(n)
]

,

[

C(n)

C̃(n)

]

,

[

D̃1,1(n) D(n)

D̃2,1(n) D̃2,2(n)

]

;

Hn,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

,

which is pointwise stable and pointwise star-stable. The system Σ = (A(n), B(n),
C(n), D(n); Hn, Kn, Ln) is a contractive pointwise stable and pointwise star-stable
realization of T .

Suppose that T admits a D̃-embedding. Then by Theorems 2.1 and 3.1 from
(Arov et al., 2000) and by Proposition 1 there exist block lower triangular operators

F : `2(K)→ `2(N ), G : `2(M)→ `2(L)

such that F is outer, G is star-outer, and

I − T ∗T = F ∗F, I − TT ∗ = GG∗.



Time-variant Darlington synthesis and induced realizations 1339

(For a definition of outer and star-outer, see below formula (5) in the introduction).
As the next lemma shows, the existence of such operators F and G allows us to find
a unique operator H : `2(M)→ `2(N ) such that

[

G T

H F

]

: `2(M)⊕ `2(K) → `2(L) ⊕ `2(N ) (17)

is unitary. However, the operator H in (17) is not necessarily block lower triangular,
and hence (17) may not be a D̃-embedding.

Lemma 1. Let T : `2(K) → `2(L) be a block lower triangular contraction, F :
`2(K) → `2(N ) be an outer operator satisfying I − T ∗T = F ∗F , and G : `2(M) →
`2(L) a star-outer operator satisfying I − TT ∗ = GG∗. Then there exists a unique
contraction H : `2(M)→ `2(N ) such that HG∗ = −FT ∗. Moreover, the operator H
is also uniquely determined by the operator equation F ∗H = −T ∗G, and the operator

V =

[

G T

H F

]

: `2(M)⊕ `2(K)→ `2(L)⊕ `2(N ) (18)

is unitary.

Proof. Part (a). Take v ∈ `2(L). Then

‖FT ∗v‖2`2(N ) = 〈F
∗FT ∗v, T ∗v〉`2(K) = 〈(I − T

∗T )T ∗v, T ∗v〉`2(K)

=
∥

∥(I − T ∗T )1/2T ∗v
∥

∥

2

`2(K)
=
∥

∥T ∗(I − TT ∗)1/2v
∥

∥

2

`2(K)

≤
∥

∥(I − TT ∗)1/2v
∥

∥

2

`2(L)
= 〈(I − TT ∗)v, v〉`2(L)

=
∥

∥G∗v
∥

∥

2

`2(M)
.

Hence the operator H : Im G∗ → `2(N ) defined by

HG∗v = −FT ∗v, v ∈ `2(L) (19)

is a well-defined contraction. Since G is star-outer, Im G∗ is dense in `2(M). The
operator H extends to a contraction H : `2(M) → `2(N ) by continuity. If another
operator H̃ : `2(M) → `2(N ) satisfies the equation H̃G∗ = −FT ∗, then (H −
H̃)|Im G∗ = 0. We conclude that H = H̃, because G is star-outer.

Part (b). Let the operator H : `2(M) → `2(N ) satisfy the equation HG∗ = −FT ∗.
So

GH∗F = −TF ∗F = −T (I − T ∗T ) = −(I − TT ∗)T = −GG∗T.

Since G is star-outer, Ker G = (0), and hence it follows that H∗F = −G∗T .

On the other hand, if H satisfies H∗F = −G∗T , then

GH∗F = −GG∗T = −(I − TT ∗)T = −T (I − T ∗T ) = −TF ∗F.
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Since F is outer, Im F is dense in `2(N ), and hence it follows that GH∗ = −TF ∗.
We have shown that the equations GH∗ = −TF ∗ and H∗F = −G∗T are equivalent.

Part (c). Now we will show that the operator V in (18) is unitary. Let H : `2(M)→
`2(N ) be the unique contraction satisfying H∗F = −G∗T . By the arguments above
H satisfies GH∗ = −TF ∗. Since

(HH∗ + FF ∗)F = −HG∗T + F − FT ∗T = F

and since F is outer, it follows that HH∗ + FF ∗ = I`2(N ). Thus

V V ∗ =

[

GG∗ + TT ∗ GH∗ + TF ∗

HG∗ + FT ∗ HH∗ + FF ∗

]

=

[

I 0

0 I

]

.

Since

G(G∗G+H∗H) = G− TT ∗G− TF ∗H = G,

and G is star-outer, it follows that G∗G+H∗H = I`2(M). Hence it follows that

V ∗V =

[

G∗G+H∗H G∗T +H∗F

T ∗G+ F ∗H T ∗T + F ∗F

]

=

[

I 0

0 I

]

.

Using the above lemma, we can say more about the properties of T1,1, T2,1, and

T2,2 in a D̃-embedding.

Proposition 2. Let T : `2(K)→ `2(L) be a block lower triangular contraction, which
admits a D̃-embedding

UT =

[

T1,1 T

T2,1 T2,2

]

: `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦). (20)

Then there exists: an outer operator F : `2(K) → `2(N ) such that I − T ∗T = F ∗F ,
a star-outer operator G : `2(M) → `2(L) such that I − TT ∗ = GG∗, and a unique
contraction H : `2(M) → `2(N ) satisfying H∗F = −G∗T . Moreover, there exist a
block lower triangular co-isometry B1 and a block lower triangular isometry B2 such
that T1,1 = GB1, T2,2 = B2F and B

∗
2T2,1B

∗
1 = H.

Proof. From the fact that UT is unitary, it follows that

I`2(L) − TT
∗ = T1,1T

∗
1,1, I`2(K) − T

∗T = T ∗2,2T2,2. (21)

By Theorem 2.1 from (Arov et al., 2000) there exists an outer operator F : `2(K)→
`2(N ) such that I − T ∗T ≥ F ∗F , and T2,2 = B2F where B2 : `2(N )→ `2(L◦) is a
block lower triangular contraction. Since

F ∗F ≥ F ∗B∗2B2F = T
∗
2,2T2,2 = I − T

∗T ≥ F ∗F,
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it follows that B2 is an isometry on Im F . The operator F is outer, so B2 is an
isometry on Im F = `2(N ). By Theorem 2.3 from (Arov et al., 2000) there exists a
star-outer operator G : `2(M)→ `2(L) such that I − TT ∗ ≥ GG∗, and T1,1 = GB1
for a block lower triangular contraction B1. Since

GG∗ ≥ GB1B
∗
1G
∗ = T1,1T

∗
1,1 = I − TT

∗ ≥ GG∗,

it follows that B∗1 acts as an isometry on Im G
∗. As G is star-outer, B∗1 is an

isometry on `2(M). Since UT is unitary, we conclude that

0 = (T ∗T1,1 + T
∗
2,2T2,1)B

∗
1 = T

∗G+ F ∗B∗2T2,1B
∗
1 .

By Lemma 1 there exists a unique contraction H : `2(M)→ `2(N ) such that F ∗H =
−T ∗G. Hence H = B∗2T2,1B

∗
1 .

4. Darlington Embeddings

Next we will consider a Darlington embedding or D-embedding of a block lower
triangular contraction, i.e., a unitary embedding (13) with the additional property
that

Im T ∗1,1 = `
2(K◦), Im T2,2 = `

2(L◦). (22)

First we will deduce necessary and sufficient conditions for the existence of such an
embedding.

Theorem 4. A block lower triangular contraction T : `2(K) → `2(L) admits a D-
embedding if and only if the following two conditions are satisfied:

(i) there exists an outer operator F : `2(K)→ `2(N ) such that I−T ∗T = F ∗F and
there exists a star-outer operator G : `2(M)→ `2(L) such that I−TT ∗ = GG∗,

(ii) for the unique contraction H : `2(M) → `2(N ) satisfying H∗F = −G∗T
there exist block lower triangular unitary operators U1 : `

2(P1) → `2(M) and
U2 : `

2(N )→ `2(P2), where Pi, i = 1, 2 is a doubly infinite sequence of Hilbert
spaces, such that U2HU1 is a block lower triangular.

If conditions (i) and (ii) are satisfied, then each D-embedding is obtained by

UT =

[

GU1 T

U2HU1 U2F

]

, (23)

where U2 and U1 are block lower triangular unitary operators such that U2HU1 is
a block lower triangular operator.

Proof. Suppose that conditions (i) and (ii) hold. From Lemma 1 it follows that the
operator

[

I 0

0 U2

][

G T

H F

][

U1 0

0 I

]
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is unitary. By assumption, each of the operator blocks in the above product is block
lower triangular. Hence conditions (i) and (ii) imply that T admits a D-embedding.
Now we will show the reverse implication. Suppose that T admits a D-embedding

UT =

[

T1,1 T

T2,1 T2,2

]

: `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦). (24)

By Proposition 2 there exist: an outer operator F : `2(K) → `2(N ) such that I −
T ∗T = F ∗F , a star-outer operator G : `2(M) → `2(L) such that I − TT ∗ = GG∗,
a unique contraction H : `2(M) → `2(N ) satisfying H∗F = −G∗T , a block lower
triangular co-isometry B1 and a block lower triangular isometry B2 such that T1,1 =
GB1, T2,2 = B2F , and B

∗
2T2,1B

∗
1 = H . By assumption, the image of T2,2 is dense in

`2(L◦), so

Im B2 = Im B2F = Im T2,2 = `
2(L◦).

It follows that B2 is unitary. Also by assumption, the image of T
∗
1,1 is dense in

`2(K◦), so

Im B∗1 = Im B
∗
1G
∗ = Im T ∗1,1 = `

2(K◦).

It follows that B1 is unitary. Also from Proposition 2 we may conclude that

T2,1 = B2B
∗
2T2,1B

∗
1B1 = B2HB1,

so B2HB1 is block lower triangular. The theorem is proved.

5. Realizations Induced by D̃- and D-Embeddings

In this section we will show how a D̃-embedding of a block lower triangular contraction
T brings forth an essentially unique contractive realization of T . To guarantee the
uniqueness we need the notions of controllability and observability. In the remaining
sections we will see that many properties of this realization can be found back in
properties of the D̃-embedding.

Let Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) be a time-variant system. The
subspace Ker (C|A;n) of Hn, defined by

Ker (C|A;n) =
⋂

j≥n

Ker C(j)τA(j, n), (25)

is called the unobservable subspace at time n. The closure of the linear manifold
Im (A|B;n), defined by

Im (A|B;n) = span
j≤n−1

Im τA(n, j + 1)B(j),

is called the controllable subspace at time n. A system Σ = (A(n), B(n), C(n), D(n);
Hn, Kn, Ln) is called observable at time n if Ker (C|A;n) = {0}, and controllable
at time n if the linear manifold Im (A|B;n) is dense in Hn. The system Σ will be
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called (completely) observable if Σ is observable at each time n, and (completely)
controllable if Σ is controllable at each time n.

Let a block lower triangular operator T admit a D̃-embedding

UT =

[

T1,1 T

T2,1 T2,2

]

: `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦). (26)

By Theorem 4.1 from (Kaashoek and Pik, 1998), the block lower triangular unitary
operator

VT =W
∗
L,L◦UTWK◦,K :

⊕

n∈
�

(K◦n ⊕Kn)→
⊕

n∈
�

(Ln ⊕ L
◦
n), (27)

where WK◦,K and WL,L◦ are defined in (8), admits a controllable, observable and
unitary realization

Σ̂ =

(

A(n),
[

B1(n) B(n)
]

,

[

C(n)

C1(n)

]

,

[

D1,1(n) D(n)

D2,1(n) D2,2(n)

]

;

Hn,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

. (28)

The system Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) will be called a realization of
T induced by the D̃-embedding of T .

Let us denote by Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) and Σ̃ =
(Ã(n), B̃(n), C̃(n), D(n); H̃n, Kn, Ln) two realizations of T , induced by the D̃-
embedding UT . In the next proposition we will show that the systems Σ and Σ̃ are
unitarily equivalent, i.e., there exist unitary operators Un : Hn → H̃n such that

Un+1A(n) = Ã(n)Un, Un+1B(n) = B̃(n), C(n) = C̃(n)Un.

Proposition 3. Let T be a block lower triangular contraction which admits a D̃-
embedding UT . Then all the realizations of T induced by the D̃-embedding UT are
unitarily equivalent. Moreover, each realization of T induced by the D̃-embedding UT
is pointwise stable and pointwise star-stable.

Proof. Consider the D̃-embedding UT : `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦) of T given
by (26). For i = 1, 2 let

Σ̂(i) =

(

A(i)(n),
[

B
(i)
1 (n) B

(i)(n)
]

,

[

C(i)(n)

C
(i)
1 (n)

]

,

[

D1,1(n) D(n)

D2,1(n) D2,2(n)

]

;

H(i)n ,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

be a controllable, observable and unitary realization of the block lower triangular
unitary operator VT given by formula (27). Then Σ̂

(i) are unitarily equivalent by
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Proposition 2.3.3 in (Constantinescu, 1995). Let the unitary equivalence be given by

Un : H
(1)
n → H

(2)
n , n ∈

�
. So

Un+1A
(1)(n)U∗n = A

(2)(n),

Un+1

[

B
(1)
1 (n) B

(1)(n)
]

=
[

B
(2)
1 (n) B

(2)(n)
]

,

[

C(1)(n)

C
(1)
1 (n)

]

U∗n =

[

C(2)(n)

C
(2)
1 (n)

]

.

In particular, the systems Σ(i) = (A(i)(n), B(i)(n), C(i)(n), D(n);H
(i)
n , Kn, Ln),

i = 1, 2 are unitarily equivalent.

Now we will show that each realization of T induced by the D̃-embedding UT is
pointwise stable and pointwise star-stable. Let Σ = (A(n), B(n), C(n), D(n); Hn,
Kn, Ln) be a realization of T induced by the D̃-embedding (26). By Theorem 4.1
from (Kaashoek and Pik, 1998) it follows that the block lower triangular unitary
operator VT , given in (27), admits a controllable, observable and unitary realization

Σ̂ =

(

α(n),
[

β1(n) β(n)
]

,

[

γ(n)

γ1(n)

]

,

[

D1,1(n) D(n)

D2,1(n) D2,2(n)

]

;

Xn,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

,

which is pointwise stable and pointwise star-stable. Both Σ and the system Υ =
(α(n), β(n), γ(n), D(n); Xn,Kn, Ln) are realizations of T induced by the D̃-
embedding (13). According to the first part of the proof, Σ and Υ are unitarily
equivalent. By unitary equivalence, the system Σ is pointwise stable and pointwise
star-stable.

6. Minimal D-Embeddings

Let T : `2(K) → `2(L) be a block lower triangular contraction which admits a D-
embedding UT . In this case the operator T has many D-embeddings, as follows from
Theorem 4. In this section we shall identify among all D-embeddings of T certain
minimal ones. For this purpose we will use the following terminology.

Let H : `2(M)→ `2(N ) be a bounded operator. A pair (U2, U1) of block lower
triangular unitary operators, where U2 acts from `

2(N ) into `2(R) and U1 acts from
`2(Q) into `2(M), is called a denominator of H if U2HU1 is block lower triangular.
If H has a denominator (U2, U1), then it has many denominators. For any pair of
block lower triangular unitary operators (W2,W1), acting on appropriate spaces, the
operator W2U2HU1W1 is again block lower triangular, and the pair (W2U2, U1W1)
is a denominator of H .
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Let F : `2(K) → `2(N ) be an outer operator satisfying I − T ∗T = F ∗F ,
G : `2(M) → `2(L) be a star-outer operator satisfying I − TT ∗ = GG∗, and let
H : `2(M) → `2(N ) be the unique contraction such that H∗F = −G∗T . Then, by
Theorem 4, the D-embedding UT of T equals

UT =

[

GU1 T

U2HU1 U2F

]

, (29)

where U2 and U1 are block lower triangular unitary operators such that U2HU1 is
a block lower triangular operator. Thus (U2, U1) is a denominator of H .

A denominator (Ũ2, Ũ1) of H is called a divisor of the denominator (U2, U1) of
H if there exist block lower triangular unitary operators B1 and B2 such that

(i) U2 = B2Ũ2

(ii) U1 = Ũ1B1,

(iii) Ũ2HŨ1 is block lower triangular.

A denominator (U2, U1) of H is called minimal from the left if for each divisor
(Ũ2, Ũ1) of (U2, U1) we have U2 = B2Ũ2 with B2 a diagonal unitary operator.
A denominator (U2, U1) of H is called minimal from the right if for each divisor
(Ũ2, Ũ1) of (U2, U1) with respect to H we have U1 = Ũ1B1 with B1 a diagonal
unitary operator. A denominator (U2, U1) of H is called minimal if it is minimal
from the left and minimal from the right. We call UT a (left, right) minimal D-
embedding of T if the denominator (U2, U1) of H is (left, right) minimal. The next
proposition shows that the definition does not depend on the particular choice of F
and G in (29).

Proposition 4. Let T : `2(K)→ `2(L) be a block lower triangular contraction which
admits a D-embedding

UT =

[

T1,1 T

T2,1 T2,2

]

. (30)

Suppose that

UT =





G(i)U
(i)
1 T

U
(i)
2 H

(i)U
(i)
1 U

(i)
2 F

(i)



 , i = 1, 2, (31)

where F (i) : `2(K)→ `2(M(i)) is an outer operator satisfying

I − T ∗T =
(

F (i)
)∗(
F (i)

)

, i = 1, 2

and G(i) : `2(N (i))→ `2(L) is a star-outer operator satisfying

I − TT ∗ = G(i)
(

G(i)
)∗
, i = 1, 2.
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The operator H(i) : `2(M(i))→ `2(N (i)), i = 1, 2 is the unique contraction satisfying

H(i)F (i) = −(G(i))∗T . Then the denominator (U
(1)
2 , U

(1)
1 ) is minimal from the left

(resp. from the right) if and only if (U
(2)
2 , U

(2)
1 ) is minimal from the left (resp. from

the right).

Proof. Assume that (U
(2)
2 , U

(2)
1 ) is a denominator of H

(2) which is minimal from

the left. We will show that (U
(1)
2 , U

(1)
1 ) is a denominator of H

(1) which is minimal

from the left. Let (Ũ
(1)
2 , Ũ

(1)
1 ) be a divisor of (U

(1)
2 , U

(1)
1 ). So there exist block lower

triangular unitary operators B2 and B1 such that U
(1)
2 = B2Ũ

(1)
2 and U

(1)
1 =

Ũ
(1)
1 B1, and Ũ

(1)
2 H

(1)Ũ
(1)
1 is block lower triangular. We will show that B2 is a

diagonal unitary operator. Since F (1) and F (2) are outer operators satisfying

F (1)∗F (1) = F (2)∗F (2),

we may define the isometry Q : Im F (1) → `2(M(2)) by QF (1)x = F (2)x, which

extends by continuity to an isometry from Im F (1) = `2(M(1)) into `2(M(2)). We

will show that Q is diagonal and unitary. It is surjective because Im F (2) = `2(M(2)),
and block lower triangular because both F (1) and F (2) are block lower triangular:

Q
[

⊕

j≥n

M
(1)
j

]

= Q
[

F (1)
⊕

j≥n

Kj
]

= Q
[

F (1)
⊕

j≥n

Kj
]

= F (2)
⊕

j≥n

Kj =
⊕

j≥n

M
(1)
j .

In the same way we can construct a block lower triangular unitary operator Q̃ such
that Q̃F (2) = F (1). It follows that Q̃ = Q∗, so Q is diagonal. We have shown that
there exists a diagonal unitary operator Q such that F (1) = QF (2).

Since G(1) and G(2) are star-outer operators satisfying

G(1)G(1)∗ = G(2)G(2)∗,

there exists a diagonal unitary operator R such that G(1) = G(2)R. From Lemma 1
we see that the operator H (i), i = 1, 2 is uniquely defined by the equation F (i)∗H(i) =
−T ∗G(i). Hence

F (1)∗QH(2)R = F (2)∗H(2)R = −T ∗G(2)R = −T ∗G(1).

Thus we obtain QH(2)R = H(1). The pair of operators (Ũ
(1)
2 Q,RU

(1)
1 ) is a denomina-

tor of H(2), because Ũ
(1)
2 Q is block lower triangular, RU

(1)
1 is block lower triangular,

and so is

Ũ
(1)
2 QH

(2)RU
(1)
1 = Ũ

(1)
2 H

(1)U
(1)
1 = Ũ

(1)
2 H

(1)Ũ
(1)
1 B1

as a product of block lower triangular operators Ũ
(1)
2 H

(1)Ũ
(1)
1 and B1. From

U
(2)
2 F

(2) = T2,2 = U
(1)
2 F

(1) = U
(1)
2 QF

(2),

and the property that F (2) is outer, it follows that U
(2)
2 = U

(1)
2 Q. Since

G(2)U
(2)
1 = T1,1 = G

(1)U
(1)
1 = G

(2)RU
(1)
1
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and G(2) is star-outer, we see that U
(2)
1 = RU

(1)
1 . We conclude that the denomina-

tor (Ũ
(1)
2 Q,RU

(1)
1 ) of H

(2) is a divisor of (U
(2)
2 , U

(2)
1 ), since B2Ũ

(1)
2 Q = U

(2)
2 and

RU
(1)
1 = U

(2)
1 . But (U

(2)
2 , U

(2)
1 ) is minimal from the left, so B2 is a block diagonal

unitary operator. The statement about the minimality from the right is proved in the
same way.

7. Minimal D-Embeddings and Their Induced Realizations

In this section we will characterize the minimality of a D-embedding in terms of
systems. Let T : `2(K) → `2(L) be a block lower triangular contraction admitting a
D-embedding

UT =

[

T1,1 T

T2,1 T2,2

]

: `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦),

and let

Σ̃ =

(

A(n),
[

B1(n) B(n)
]

,

[

C(n)

C1(n)

]

,

[

D1,1(n) D(n)

D2,1(n) D2,2(n)

]

;

Hn,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

be a controllable, observable and unitary realization of W ∗L,L◦UTWK◦,K (which exists
by Theorem 4.1 from (Kaashoek and Pik, 1998)). Here WL,L◦ and WK◦,K are defined
in (8). The system Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) is called a realization of
T induced by the D-embedding UT (cf. Section 5 where this notion is introduced for
D̃-embeddings). The main theorem of this section relates the minimality from the left
(resp. from the right) of the D-embedding to the observability (resp. controllability)
of a realization induced by a D-embedding.

Theorem 5. Let T be a block lower triangular operator which admits a D-embedding
UT , and let Σ be a realization induced by the D-embedding UT . Then

(i) UT is a left minimal D-embedding if and only if Σ is observable,

(ii) UT is a right minimal D-embedding if and only if Σ is controllable,

(iii) UT is a minimal D-embedding if and only if Σ is observable and controllable.

To prove this theorem, we need the notion of a cascade connection or product of
two systems. Consider two contractive time-variant systems

Σν =
(

Aν(n), Bν(n), Cν(n), Dν(n);Hν,n,Kν,n, Lν,n
)

, ν = 1, 2.
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We assume that for each n the output space L2,n of Σ2 at time n is equal to the
input space K1,n of Σ2 at time n. Define a new system Σ by











x
(1)
n+1

x
(2)
n+1

y
(1)
n











=











A1(n) B1(n)C2(n) B1(n)D2(n)

0 A2(n) B2(n)

C1(n) D1(n)C2(n) D1(n)D2(n)





















x
(1)
n

x
(2)
n

u
(2)
n











. (32)

The system Σ in (32) is called the cascade connection or product of Σ1 and Σ2. It
will be denoted by Σ1Σ2. In fact, we have

Σ1Σ2 =

([

A1(n) B1(n)C2(n)

0 A2(n)

]

,

[

B1(n)D2(n)

B2(n)

]

,
[

C1(n) D1(n)C2(n)
]

,

D1(n)D2(n); H1,n ⊕H2,n,K2,n, L1,n

)

.

The equality TΣ1Σ2 = TΣ1TΣ2 follows from the construction of the cascade con-
nection. A cascade connection of unitary time-variant systems enjoys the following
property:

Lemma 2. Let Σi (i = 1, 2) be a unitary system with a unitary input-output map
TΣi , and let the product Σ = Σ1Σ2 be well-defined. Then Σ is controllable and
observable if and only if Σi (i = 1, 2) is controllable and observable.

In the proof of Theorem 5 and this lemma we use the notion of a simple system.
A system Σ = (A(n), B(n), C(n), D(n);Hn ,Kn, Ln) is called simple if

Ker (C|A;n) ∩ Im (A|B;n)⊥ = {0}, n ∈
�
.

Proof. Let Σi = (Ai(n), Bi(n), Ci(n), Di(n);Hi,n,Ki,n, Li,n), i = 1, 2, and let the
product Σ be given by Σ = (A(n), B(n), C(n), D(n); Hn, K2,n, L1,n), where Hn =
H1,n ⊕H2,n, and

A(n) =

[

A1(n) B1(n)C2(n)

0 A2(n)

]

, B(n) =

[

B1(n)D2(n)

B2(n)

]

,

C(n) =
[

C1(n) D1(n)C2(n)
]

, D(n) = D1(n)D2(n).

Part (a). Assume first that Σi is a controllable, observable and unitary time-variant
system for i = 1, 2. Since Σi is unitary for i = 1, 2, the product Σ is a unitary
time-variant system by Theorem 5.1 of (Kaashoek and Pik, 1998). The input-output
map TΣ of the product Σ equals TΣ1TΣ2 by the construction of the product Σ1Σ2.
First we will show that the system Σ is simple. Fix n ∈

�
. Take x ∈ Ker (C|A;n) ∩
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Im (A|B;n)⊥. Let us write x = (x1, x2)tr ∈ H1,n⊕H2,n. Since x ∈ Ker (C|A;n), the
vector

[

C1(n+ j) D1(n+ j)C2(n+ j)
]

[

τA1(n+ j, n) ∗

0 τA2(n+ j, n)

][

x1

x2

]

equals 0 for each j ≥ 0, and hence it follows that x1 ∈ Ker (C1|A1;n). The system
Σ1 is observable by assumption, so x1 = 0.

Since x ⊥ Im (A|B;n), it follows that

0 =
〈

[

0

x2

]

, τA(n, n− j + 1)B(n− j)uj
〉

=
〈

x2, τA2(n, n− j + 1)B2(n− j)uj
〉

for each j ≥ 1 and each vector uj ∈ K2,n−j . The system Σ2 is controllable by
assumption, so x2 = 0. It follows that the system Σ is simple.

The input-output map of Σ is unitary. The unitary realization of a block lower
triangular unitary operator constructed from Theorem 4.1 from (Kaashoek and Pik,
1998) is observable and controllable. All simple unitary realizations of a block lower
triangular contraction are unitarily equivalent (Constantinescu, 1995, p.44, Prop. 3.3).
It follows that the realization Σ is observable and controllable by unitary equivalence.

Part (b). Let us now assume that Σ is controllable and observable. Fix n ∈
�
and

take x1 ∈ Ker (C1|A1;n) ∩ Im (A1|B1;n)
⊥. Then (x1, 0)

tr ∈ Ker (C|A;n). Since Σ
is observable, it follows that x1 = 0. The system Σ1 is simple.

Fix m ∈
�
. Take x2 ∈ Ker (C2|A2;m) ∩ Im (A2|B2;m)⊥. Then (0, x2)tr ⊥

Im (A|B;n). Since Σ is observable, it follows that x2 = 0. The system Σ2 is simple.
The input-output map of the system Σi, i = 1, 2 is unitary. By the same argument
as in Part (a) of the proof it follows that the systems Σi, i = 1, 2 are controllable
and observable.

The following simple lemma is used in the proof of the main theorem:

Lemma 3. A controllable and observable realization of a block diagonal contraction
has a trivial state space sequence.

Proof. Let T : `2(K) → `2(L) be a diagonal contraction, and let Σ =
(A(n), B(n), C(n), D(n); Hn,Kn, Ln) be a controllable and observable realization
of T . Fix n ∈

�
. Take x ∈ Im (A|B;n). Now C(n +m)τA(n +m,n)x = 0 for each

m ≥ 0, because T is diagonal. Since Σ is observable, this implies that x = 0. Hence
Hn = Im (A|B;n) = {0}.

Proof of Theorem 5. Let

Σ̃ =

(

A(n),
[

B1(n) B(n)
]

,

[

C(n)

C1(n)

]

,

[

D1,1(n) D(n)

D2,1(n) D2,2(n)

]

;

Hn,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

(33)
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be a controllable, observable and unitary realization of the block lower triangular
unitary operator W ∗L,L◦UTWK◦,K, where UT is the D-embedding

UT =

[

T1,1 T

T2,1 T2,2

]

: `2(K◦)⊕ `2(K)→ `2(L)⊕ `2(L◦) (34)

of T . So Σ = (A(n), B(n), C(n), D(n);Hn ,Kn, Ln) is a realization of T induced by
the D-embedding UT . From Theorem 4 it follows that the D-embedding (34) of T
is of the form

UT =

[

GU1 T

U2HU1 U2F

]

: `2(K◦)⊕ `2(K)→ `2(L) ⊕ `2(L◦), (35)

where F : `2(K) → `2(N ) is an outer operator satisfying I − T ∗T = F ∗F ,
G : `2(M)→ `2(L) is a star-outer operator satisfying I−TT ∗ = GG∗, H : `2(M)→
`2(N ) is the unique contraction satisfying H∗F = −G∗T , and (U2, U1) is a denom-
inator of H , where U2 : `

2(N )→ `2(L◦) and U1 : `
2(K◦)→ `2(M).

Part (a). We will show that if Σ is an observable system, then UT is a left minimal
D-embedding. Let (Û2, Û1) be a divisor of (U2, U1), where Û2 : `

2(N ) → `2(P)
and Û1 : `

2(Q) → `2(N ). So there exist block lower triangular unitary operators
B2 : `

2(P) → `2(L◦) and B1 : `2(K◦) → `2(Q) such that U2 = B2Û2, U1 = Û1B1,
and Û2HÛ1 is block lower triangular. We have to show that if Σ is observable, then
B2 is diagonal. Set Û2 = (ûi,j)

∞
i,j=−∞ : `

2(N ) → `2(P) and B2 = (bi,j)∞i,j=−∞ :

`2(P)→ `2(L◦). Let

ΣB2 =

(

AB2(n),
[

0 BB2(n)
]

,

[

0

CB2(n)

]

,

[

I 0

0 bn,n

]

;

XB2,n, Ln ⊕ Pn, Ln ⊕ L
◦
n

)

be a controllable, observable and unitary realization of the block lower triangular
unitary operator

([

δi,jI 0

0 bi,j

])∞

i,j=−∞

:
⊕

j∈
�

(Lj ⊕ Pj)→
⊕

j∈
�

(Lj ⊕ L
◦
j ). (36)

Here

δi,j =

{

1 if i = j,

0 if i 6= j

is the Kronecker delta. Let

Σ̂ =

(

Â(n),
[

B̂1(n) B̂(n)
]

,

[

Ĉ(n)

Ĉ1(n)

]

,

[

D̂1,1(n) D̂1,2(n)

D̂2,1(n) D̂2,2(n)

]

;

X̂n,K
◦
n ⊕Kn, Ln ⊕ Pn

)
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be a controllable, observable and unitary realization of the block lower triangular
unitary operator W ∗L,P T̂WK◦,K, where

T̂ =

[

I 0

0 Û2

] [

G T

H F

][

U1 0

0 I

]

,

and W ∗L,P , WK◦,K are the unitary operators defined by (8). The product of ΣB2 and

Σ̂ is a well-defined unitary system, because the output space of Σ̂ equals the input
space of ΣB2 at each time instant. The product ΣB2 Σ̂ = Υ̃ is given by

Υ̃ =

([

AB2(n) BB2(n)Ĉ1(n)

0 Â(n)

]

,

[

BB2(n)D̂2,1(n) BB2(n)D̂2,2(n)

B̂1(n) B̂(n)

]

,

[

0 Ĉ(n)

CB2(n) bn,nĈ1(n)

]

,

[

D̂1,1(n) D̂(n)

D̂2,1(n) D̂2,2(n)

]

;

XB2,n ⊕ X̂n,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

. (37)

Since both ΣB2 and Σ̂ are controllable, observable and unitary, by Lemma 2 the
system Υ̃ is controllable, observable and unitary. On the other hand, the system Υ̃
is a realization of the block lower triangular unitary operator W ∗L,L◦UTWK◦,K, since

UT =

[

I 0

0 U2

] [

G T

H F

][

U1 0

0 I

]

=

[

I 0

0 B2

][

I 0

0 Û2

][

G T

H F

][

U1 0

0 I

]

.

Hence

Υ =

([

AB2(n) BB2(n)Ĉ1(n)

0 Â(n)

]

,

[

BB2(n)D̂2,2(n)

B̂(n)

]

,
[

0 Ĉ(n)
]

, D̂(n);

XB2,n ⊕ X̂n,K
◦
n ⊕Kn, Ln ⊕ L

◦
n

)

is a realization of T induced by the D-embedding UT . By Proposition 3 the systems
Υ and Σ are unitarily equivalent. The system Σ is observable by assumption, so the
same holds for Υ by unitary equivalence. This implies that the subspaces XB2,n are
trivial for each integer n. The state space sequence of the system ΣB2 is trivial, so its
input-output map (36) is diagonal. It follows that B2 is a diagonal unitary operator.

Part (b). Assume that Σ is not observable. We will construct a divisor (Û2, Û1) of
(U2, U1) such that U2 = B2Û2, where B2 is a block lower triangular unitary operator
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which is not diagonal. For each integer n consider the orthogonal decomposition of
the sequence of state spaces

Hn = Ker (C|A;n) ⊕Ker (C|A;n)
⊥

of the system Σ̃, given in (33). Relative to this decomposition of the sequence of state
spaces, the system matrix at time n of the system Σ̃ is given by

MΣ̃(n) =











A1,1(n) A1,2(n) B1,1(n) B1,2(n)

0 A2,2(n) B2,1(n) B2,2(n)

0 C1,2(n) D1,1(n) D(n)

C2,1(n) C2,2(n) D2,1(n) D2,2(n)











:

Ker (C|A;n)⊕Ker (C|A;n)⊥ ⊕K◦n ⊕Kn

→ Ker (C|A;n+ 1)⊕Ker (C|A;n+ 1)⊥ ⊕ Ln ⊕ L
◦
n.

Since MΣ̃(n) is a unitary operator for each integer n, we have

A1,1(n)
∗A1,1(n) +

[

0 C2,1(n)
∗
]

[

0

C2,1(n)

]

= I. (38)

For each integer n define the Hilbert space

Mn =

















x

l

z






∈ Ker (C|A;n) ⊕ Ln ⊕ L

◦
n | A1,1(n)

∗x+ C2,1(n)
∗z = 0











,

and the operators

βl(n) : Mn → Ker (C|A;n+ 1), βl(n)







x

l

z






= x,

δ1,l(n) : Mn → Ln, δ1,l(n)







x

l

z






= l,

δ2,l(n) : Mn → L◦n, δ2,l(n)







x

l

z






= z.

Then by Lemma 5.2 from (Kaashoek and Pik, 1998),

Υl =

(

A1,1(n), βl(n),

[

0

C2,1(n)

]

,

[

δ1,l(n)

δ2,l(n)

]

; Ker (C|A;n),Mn, Ln ⊕ L
◦
n

)
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is a unitary time-variant system. Notice that Mn = Ln ⊕ Vn, where

Vn =

{[

x

z

]

∈ Ker (C|A;n)⊕ L◦n | A1,1(n)
∗x+ C2,1(n)

∗z = 0

}

.

Relative to this decomposition of Mn, the system Υl becomes

Υl =

(

A1(n),
[

0 Bl(n)
]

,

[

0

C2,1(n)

]

,

[

ILn 0

0 δ2,l(n)

]

;

Ker (C|A;n), Ln ⊕ Vn, Ln ⊕ L
◦
n

)

. (39)

Since both Υl and Σ̃ are unitary systems, we have















A1,1(n)
∗ 0 0 C2,1(n)

∗

0 IKer (C|A;n)⊥ 0 0

0 0 ILn 0

Bl(n)
∗ 0 0 δ2,l(n)

∗





























A1,1(n) A1,2(n) B1,1(n) B1,2(n)

0 A2,2(n) B2,1(n) B2,2(n)

0 C1,2(n) D1,1(n) D(n)

C2,1(n) C2,2(n) D2,1(n) D2,2(n)















=











IKer (C|A;n) 0 0 0

0 A2,2(n) B2,1(n) B2,2(n)

0 C1,2(n) D1,1(n) D(n)

0 γr(n) δ1,r(n) δ2,r(n)











, (40)

where

γr(n) = βl(n)
∗A1,2(n) + δ2,l(n)

∗C2,2(n),

δ1,r(n) = βl(n)
∗B1,1(n) + δ2,l(n)

∗D2,1(n),

δ2,r(n) = βl(n)
∗B1,2(n) + δ2,l(n)

∗D2,2(n).

The system

Υr =

(

A2,2(n),
[

B2,1(n) B2,2(n)
]

,

[

C1,2(n)

γr(n)

]

,

[

D1,1(n) D(n)

δ1,r(n) δ2,r(n)

]

;

Ker (C|A;n)⊥,K◦n ⊕Kn, Ln ⊕ Vn

)

(41)

is unitary because (40) is a product of two unitary operators. We conclude that
Σ̃ = ΥlΥr, where Υl and Υr are unitary time-variant systems. The system Σ̃ =
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ΥlΥr is a controllable, observable and unitary realization of the unitary block lower
triangular operator WL,L◦UTWK◦,K, where UT is the D-embedding (34) of T . By

Theorem 3.1 from (Kaashoek and Pik, 1998), the unitary system Σ̃ is pointwise stable
and pointwise star-stable. It follows that both the unitary systems Υl and Υr are
pointwise stable and pointwise star-stable. By the same theorem their input-output
maps TΥl and TΥr are unitary. From (39) we see that

WL,L◦TΥlW
∗
L,V =

[

ILn 0

0 B2

]

,

where B2 is the input-output map of the system

(

A1(n), Bl(n), C2,1(n), δ2,l(n); Ker (C|A;n), Vn, L
◦
n

)

,

and WL,L◦ and W
∗
L,V are defined by (8). Since Υl is a pointwise stable and point-

wise star-stable unitary system, it is controllable and observable by Theorem 3.1
from (Kaashoek and Pik, 1998). By assumption there exists an integer n such that
Ker (C|A;n) 6= {0}. By Lemma 3 the operator B2 is not diagonal. Finally, we will
show that WL,VTΥrW

∗
K◦,K is a D-embedding of T . Set

WL,VTΥrW
∗
K◦,K =

[

Tr,1,1 Tr,1,2

Tr,2,1 Tr,2,2

]

.

Notice that each of the operators Tr,i,j (i, j = 1, 2) is a block lower triangular
contraction. Then

[

T1,1 T

T2,1 T2,2

]

= UT =WL,L◦TΥlTΥrW
∗
K◦,K =

[

I 0

0 B2

][

Tr,1,1 Tr,1,2

Tr,2,1 Tr,2,2

]

=

[

Tr,1,1 Tr,1,2

B2Tr,2,1 B2Tr,2,2

]

.

In particular, T = Tr,1,2 and T1,1 = Tr,1,1. Moreover, Im T
∗
r,1,1 = Im T

∗
1,1 is dense in

`2(K◦). Since B2 is unitary, Im Tr,2,2 = B∗2 Im T2,2 is dense in `
2(V). By Theorem 4

it follows that

TΥr =

[

I 0

0 Û2

][

G T

H F

] [

I 0

0 Û1

]

(42)

for some block lower triangular unitary operators Û2 and Û1. We have constructed a
divisor (Û2, Û1) of (U2, U1) such that U2 = B2Û2 with B2 a block lower triangular
unitary operator which is not diagonal.

Part (c). The second statement of the theorem can be obtained in a similar way, or
by using adjoint systems.
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8. Minimal D-Embeddings and Optimal Systems

A special class of contractive systems is the class of optimal systems. A contractive
realization

Σ◦ =
(

A◦(n), B◦(n), C◦(n), D(n);H◦,n,Kn, Ln
)

of a block lower triangular contraction T is called optimal if for each contractive
realization Σ = (A(n), B(n), C(n), D(n); Hn, Kn, Ln) of T , for each n ∈

�
, and

each input sequence un, un+1, un+2, . . . , where uj ∈ Kj , we have

∥

∥

∥

n+k
∑

j=n

τA◦(n+ k + 1, j + 1)B◦(j)uj

∥

∥

∥ ≤
∥

∥

∥

n+k
∑

j=n

τA(n+ k + 1, j + 1)B(j)uj

∥

∥

∥,

for each k ≥ 0. In (Arov et al., 1998) it is shown that each block lower triangular
contraction appears as the input-output operator of a controllable, observable and
optimal system, and that all controllable, observable and optimal realizations are
unitarily equivalent.

An observable and contractive realization

Σ• =
(

A•(n), B•(n), C•(n), D(n);H•,n,Kn, Ln
)

of T is called star-optimal if for each observable and contractive realization Σ =
(A(n), B(n), C(n), D(n); Hn,Kn, Ln) of T , and for each input sequence un, un+1,
un+2, . . . with uj ∈ Kj , we have

∥

∥

∥

n+k
∑

j=n

τA(n+ k + 1, j + 1)B(j)uj

∥

∥

∥ ≤
∥

∥

∥

n+k
∑

j=n

τA•(n+ k + 1, j + 1)B•(j)uj

∥

∥

∥

for each integer k ≥ 0. (In the definition of a star-optimal system one has to restrict
oneself to observable contractive systems for technical reasons, see (Arov et al., 1998,
Sec. 7). In the next theorem we will characterize the optimality of a realization induced
by a D-embedding by properties of the embedding UT .

Theorem 6. Let T be a block lower triangular operator which admits a minimal
D-embedding

UT =

[

T1,1 T

T2,1 T2,2

]

, (43)

and let Σ be a realization of T induced by the D-embedding UT . Then Σ is observ-
able and controllable. Moreover,

(i) T2,2 is outer if and only if Σ is an optimal system,

(ii) T1,1 is star-outer if and only if Σ is a star-optimal system.
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Proof. Let Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) be a realization of T induced
by the D-embedding (43). So there exist contractive operators B1(n), C1(n), D1,1(n),
D2,1(n), and D2,2(n) such that

ΣD =

(

A(n),
[

B1(n) B(n)
]

,

[

C(n)

C1(n)

]

,

[

D1,1(n) D(n)

D2,1(n) D2,2(n)

]

;

Hn,K
◦
n ⊕Kn, L

◦
n ⊕ Ln

)

is a unitary realization of

Ξ =

([

t
(1,1)
i,j ti,j

t
(2,1)
i,j t

(2,2)
i,j

])∞

i,j=−∞

,

where t
(1,1)
i,j , t

(2,1)
i,j , t

(2,2)
i,j , and ti,j are defined by T1,1 = (t

(1,1)
i,j )

∞
i,j=−∞, T2,1 =

(t
(2,1)
i,j )

∞
i,j=−∞, and T2,2 = (t

(2,2)
i,j )

∞
i,j=−∞. By Theorem 5 (iii) the system Σ is control-

lable and observable since the D-embedding (43) is minimal. Notice that the system

Σ2 =

(

A(n), B(n),

[

C(n)

C1(n)

]

,

[

D(n)

D2,2(n)

]

;Hn,Kn, Ln ⊕ L
◦
n

)

is an isometric observable realization of the block lower triangular isometry

Ξ2 =









ti,j

t
(2,2)
i,j









∞

i,j=−∞

. (44)

Let us first show the equivalence in statement (i). Assume that T2,2 is an outer
operator. Since UT is unitary, in particular I − T ∗T = T ∗2,2T2,2, so F = T2,2 is a
maximal outer solution to the operator inequality I − T ∗T ≥ F ∗F . By this we mean
that if G is another block lower triangular contraction satisfying I − T ∗T ≥ G∗G,
then G = QF for some block lower triangular contraction Q. From Theorem 7.1
from (Arov et al., 2000) we conclude that Σ is an optimal realization of T .

Let us now start with the assumption that Σ is optimal. We have to show that the
block lower triangular operator T2,2 is outer. Denote by MΣ(n) the system matrix
of Σ at time n. Define the defect operator

DMΣ(n) =
(

I −MΣ(n)
∗MΣ(n)

)1/2
: Hn ⊕Kn → Hn ⊕Kn,

and the defect space DMΣ(n) = Im DMΣ(n). Set

Y (n) = DMΣ(n)τHn : Hn → DMΣ(n), Z(n) = DMΣ(n)τKn : Kn → DMΣ(n), (45)

where τHn and τKn are the canonical embeddings of Hn and Kn into Hn ⊕Kn,
respectively. Then the operator matrix









A(n) B(n)

C(n) D(n)

Y (n) Z(n)









: Hn ⊕Kn → Hn+1 ⊕ Ln ⊕DMΣ(n) (46)
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is an isometry for each n ∈
�
. Thus the system

Φ = ΦΣ =
(

A(n), B(n), Y (n), Z(n);Hn,Kn,DMΣ(n)
)

(47)

is a contractive time-variant system. Let TΦ = (tΦ,i,j)
∞
i,j=−∞ be its input-output

map. By Theorem 2.1 from (Arov et al., 2000) it follows that I − T ∗T = T ∗2,2T2,2 ≤
T ∗ΦTΦ = I −T

∗T , so T ∗2,2T2,2 = T
∗
ΦTΦ. Since the system Σ is controllable, observable

and optimal, by the same theorem the operator TΦ is outer. Since Σ2 is an isometric
realization of Ξ2 in (44), from Lemma 4.1 (ii) from (Arov et al., 2000) we obtain the
identity

I − T (n, k)∗T (n, k)− T2,2(n, k)
∗T2,2(n, k) = Λn,k(Σ)

∗Λn,k(Σ)

for each pair of integers n, k with n ≤ k. Here Λn,k(Σ) :
⊕k
j=nKj → Hk+1 is the

operator defined by

Λn,k(Σ)~v =
k
∑

j=n

τA(k + 1, j + 1)B(j)vj ,

where ~v = (vn, vn+1, . . . , vk−1, vk). By the same lemma it follows that

I − T (n, k)∗T (n, k)− TΦ(n, k)
∗TΦ(n, k) = Λn,k(Σ)

∗Λn,k(Σ)

for each n, k with n ≤ k. We conclude that T2,2(n, k)∗T2,2(n, k) = TΦ(n, k)∗TΦ(n, k)
for each n, k with n ≤ k. By Proposition 3.1 from (Arov et al., 2000) we obtain the
inclusion Im Hn(T2,2) ⊂ Im T2,2(n,∞), for each n ∈

�
. Here

Hn(T2,2) =





















· · · t
(2,2)
n,n−3 t

(2,2)
n,n−2 t

(2,2)
n,n−1

· · · t
(2,2)
n+1,n−3 t

(2,2)
n+1,n−2 t

(2,2)
n+1,n−1

· · · t
(2,2)
n+2,n−3 t

(2,2)
n+2,n−2 t

(2,2)
n+2,n−1

...
...

...





















:

n−1
⊕

j=−∞

Kj →
∞
⊕

j=n

L◦j . (48)

It follows that

Im
[

Hn(T2,2) T2,2(n,∞)
]

⊂ Im T2,2(n,∞) ⊂ Im
[

Hn(T2,2) T2,2(n,∞)
]

.
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Let τ be the canonical embedding of ⊕j≥nL◦j into `
2(L). Then

Im T2,2(n,∞) = Im
[

Hn(T2,2) T2,2(n,∞)
]

= Im τT2,2 = τ Im T2,2 = ⊕j≥nL
◦
j .

We have shown that T2,2 is outer.

Part (ii). The second statement of the theorem can be shown in a similar way, or by
using adjoint systems (Pik, 1999, Secs. 6.4, 6.6 and 6.7).

9. Exponential Stability of Systems

So far we have only considered the pointwise stability or the pointwise star-stability
of time-variant contractive systems. We will now consider exponential stability,
which is of special interest with respect to D̃- and D-embeddings. A system Σ =
(A(n), B(n), C(n), D(n);Hn ,Kn, Ln) is called exponentially stable if

lim sup
ν→∞

(

sup
j
‖τA(j + ν, j)‖

)1/ν

< 1.

The input-output map of an exponentially stable contractive system is exponential-
ly decaying off the main diagonal. (A proof of this statement can be obtained by a
non-essential generalization of the proof of Proposition 2.1 from (Kaashoek and Pik,
1998)). A block lower triangular unitary operator which is exponentially decaying off
the main diagonal admits an exponentially stable contractive (in fact, unitary) real-
ization (see Theorem 4.1 from (Kaashoek and Pik, 1998)). This does not hold true for
general block lower triangular contractions. In this section we give necessary and suf-
ficient conditions when a block lower triangular contraction admits an exponentially
stable contractive realization.

Theorem 7. A block lower triangular contraction T admits a D̃-embedding (13)
such that each of the blocks T , T1,1, T2,1 and T2,2 is exponentially decaying off the
main diagonal, if and only if T admits an exponentially stable contractive realization.

Proof. Assume that Σ = (A(n), B(n), C(n), D(n);Hn,Kn, Ln) is an exponentially
stable contractive realization of T . In Part (a) of the proof of Proposition 1 we have
constructed a unitary system Σ̃ = (A(n), B̃(n), C̃(n), D̃(n);Hn,Kn ⊕DMΣ(n)∗ , Ln ⊕
DMΣ(n)) with the same sequence of main operators A(n). Let us denote by TΣ̃ its

input-output map. Since Σ is exponentially stable, the system Σ̃, having the same
sequence of main operators, is exponentially stable, too. From Theorem 3.1 from
(Kaashoek and Pik, 1998) it follows that TΣ̃ is unitary. From Proposition 2.1 from
(Kaashoek and Pik, 1998) it follows that TΣ̃ is exponentially decaying off the main di-
agonal. Denote by D the doubly infinite sequence of Hilbert spaces (DMΣ(n))n∈

� , and
by D∗ the doubly infinite sequence of Hilbert spaces (DMΣ(n)∗)n∈

� , where DMΣ(n)
and DMΣ(n)∗ are given in (14). Let the operators WL,D and ZK,D∗ be defined by
(8) and (9), respectively, and define T1,1, T2,1 and T2,2 by

WL,DTΣ̃Z
∗
K,D∗ =

[

T1,1 T

T2,1 T2,2

]

: `2(D∗)⊕ `2(K)→ `2(L) ⊕ `2(D).
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The operators T1,1, T2,1 and T2,2 are block lower triangular contractions, because TΣ̃
is a block lower triangular operator. Since TΣ̃ is exponentially decaying off the main
diagonal, it follows that the operators T1,1, T2,1 and T2,2 are exponentially decaying

off the main diagonal, too. Hence the D̃-embedding is exponentially decaying off the
main diagonal. Suppose now that the block lower triangular contraction T admits
a D̃-embedding which is exponentially decaying off the main diagonal. Then, by
Theorem 4.1 from (Kaashoek and Pik, 1998), the unitary realization Σ̃ constructed
in the proof of Proposition 1 is exponentially stable. Hence the contractive realization
Σ of T , having the same sequence of main operators, is also exponentially stable.
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