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REDUCED ORDER CONTROLLERS FOR

BURGERS’ EQUATION

WITH A NONLINEAR OBSERVER

Jeanne A. ATWELL
∗, Jeffrey T. BORGGAARD∗∗

Belinda B. KING
***

A method for reducing controllers for systems described by partial differential
equations (PDEs) is applied to Burgers’ equation with periodic boundary condi-
tions. This approach differs from the typical approach of reducing the model and
then designing the controller, and has developed over the past several years into
its current form. In earlier work it was shown that functional gains for the feed-
back control law served well as a dataset for reduced order basis generation via
the proper orthogonal decomposition (POD). However, the test problem was the
two-dimensional heat equation, a problem in which the physics dominates the
system in such a way that controller efficacy is difficult to generalize. Here, we
additionally incorporate a nonlinear observer by including the nonlinear terms
of the state equation in the differential equation for the compensator.

Keywords: Burgers’ equation, reduced order controllers, proper orthogonal de-

composition, minmax control design, stabilized finite elements

1. Introduction

Over the past thirty or more years, the design of low order controllers has been a
frequent topic of research in control theory. Not only is the concept important for large
scale systems of ordinary differential equations (ODE), but it is imperative for real-
time control of systems of partial differential equations (PDE). A typical approach is to
reduce the model and design a control using standard designs such as linear-quadratic-
gaussian (LQG), minmax, or H∞. We call this approach “reduce-then-design” (see
Fig. 1.1(a)). In addition to allowing the use of existing computational and control
design techniques, an added benefit of this approach may be the production of a low
order model that may be desired for other purposes, such as simulation. For ODE
systems, balanced realization and truncation is one commonly used model reduction
technique (Moore, 1981; Mustafa and Glover, 1991).

∗ Ball Aerospace Technologies Corp., Boulder, CO 80836, e-mail: jaatwell@ball.com
∗∗ Interdisciplinary Center for Applied Mathematics, Virginia Tech, Blacksburg, VA 24061–0531,

e-mail: borggajt@icam.vt.edu
*** Corresponding Author: Interdisciplinary Center for Applied Mathematics, Virginia Tech,

Blacksburg, VA 24061–0531, e-mail: bbking@icam.vt.edu



1312 J.A. Atwell et al.

high order (N)

low order (M)

low order (M)

high order (N)

low order (M)

high order (N)

control design

Physical SystemPhysical System

model design

controller reduction

control designmodel reduction

model design

PSfrag replacements

(a) (b)

Fig. 1. (a) Reduce-then-design method, (b) design-then-reduce method.

For PDE systems, the first step in the computation of a control design is typi-
cally numerical approximation by a large-scale ODE system; then the tools for ODE
systems can be applied. In recent literature, model reduction techniques based on the
proper orthogonal decomposition (POD) have been investigated (Atwell and King,
2001; Banks et al., 2000; Fahl, 1999; Kunisch and Volkwein, 1999; Ly and Tran,
2001).

An alternative approach when the real goal is the design of a low order feedback
control may be to reduce the controller instead of the model, as shown in Fig. 1(b).
In this “design-then-reduce” approach, model design is followed by controller design,
and then by reduction of the controller (Atwell and King, 2002; 2001; Burns and King,
1998; King, 1998; King and Sachs, 2000). A benefit to this philosophy is that robust
low order systems (Atwell and King, 2002; Burns and King, 1998; King and Sachs,
2000) and insight into sensor placement and design (Burns and Rubio, 1997; Faulds
and King, 2000) can be obtained. This approach is based on the observation that
vital “information” or “physics” contained in the higher order model are available for
control design if reduction is postponed.

The favorable results in (Atwell and King, 1999; 2002) were obtained for the two
dimensional heat equation with boundary control. The physics of the heat equation
dominates the control system in a such a way that it becomes difficult to conclude
if the results are truly significant and widely applicable, or merely good for that
example. Therefore, we apply the methodology developed in these two papers to the
design of low order compensator based controllers for Burgers’ equation.

In (Atwell and King, 2002; 2001; Burns and King, 1998; King, 1998; King and
Sachs, 2000), a framework is outlined to construct reduced order compensator-based
feedback controllers for systems described by PDEs. The first step of the framework
involves a high order (converged) approximation to the PDE control problem. In the
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next step, a high order controller is computed for this approximate system. In (Atwell
and King, 2002), reduced order controllers were obtained by projecting the controller
onto a low order basis. Although this approach works well, it requires computing the
solutions of two large scale Riccati equations. In (Atwell and King, 1999), a viable
“hybrid” approach involves projection combined with computation of solutions of
Riccati equations using a low order basis. The specifics are a bit tricky to explain
and will be discussed in detail in Section 2.3. The main benefit is that computational
requirements are reduced and results compare favorably with the previous method.

To form the low order basis, the POD technique—which has been widely dis-
cussed in the literature as a tool for model reduction—is used. The process is also
known as Principle Component Analysis or Karhunen-Loève decomposition. It has
been successfully used for simulation (Berkooz, 1991; Berkooz et al., 1993; Chambers
et al., 1988; Holmes, 1991; Kirby et al., 1990; Sirovich, 1987), and more recently in
optimization (Fahl, 1999; Ly and Tran, 2001; Theodoropoulou et al., 1998) and feed-
back control (Atwell and King, 2002; 2001; Banks et al., 2000; Kunisch and Volkwein,
1999), for example. POD provides an orthonormal basis for a set of data which we
refer to as an “input collection.” The input collection can be composed of theoretical,
experimental or computed data. An often used input collection is one composed of
“time snapshots”—data collected from numerical simulation at various time points
(Sirovich, 1987). An important consideration when using POD for control design is
obtaining a basis that also reflects controller dynamics. In (Atwell and King, 2002), a
novel input collection was chosen, one that contains controller characteristics rather
than model characteristics. Specifically, an integral representation of the feedback law
for the PDE control system is used as a foundation for low order approximations. The
kernels, called functional gains, reflect into controller dynamics. Functional gains are
an infinite dimensional analog to gain matrices in finite dimensional control problems.
Atwell and King showed that for certain parabolic systems, controllers designed using
this input collection perform favorably when compared with those designed using the
time snapshot approach. Here, we apply the ideas used therein to Burgers’ equation
with a periodic boundary condition. The feedback control problem for the model is
presented in Section 2. We discuss numerical approximations for the PDE problem
and present the framework for reduced order controllers in Section 3. Section 4 con-
tains a brief overview of POD. We present numerical results in Section 4 and make
concluding remarks in Section 5.

2. Feedback Control of Burgers’ Equation

Burger’s equation can be thought of as a one dimensional analog of the Navier-Stokes
equations which model the behavior of viscous fluids. As such, it is a useful model
equation on which to investigate techniques that might be applied to complicated fluid
flow problems. Moreover, Burgers’ equation is nonlinear, which provides an interesting
challenge for the control design. The controller here is designed using the MinMax
approach. This methodology is typically applied to linear systems, but it can be
applied to Burgers equation by first linearizing the model about an equilibrium, then
applying MinMax theory. Additionally, we do not use full-state feedback, which is
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impractical for PDE control problems (and many large-scale ODE systems) since it
requires full knowledge of the state. Instead, we incorporate a nonlinear compensator
which provides a state estimate based upon measurements of the state. This was also
done in (Burns and King, 1998; King, 1998; King and Sachs, 2000), and provided
favorable results especially in the context of reduced order controllers.

2.1. The Model Problem

Define the spatial domain Ω = [0, `]. The viscous form of Burgers’ equation can be
written as

wt(t, x) = εwxx(t, x)−w(t, x)wx(t, x)+u(t, x)+f(t, x) for x ∈ Ω, t > 0, (1)

where u(t, x) is a control term and f(t, x) models disturbances to the system. This
type of control term was considered in (Burns and King, 1995) for a structural control
problem, in (King, 1995) for the heat equation, and can be thought of as a distributed
control in which the control can be applied at every point of the spatial domain. We
select this system because the control input operator is the identity, which allows
us to consider issues such as optimal sensor location. We take f(t, x) to be of the
form d(x)η(t). We apply periodic boundary conditions as in many fluid applications
of interest; these are given as

w(t, 0) = w(t, `), wx(t, 0) = wx(t, `). (2)

An initial condition is provided by

w(0, x) = w0(x). (3)

Implementation of distributed parameter control theory requires the abstract
form of the PDE which can be obtained as follows (Burns and Kang, 1991; Marrekchi,
1993). Let w(t) = w(t, ·) be the state with state space W = L2(Ω). Define the
linear operator Aε as Aεw = εw′′, for all w ∈ D(Aε) = H1per(Ω) ∩ H

2(Ω), where
H1per(Ω) = {w + c : w ∈ H

1
0 (Ω) and c(x) is constant}. The disturbance, f(t, x), can

be written as Dη(t) where D ∈ L(
�
,W ). The abstract form of the controlled model

problem with disturbance can then be written as the initial value problem

∂

∂t
w(t) = Aεw(t) +G

(

w(t)
)

+Bu(t) +Dη(t), w(0) = w0, for t > 0 (4)

on the space W , where G(w) = −ww′ is defined on H1per(Ω). It is known that
Aε is the infinitesimal generator of an analytic semigroup on W . Additionally, mild
solutions of the system exist (Burns and Kang, 1991). Note that Aε is not stable.

As has previously been mentioned, we do not assume that we have knowledge of
the full state. Instead, we assume a state measurement of the form

y(t) = Cw(t) +Eη(t), (5)

where C ∈ L(W,
� m ) and E ∈ L(

�
,

� m ). We can apply the theory and results from
(Burns and Kang, 1991; Marrekchi, 1993) to show that a stabilizing compensator-
based controller can be applied to the system. This can be done as discussed in the
following section.
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2.2. MinMax Control Design

MinMax control theory provides a controller which allows for limited state measure-
ment and feeding back an estimate of the state that is based upon that measurement.
Such a controller can be computed via the solution of two algebraic Riccati equations
as we shall outline in this section. It is typically applied to linear systems, resulting in
a linear controller. However, it can be applied to nonlinear systems by first linearizing
the state equation, designing the standard feedback control law, and then incorpo-
rating a nonlinear term in the equation for the state estimate. Note that this term is
modeled after the nonlinearity in the state equation, and results in an overall nonlin-
ear feedback controller. This approach was applied in (Burns and King, 1998; King,
1998; King and Sachs, 2000) to a structural control problem and was used in the
context of reduced order controllers.

Given a system in the abstract form

ẇ(t) = Aw(t) +G
(

w(t)
)

+Bu(t) +Dη(t), w(0) = w0, (6)

assume that a linearization of the system about an equilibrium solution, we(t), is
given by

ż(t) = Ãz(t) +Bu(t) +Dη(t), z(0) = z0, (7)

where Ã is composed of A and the linearization of G about we(t) (which we denote
by G`).

Suppose that a measurement of the state is given by

y(t) = Cw(t) +Eη(t). (8)

MinMax design as applied to the linearization in (7) (and assuming the measurement
for the linearized state, z(t), takes the form of (8)) provides a linear equation for a
state estimate, zc(t), and a feedback law. These are given as

żc(t) = Aczc(t) + Fz(t), zc(0) = zc0 (9)

and

u(t) = −Kzc(t), (10)

respectively. In (10), the operator K is called the feedback operator. To account for
the nonlinearity in the state equation (6), we form the equation for the state estimate

ẇc(t) = Acwc(t) + G̃
(

wc(t)
)

+ Fy(t), wc(0) = wc0 , (11)

where G̃ = G−G`.

Control design means determining K, F and Ac; MinMax theory provides these
operators as follows. Define a non-negative definite, self-adjoint state weighting op-
erator Q : W → W and a positive definite, self-adjoint control weighting operator
R : U → U . Given θ ≥ 0, the algebraic Riccati equation

A∗Π+ΠA−Π[BR−1B∗ − θ2DD∗]Π +Q = 0 (12)



1316 J.A. Atwell et al.

is solved for the non-negative definite, self-adjoint solution, Π. Then, given a positive
definite self-adjoint weighting operator H , P is found as the non-negative definite,
self-adjoint solution to

AP + PA∗ − P [C∗H−1C − θ2Q]P +DD∗ = 0. (13)

When θ = 0, the classic LQG controller is obtained. In this case, one can see from (12)
and (13) that the operator Π has no “knowledge” of the physics of the disturbance
in the system. Hence, we expect larger values of θ to yield a controller which is
more robust to disturbances. There is a limit as to how large θ can be and maintain
solvability of the Riccati equations. We note that the operators R and H and the
scalar θ are design parameters.

If the solutions P and Π exist and (I − θ2PΠ)−1P is non-negative, we define

K = R−1B∗Π,

F = (I − θ2PΠ)−1PC∗H−1, (14)

Ac = A−BK − FC + θ2DD∗Π.

Using (6), (8), (11) and (10), the closed loop system can be written in matrix form as

[

ẇ(t)

ẇc(t)

]

=

[

A −BK

FC Ac

][

w(t)

wc(t)

]

+

[

G
(

w(t)
)

G̃
(

wc(t)
)

]

+

[

D 0

0 FE

]

η(t),

[

w(0)

wc(0)

]

=

[

w0

wc0

]

. (15)

The optimal control in (10) exists for the problem (4) defined in Section 2 (Mar-
rekchi, 1993); specifically, the arguments therein can be modified to address the peri-
odic boundary conditions. In addition, the control law can be written as

u(t, ξ) = −
[

Kwc(t)
]

(ξ) =

∫

Ω

k(ξ, x)wc(t, x) dx, (16)

where the kernel k(ξ, x) ∈ L2(Ω × Ω) is called the functional gain. Since the heat
equation is the linearization of Burger’s equation used in this paper for the design of
K, the results in (King, 1995) can be applied to ensure the existence of the functional
gains. This representation is of interest in the design of reduced order controllers
for several reasons. First, the integral representation has the effect of smoothing the
integrand. Thus, coarse approximations of k(ξ, x) and wc(t, x) may be sufficient to
compute the control accurately. Second, for any ξ, the effect on u(t, ξ) of the state
estimate wc(t, x) is influenced by the magnitude of the functional gain at (ξ, x).
Regions over which the functional gain is large correspond to a larger contribution of
the state estimate value to the control; where the functional gain is zero, the state
estimate makes no contribution to the control. The functional gains have been used
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in (Burns and Rubio, 1997; Faulds and King, 2000) to place sensors. In (Atwell and
King, 1999; 2002), they were used in the proper orthogonal decomposition to derive a
low order basis for reduced order controller computation with favorable results. Here,
we will apply the same ideas to Burgers’ equation.

2.3. Reduced Order Compensators

Implementation of a controller for a PDE system requires a numerical discretization.
For example, a finite element method provides semi-discrete finite dimensional ap-
proximations of (6) and (8) of order N (where the order refers to the number of
basis elements), given by

ẇN (t) = ANwN (t) +GN
(

wN (t)
)

+BNuN(t) +DNηN (t), wN (0) = wN0 , (17)

yN (t) = CNwN (t) +ENηN (t). (18)

In a full order compensator design, the order N approximations are used to com-
pute KN , FN and ANc . Then finite dimensional approximations of the compensator
equation (11) and control law (10) are respectively given by

ẇNc (t) = ANc w
N
c (t) + G̃

N
(

wNc (t)
)

+ FNyN (t), wNc (0) = w
N
c0 , (19)

uN (t) = −KNwNc (t). (20)

The approximation to the closed-loop LQG system (which will henceforth be referred
to as full order) is given by

[

ẇN (t)

ẇNc (t)

]

=

[

AN −BNKN

FNCN ANc

][

wN (t)

wNc (t)

]

+

[

GN
(

wN (t)
)

G̃N
(

wNc (t)
)

]

+

[

DN 0

0 FNEN

]

η(t),

[

wN (0)

wNc (0)

]

=

[

wN0

wNc0

]

. (21)

Convergence of the finite dimensional approximations to the distributed parameter
system in (15) is addressed in (Marrekchi, 1993).

Real-time control using the full order compensator may be impossible for many
physical problems in that they may require large discretized systems for adequate
approximation. Therefore, a reduced order compensator is required. A “reduce-then-
design” approach to reduced order compensators uses model reduction to produce a
system given by (17) and (18) with a small value of N . A control is then designed for
the reduced system (Fig. 1(a)). Again, a potential drawback of this approach is that
important physics or information contained in the model can be lost before obtaining
the controller.
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On the other hand, as was previously shown in (Atwell and King, 1999; 2002;
Burns and King, 1998; King and Sachs, 2000), the design-then-reduce approach can
yield robust low order controllers which outperform the standard full order controller.
A key observation is that the control, when implemented, will be coupled with a real
physical system rather than a discretized differential equation. Thus, it is a low order
controller rather than a low order model which is the goal. A “design-then-reduce”
approach computes a high order, well-resolved approximation to (6) that retains more
of the important physical properties of the system. A controller is designed based on
this high order model, and then reduced (again, see Fig. 1(b)).

Specifically, (17) and (18) are computed using a high order finite element basis
(large N) to give the finite dimensional system. These high order approximations are
used to compute matrices needed in the compensator equation (19) and the control
law (20) via the algebraic Riccati equations in (12) and (13). In (Atwell and King,
1999; 2001) it was shown that for the reduced order system to be stable, the low order
KM (where M � N) should be formed by projecting the high order KN that arises
from ΠN onto a low order basis (order M), rather than computed using the low
order bases (as is done in “reduce-then-design” methods). The high order FN and
ANc (from Π

N and PN ) could also be projected, or computed by approximating (12)
and (13) with the low order bases. It is the latter approach that we adopt here. By
computing (12), (13) with the low order POD basis, we obtain the low order controller

ẇMc (t) = AMc w
M
c (t) +G

M
(

wMc (t)
)

+ FMyN(t), wMc (0) = w
M
c0 , (22)

uM (t) = −KMwMc (t). (23)

To investigate the performance of the design, a simulation of the system consisting
of the full order (N) state and reduced order (M) state estimate given by

[

ẇN (t)

ẇMc (t)

]

=

[

AN −BNKM

FMCN AMc

][

wN (t)

wMc (t)

]

+

[

GN
(

wN (t)
)

G̃M
(

wMc (t)
)

]

+

[

DN 0

0 FMEM

]

η(t)

[

wN (0)

wMc (0)

]

=

[

wN0

wMc0

]

(24)

is typically computed. As we shall show in our section on numerics, relying on current
simulation tools and codes to test a design may be a shortcoming of current technology.
To form the low order basis for the reduced order compensator, we apply the proper
orthogonal decomposition (see, e.g., (Atwell and King, 2002)).

3. Proper Orthogonal Decomposition (POD)

POD, described in detail in (Berkooz, 1991; Berkooz et al., 1993; Holmes, 1991;
Sirovich, 1987), takes a given input collection and creates an orthogonal basis (which
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we refer to as the POD basis) for the data. In this section, we give a brief overview
of the procedure and optimality properties of POD. Sirovich (1987), Berkooz (1991),
and others describe POD in a statistical setting using an averaging operation for ap-
plication to turbulent flows. POD can also be derived as an application of singular
value decomposition (SVD) (Kunisch and Volkwein, 1999).

3.1. General Procedure

Suppose that an input collection is composed of a set of functions on a spatial domain
Ω. In addition, assume that each member of the input collection can be written in
terms of an n-th order Galerkin global finite element basis {φi(s)}

n
i=1. Denote each

element of the input collection by

yj ∈ L2(Ω), j = 1, . . . ,m.

The entire collection can then be written in vector form as

Y = [y1, . . . , ym] ∈ L
m
2 (Ω). (25)

A finite dimensional approximation of the collection can be represented as an n×m
matrix Y where the j-th column of Y , Y·,j , contains the coefficients for the j-th
element of the input collection in terms of the finite element basis, i.e.,

yj(s) =

n
∑

i=1

Yi,jφi(s). (26)

The first step of the POD process is to find ψ ∈ L2(Ω) with

max
ψ,‖ψ‖=1

m
∑

j=1

∣

∣(yj , ψ)
∣

∣

2
. (27)

Assume that ψ is also in the linear space spanned by {φi(s)}
n
i=1, i.e., ψ(s) =

∑n
i=1

~ψiφi(s). Denote by M the positive definite mass matrix corresponding to the

finite element basis. The Fritz John necessary conditions for optimality of ~ψ require

Y Y TM ~ψ = λ~ψ (28)

for some λ 6= 0. Multiply both the sides of (28) by M 1/2 and write Ŷ =M1/2Y and

u =M1/2 ~ψn. This yields

Ŷ Ŷ Tu = λu. (29)

Since Ŷ Ŷ T is non-negative and symmetric, all eigenvalues λ must be non-negative
and real, i.e., λ = σ2.

The coefficients of the first POD basis function, ψ1, with respect to the finite
element basis are given by ~ψ1 = M−1/2u, where u is the normalized eigenvector of
Ŷ Ŷ T corresponding to the largest eigenvalue. That is,

~ψ1 =
[

~ψ11 ,
~ψ12 , . . . ,

~ψ1n

]T

=M−1/2u and ψ1(s) =
n
∑

i=1

~ψ1i φi(s).
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The second POD basis element, ψ2, is found by minimizing (27) subject to

the additional constraint (ψ1, ψ2) = 0. The coefficients of ψ2 are given by ~ψ2 =
M−1/2u, where u is the normalized eigenvector in (29) corresponding to the second
largest eigenvalue. This process is repeated until all non-zero eigenvalues of Ŷ Ŷ T are
exhausted. For simplicity of notation, assume that Y has rank m. The POD basis in
matrix form is

Ψ =
[

~ψ1 . . . ~ψm
]

.

If rank(Y ) = k < m, the POD basis has only k elements.

The relative magnitude of each eigenvalue with respect to the others gives a
measure of the importance of the corresponding eigenfunction in representing elements
of the input collection. POD inherently orders the basis elements by their relative
importance; this is further clarified in the context of SVD.

The normalized eigenvectors in (29) are the left singular vectors in the SVD of
Ŷ , i.e., the eigenvectors are the columns of U where

Ŷ = UΣV T . (30)

Consider the reduced SVD, where the number of columns in U and V is equal to
rank(Ŷ ) (which is equal to rank(Y )). U and V have orthonormal columns, and Σ
is square and diagonal. The diagonal elements of Σ are the non-zero singular values,
σi of Ŷ ordered from largest to smallest. This intrinsic ordering of singular values
results in the ordering of POD basis elements by the magnitude of their corresponding
eigenvalues.

The input collection Y can be written as

Y =M−1/2Ŷ =M−1/2UΣV T = ΨB, (31)

where Ψ = M−1/2U and B = ΣV T . The column B.,j contains coefficients for the
j-th element of the input collection in the expansion with respect to the POD basis
and Ψ.,j = ~ψj . The POD basis vectors (in matrix representation) can be obtained by

finding the left singular vectors of Ŷ (or solving the eigenvalue problem (29)) and
multiplying on the left by M−1/2.

Remark. The elements of Y TMY are
∫

Ω
yi(x)yj(x) dx, i.e., Y

TMY is the covari-
ance matrix developed in the statistical context (Ly and Tran, 2002).

The following results can be found in terms of the statistical framework in
(Berkooz, 1991) and others. They are found in terms of SVD in (Kunisch and Volk-
wein, 1999). Here, they are stated in the context of an input collection represented
by a finite element basis (as in (26)).

Property 1. (Span of POD basis) Suppose that the finite element approximation of
the input collection is represented by a matrix Y ∈

� n×m , and Ψ represents the
corresponding POD basis. If Y has rank k, then

span{Ψ.,j}
k
j=1 = span{Y.,j}

m
j=1.
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This implies that the span of the POD basis is the smallest linear subspace
containing all of the input collection. Thus, the POD basis elements exhibit linear
properties that are shared by all elements of the input collection, such as boundary
conditions, periodicity, and incompressibility (as in fluid flows) (Berkooz, 1991). In
addition, working with the POD basis limits the problem to a small linear space that
has properties observed in the input collection.

Property 2. (Uncorrelated Coefficients) If the finite element approximation of the
input collection is represented by Y , and B = ΣV T as in (31), then

(Bi,., Bj,.) = δijσ
2
i .

Property 2 follows directly from the orthonormal properties of the matrix V in
the SVD. It says that the coefficients of the i-th POD basis element in the expansion
of the input collection are not linearly related to the coefficients of the j-th POD
basis element for i 6= j.

Suppose that we wish to approximate the elements of an input collection Y by
a basis of order p, where p < n and p < m. The reduced POD basis formed by
truncation is the optimal basis of order p for approximating the input collection.

To show this optimality, one begins by using the reduced POD basis to obtain the
approximate input collection, Y p. Then the mean square error between the original
input collection and the approximate input collection is calculated. Finally, it can
be concluded that this error is minimal over all order p approximations. To see the
details, refer to (Atwell and King, 2002).

Property 3. (Least Error in Truncation) Let Y p be the approximation to an input
collection Y given by the reduced POD basis of order p, and let Zp be any other
order p approximation to the input collection. Then

‖Y − Y p‖2F ≤ ‖Y − Z
p‖2F ,

where ‖·‖F denotes the Frobenius norm. That is, approximation of the input collection
by the reduced POD basis introduces a smaller mean square error than any other
approximation of the same order.

Property 3 has important implications for model reduction. A criterion can be
set to limit the error in approximation in terms of a fraction P . We seek p� m so
that

p
∑

i=1

σ2i

m
∑

i=1

σ2i

> P. (32)

Then p gives the number of POD basis functions necessary for an approximation
with mean square error less than (1 − P )

∑m
i=1 σ

2
i . We think of p as the number of

basis functions required to retain P ∗ 100 percent of the “essential information” in
the input collection. The POD basis is optimal for model reduction since no other
basis can represent more of the essential information in a fixed number of terms.
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4. Numerical Computations and Results

For numerical computations, the viscosity coefficient was taken to be ε = .001; this is
analogous to taking a relatively large Reynolds number in the Navier-Stokes equations.
The spatial interval is taken to be Ω = [0, 1]. The control input operator is B = I ,
and the control space U =W . It is often necessary in applications to control certain
regions in the spatial domain more accurately than others. This can be done by
defining the state weighting operator (used in Riccati equation calculations) as Q =
q(x)IW , where IW is the identity operator on W and q(x) is large on the regions
over which control must be most accurate. In our examples, we chose q(x) = 10
on the region given by 0.7 ≤ x ≤ 0.9 and q(x) = 1 over the rest of the domain.
This causes the control to influence the state more heavily over [.7, .9]. The control
weighting operator is R = IU where IU represents the identity operator on U .

4.1. Finite Element Systems

A high order finite dimensional approximation of the PDE system is computed as a
foundation for reduced order computations. Specifically, we apply a linear Galerkin
finite element approximation by subdividing the domain [0, 1] into N uniform subin-
tervals; applying the periodic boundary conditions gives a basis of size N .

One can apply the results in (Marrekchi, 1993; Ito and Morris, 1998) to show that
the finite dimensional system converges to the PDE as N →∞, so the matrices KN ,
FN and ANc defining the approximated controller converge to the corresponding
operators in (14) which define the controller for the infinite dimensional system. For
the approximate system, there are a discrete number of actuator locations; the finite
element scheme chosen for this problem has N actuator locations, one for each grid
point. Therefore, there are N corresponding functional gains k(ξ, x). These gains
represent the approximate feedback operator KN . Figure 2 shows the functional gains,
k(ξ, x) for actuator locations, ξ as computed with the finite element approximation
of the MinMax controller with θ = .9. The gains for the LQG system, i.e., θ = 0, have
the same form, but are slighly smaller in magnitude. The discretization N = 80 was
chosen to capture behavior in simulations, and is more than needed to obtain gain
convergence. Thus, these approximate gains are assumed to represent the infinite
dimensional feedback law. Note that the periodic boundary conditions are reflected
in the periodicity of the gains with respect to ξ and with respect to x.

4.2. POD Basis Formulation

As in (Atwell and King, 2002), we choose our input collection to be the set of functional
gains from the control law. Therein, we found promising results and we wish to see
how these might be extended to other applications. In this work, we chose a POD
basis which captured 90% of the information in the input collection of functional
gains; this resulted in 10 basis functions in Fig. 3 (see (32)).

To obtain the low order approximation, KM (M=10), we project KN onto
this basis. The low order compensator equation (i.e., the matrices AMc and F

M ) is
obtained by using this low order basis to compute solutions Π10, P 10 to (12) and (13).
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Fig. 2. Functional gains, k(ξ, x).

4.3. Simulations

In this section, simulations of the various systems discussed in this paper are present-
ed. The initial condition for the state is taken to be

w(0, x) =

{

.5 sin(2πx) if 0 < x ≤ .5,

0 if .5 ≤ x < 1.

The simulations are based on a stabilized finite element code as described in (Atwell
and King, 2000; Franca and Frey, 1992a; 1992b). This allows for a very small choice of
ε for which the system could not otherwise be simulated. The disturbance operator
D is taken to be

Dη(t) =

∫ 1

0

η(t) dx

and η(t) = .75 cos(10t).

Figure 4 shows the dynamics of the uncontrolled, i.e., open loop system. One can
notice the initial disturbance located at 0 ≤ x ≤ .5 propagating to the right, and
then, via the periodic boundary conditions, entering at the left at about five seconds
and propagating again toward the right. The disturbance provided by η(t) is evident.

To examine the difference between LQG and MinMax controls in attenuating the
disturbance, we first consider full order systems, i.e., systems in which both the state
and compensator equations are approximated on the finite element grid arising from
N = 80. To simulate the full order LQG system, an initial condition is needed for
the state estimate. We use wc(0, x) = 1.05w0(x) , that is, the initial condition for the
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Fig. 3. POD basis functions from functional gain input collection.

state plus a five percent error in that initial condition. For w ∈ X , the measurement
operator is taken as Cw = (w̃(x̄1), w̃(x̄2), . . . , w̃(x̄1)), where

w̃(x̄i) =
1

2δ

∫ x̄i+δ

x̄i−δ

w(x) dx.

The operators E and H are taken to be zero and the identity, respectively. In Fig. 5,
we see that as the sine curve enters the region in which the state weighting operator is
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Fig. 4. Open loop (uncontrolled) simulation.

greater (x ∈ [.7, .9]), an increased level of attenuation over the uncontrolled dynamics
occurs and is maintained.

Fig. 5. Full order LQG simulation.

The MinMax controller was computed with θ = .9, which was the largest value
of θ which could be chosen and still solve the algebraic Riccati equations (given the
specific weighting matrices and various operators). We note that in our numerical
work for this problem, as well as earlier problems, this value is highly sensitive to the
machine which is used for the computations. The full order MinMax system simulation
is shown in Fig. 6. There is a greater attenuation of the disturbance as compared with
the LQG system, as is expected.



1326 J.A. Atwell et al.

Fig. 6. Full order MinMax simulation.

For reduced order compensators, we use the bases as previously shown: the basis
from LQG gains for reduction of the LQG system, and those from the MinMax system
for the MinMax reduction. The simulation of the reduced order system with θ = 0
(i.e., LQG design) that uses the POD basis from the functional gain input collection is
shown in Fig. 7. The initial condition for the state estimate is obtained by projecting
the initial condition for the full order state estimate onto the reduced basis. Although
the performance of the system differs significantly from that of the full order system
shown in Fig. 5, the behavior of the system in the region x ∈ [.7, .9] does show good
attenuation. One could conclude that if that is truly the region in which one cares
about disturbance attenuation, one might be satisfied with the “erroneous” behavior
in the rest of the spatial domain.

For the MinMax design, we were not able to simulate the systems that we could
design. Specifically, we could design a reduced order controller using the previously
described methodology in Section 2.3 with θ = .9. However, in order to simulate the
system, θ in the computations of the reduced compensator equation needed to be
reduced to .01. Larger values of θ led to nonconvergence of the simulations. Recall
that in our methodology, the low order FM and AMC are obtained by computing
ΠM and PM using reduced order matrices.

In (Atwell and King, 1999; 2002) we found that in some cases the reduced order
systems took longer to simulate than the full order systems did. We point out that
this was for smaller systems which were more robust and performed better than the
full order systems. This seems to indicate to us that these “nonconventional” systems
might require special tools for simulation.

In Fig. 8, the simulation of the reduced order system with θ = .9 for the calcula-
tion of KN and POD basis and θ = .01 for the calculation of FM and AMc is shown.
Specifically, in computing ΠN in (12) we used θ = .9, and in the computation of PM
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Fig. 7. LQG simulation with reduced order state estimate.

in (13) we used θ = .01. We note that although the MinMax parameter in (13) had
to be significantly reduced to simulate the resulting system, the performance of this
system surpasses that of the reduced LQG system in Fig. 7 and resembles more the
behavior of the full order systems. This observation leads us to ponder the efficiency
of the MinMax controller when θ = .9 is used to compute both Π and P in the
reduced order controllers.

Fig. 8. MinMax simulation with reduced order state estimate.



1328 J.A. Atwell et al.

4.4. Stability Radius

One measure of robustness in a system is the unstructured stability radius (Demmel,
1987), also known as the robust stability radius. This gives the largest unstructured
perturbation to the system that can occur without destabilizing the system. It was
observed in (Atwell and King, 2002; Burns and King, 1998; King and Sachs, 2000) that
reduced order systems can have stability radii larger than those for full order systems.
Moreover, in (Atwell and King, 2002), the systems designed using the method applied
in this paper had larger stability radii than systems with reduced order controls from
“reduce-then-design” methods. Stability radii are listed in Table 1. We note that
the reduced order MinMax system with θ = .9 has the largest stability radii of all
systems, while the MinMax system with the two values of θ needed for simulation
(θ = .9 and θ = .01) has the smallest. This reinforces the desire to be able to test
the performance of the MinMax system designed only with θ = .9.

Table 1. Stability margins for various systems.

System Stability Margin

LQG .0169

MinMax .0169

Reduced LQG .0203

Reduced MinMax, θ = .9 .0222

Reduced MinMax, θ = .9, .01 .0082

5. Conclusion

A method for low order compensator-based control design for large scale systems
presented in (Atwell and King, 2002) has been applied to Burgers’ equation. The
method uses a low order basis obtained through POD as applied to functional gains
to design a low order controller. The integral representation of the feedback control
law motivates the use of a set of computed functional gains as an input collection to
the POD process.

Numerical experiments show that the reduced order controllers perform well
(compared with full order controllers) in attenuating disturbances in a target area
over which control is to be focused. Erroneous behavior that was observed in the
reduced LQG system (as compared to the full order system) is not observed in the
MinMax system. Although the reduced order MinMax system could be designed for
θ = .9, simulations of this system were not possible, even with the stabilized finite
element code. This combined with earlier experience with simulations of reduced or-
der systems that were computationally time-consuming leads us to postulate that
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new tools for simulation of closed loop control systems merit investigation. Other-
wise, robust designs with improved performance over traditional designs might be
discounted.
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