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RECURSIVE IDENTIFICATION OF WIENER SYSTEMS†

Włodzimierz GREBLICKI∗

AWiener system, i.e. a cascade system consisting of a linear dynamic subsystem
and a nonlinear memoryless subsystem is identified. The a priori information
is nonparametric, i.e. neither the functional form of the nonlinear characteristic
nor the order of the dynamic part are known. Both the input signal and the
disturbance are Gaussian white random processes. Recursive algorithms to esti-
mate the nonlinear characteristic are proposed and their convergence is shown.
Results of numerical simulation are also given. A known algorithm recovering
the impulse response of the dynamic part is presented in a recursive form.

Keywords:Wiener system, system identification, recursive identification, non-

parametric identification

1. Introduction

In the present paper, we study the identification of a Wiener system, i.e. a system con-
sisting of a linear dynamic subsystem followed by a nonlinear memoryless subsystem.
The problem consists in estimating the nonlinear characteristic of the memoryless
subsystem and recovering the impulse response of the linear one from input-output
observations of the whole system. The main difficulty is caused by the fact that the
inner system signal is not measured. First papers devoted to such a problem can be
traced back to the late 1970s, see (Billings and Fakhouri, 1977; 1978; Brillinger, 1977),
see also (Billings, 1980; Hunter and Korenberg, 1986; Westwick and Kearney, 1992;
Westwick and Verhaegen, 1996). The fact that the number of cited papers is so low
is undoubtedly caused by great theoretical difficulties arising while examining such
systems.

All the authors mentioned above assumed that the a priori information about
the system is parametric, i.e. comparatively large. As far as a memoryless subsystem
is concerned, its nonlinear characteristic has parametric form, usually a polynomial
one. In contrast, in this paper, the characteristic can be of any form, which, in terms of
the a priori information, means that the problem is nonparametric. It seems that the
nonparametric method responds better to demands coming from applications since in
real life the knowledge we possess about the system before an experiment is usually
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rather limited and uncertain. As for the input signal, like in all the papers cited
above, it is a Gaussian white random process. Such a problem was already studied
by Greblicki (1992; 1997), as well as by Krzyżak and Partyka (1993), who examined
off-line algorithms.

In the present paper, two recursive algorithms to recover the nonlinear character-
istic are proposed. Their convergence is established and convergence rates are given.
Results of numerical simulations are also presented. The novelty of this paper is that
our algorithms are recursive, which means that they can be applied on-line. From
the numerical viewpoint, the algorithms identifying nonlinear and dynamic subsys-
tems are mutually independent. This means that each subsystem can be identified
separately, which is an obvious advantage.

2. System in Context and Identification Problems

The problem is to identify a Wiener system with an input Un and an output Yn, see
Fig. 1, i.e. a system consisting of two subsystems connected in a cascade. The first is
linear, dynamic and asymptotically stable, and its state equations are of the following
form:







Xn+1 = AXn + bUn

Wn = cTXn,
(1)

n = . . . ,−1, 0, 1, . . . , where Xn is the state vector and Wn is the output vector. The
dimension of the state vector, matrix A and vectors b, c are unknown. The output
is disturbed by the noise Zn, which means that the nonlinear subsystem is excited
by Vn, where Vn =Wn +Zn. The other subsystem is memoryless, nonlinear and has
a characteristic m being a Lebesgue measurable function. Thus

Yn = m(Vn). (2)

The system is driven by a Gaussian stationary white random process {Un; n =
. . . ,−1, 0, 1, . . .} having zero mean and unknown variance σ2U . Owing to this and
the fact that the dynamic subsystem is stable, both {Xn; n = . . . ,−1, 0, 1, . . .}
and {Wn; n = . . . ,−1, 0, 1, . . .} are Gaussian, stationary with zero mean, but cor-
related. Moreover, it is assumed that {Zn; n = . . . ,−1, 0, 1, . . .} is also Gaussian,
independent of the input, white with zero mean and unknown variance σ2Z .

Fig. 1. The identified Wiener system.
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Both the subsystems are identified from input-output observations of the whole
system. This means that we estimate the characteristic m and the impulse response
{ki; i = 1, 2, . . . }, where ki = cTAi−1b, from (U0, Y0), (U1, Y1), . . . . As we have
already stated, the originality of the paper boils down to achieving these goals with
recursive algorithms. We propose two algorithms recovering the nonlinearity. We also
show that a known estimate of the impulse response can be calculated in a recursive
way.

3. Preliminaries

The results presented in the lemmas below constitute a motivation for our identifi-
cation algorithms. Despite the fact that they were already presented in (Greblicki,
1992), for the sake of completeness, we will repeat them here. In the lemmas be-
low, as well as throughout the paper, ρ = σ2U/σ

2
V with σ2V = σ2Z + σ

2
U

∑

∞

n=1 k
2
n,

α = ρE{V0m(V0)}, and β = ρk1.

Owing to the next lemma, we can construct our algorithms to identify the non-
linear subsystem. Denote by m(

�
) the image of the real line

�
under the mapping

m while m−1 is the inverse of m in the Cartesian product
�
×m(

�
).

Lemma 1. If the inverse m−1 exists, then E{U0 | Yn = y} = ρknm
−1(y). In par-

ticular,

E
{

U0 | Y1 = y
}

= βm−1(y).

Proof. Since the pair (U0, Vn) has a Gaussian distribution with zero marginal means
and covariance σ2Ukn, we find the conditional density of U0 conditioned on Vn = v
normal with mean ρknv and variance (1 − ρk

2
n)σ
2
U . Hence E{U0 | Vn} = ρknVn.

Thus, using (2) and the fact that m−1 exists, we get E{U0 | Yn = y} = E{U0|Vn =
m−1(y)} = ρknm

−1(y) and the proof is complete.

Lemma 2. Let E|V0m(V0)| <∞. Then E{U0Yn} = αkn for n = 1, 2, . . . .

Proof. Since E{U0|Vn} = ρknVn (see the proof of Lemma 1), we obtain E{U0Yn |
Vn} = m(Vn)E{U0 | Vn} = ρknm(Vn)Vn and the lemma follows.

4. Nonlinear Subsystem Identification

4.1. Algorithms

Lemma 1 suggests that recovering βm−1(y) is equivalent to estimating the regression
function E{U0 | Y1 = y}. To estimate the regression, we apply the following two
algorithms:

µ̃n(y) =
ξ̃n(u)

η̃n(u)
, (3)
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where ξ̃n(u) and η̃n(u) are given by the following recursive procedures:

ξ̃n(u) = ξ̃n−1(u) + UnK

(

y − Yn+1
hn

)

,

η̃n(u) = η̃n−1(u) + UnK

(

y − Yn+1
hn

)

,

with ξ̃0(u) = η̃0(u) = 0, and

µ̂n(y) =
ξ̂n(u)

η̂n(u)
, (4)

where

ξ̂n(u) = ξ̂n−1(u) + Un
1

hn
K

(

y − Yn+1
hn

)

,

η̂n(u) = η̂n−1(u) + Un
1

hn
K

(

y − Yn+1
hn

)

,

with ξ̂0(u) = η̂0(u) = 0. Here K is a kernel function and {hn} stands for a positive
number sequence, both being suitably selected. In our algorithms and throughout the
paper, 0/0 is treated as zero.

The kernel K is a Lebesgue measurable function satisfying the following restric-
tions:

sup
−∞<y<∞

|K(y)| <∞, (5)

∫

|K(y)| dy <∞, (6)

yK(y)→ 0 as |y| → ∞, (7)

|K(x)−K(y)| ≤ cK |x− y| (8)

with some cK , for all x, y ∈
�
. As the kernel one can select a window kernel equal

to 1 for |y| ≤ 1 and zero otherwise, or a parabolic one equal to 1 − y2 and zero
for |y| ≤ 1 and 1 < |y|, respectively. Other kernels include, for example, 1/(1 + y2),
1/(1 + |y|)2, exp(−|y|), or exp(−y2).

The positive number sequence {hn} is selected to satisfy, depending on the
identification algorithm, some of the following conditions:

hn → 0 as n→∞, (9)

1

n2

n
∑

i=1

1

h2i
→ 0 as n→∞, (10)
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hn

n
∑

i=1

hi →∞ as n→∞. (11)

There certainly exist number sequences satisfying the above restrictions. For hn =
δn−γ , δ > 0, (9) is satisfied for 0 < γ. In turn, both (10) and (11) are satisfied for
0 < γ < 1/2.

Rewriting our algorithms in the following compact forms:

µ̃n(y) =
n
∑

i=1

UiK

(

y − Yi+1
hi

)

/

n
∑

i=1

K

(

y − Yi+1
hi

)

(12)

and

µ̂n(y) =

n
∑

i=1

Ui
1

hi
K

(

y − Yi+1
hi

)

/

n
∑

i=1

1

hi
K

(

y − Yi+1
hi

)

, (13)

we can observe that they are recursive modifications of the kernel regression estimate

µ̄n(y) =

n
∑

i=1

UiK

(

y − Yi+1
hn

)

/

n
∑

i=1

K

(

y − Yi+1
hn

)

, (14)

proposed in (Nadaraya, 1964; Watson, 1964). We deal with its recursive versions (3)
and (4) introduced in (Ahmad and Lin, 1976; Collomb, 1977) and then examined in
(Devroye and Wagner, 1980; Krzyżak and Pawlak, 1984) as well as (Greblicki and
Pawlak, 1987). In all those papers, however, pairs (Ui, Yi+1) are independent. Thus,
all the above-mentioned papers can be applied when A = 0, i.e. when the dynamic
part is a simple delay. Therefore, in the context of dynamic system identification, all
those results are useless. Nevertheless, in (Greblicki, 1992; 1997) it was shown that
the off-line algorithm (14) successfully recovers the nonlinearity in Wiener systems.
In the present paper, we demonstrate that recursive estimates (3) and (4) can also
be employed to recover the nonlinearity in Wiener systems. We do it owing to our
crucial Lemma 6 in Appendix A.

4.2. Motivation

An intuitive motivation for (3), i.e. for (12), can be explained in the following way:
Writing

g̃n(y) =
1
n
∑

i=1

hi

n
∑

i=1

UiK

(

y − Yi+1
hi

)

, (15)

f̃n(y) =
1
n
∑

i=1

hi

n
∑

i=1

K

(

y − Yi+1
hi

)

, (16)
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we get µ̃n(y) = g̃n(y)/f̃n(y). From Lemma 1, it follows that

Eg̃n(y) =
β
n
∑

i=1

hi

n
∑

i=1

hiµ(y;hi), Ef̃n(y) =
1
n
∑

i=1

hi

n
∑

i=1

hif(y;hi),

with

µ(y;h) =
1

h
E

{

U0K

(

y − Y1
h

)}

=
1

h
E

{

E {U0|Y1}K

(

y − Y1
h

)}

=
1

h
E

{

m−1(Y1)K

(

y − Y1
h

)}

=

∫

1

h
K

(

y − ζ

h

)

m−1(ζ)f(ζ) dζ, (17)

and

f(y;h) =
1

h
E

{

K

(

y − Y0
h

)}

=

∫

1

h
K

(

y − ζ

h

)

f(ζ) dζ,

where f is the density of Yn, assumed here to exist. Since, owing to (5)–(7),

1

h
K

(

y − ζ

h

)

gets close to the Dirac impulse located at the point ζ = y as h → 0, one can
expect that µ(y;h) → m−1(y)f(y) as h → 0 and, consequently, that Eg̃n(y) →
βµ−1(y)f(y) as hn → 0. For the same reasons, one can hope that f(y;h) → f(y)
as h → 0. Finally, one can expect that Eξ̃n(y)/Eη̃n(y) converges to βm

−1(y) as
hn → 0, i.e. that µ̃n(y) = ξ̃n(y)/η̃n(y) recovers βm

−1(y). In the paper, we go further
and present proofs of the convergence for both the algorithms.

4.3. Convergence

We assume that

m is continuous, strictly monotone, (18)

m′ is bounded, continuous, nonzero. (19)

The lemma below shows that the density f of Yn does exist.

Lemma 3. Let m satisfy (18) and (19). In m(
�
), m−1 is continuous while f is

both positive and continuous.

Proof. The fact that m−1 is continuous in m(
�
) is obvious. Supposing that m

is an increasing function, we find that m−1 is increasing, too. Thus f(y) equals
fV (m

−1(y))[m−1(y)]′, and zero for y ∈ m(
�
) and y /∈ m(

�
), respectively, where

fV is a density of Vn. Since fV is normal, fV (m
−1(·)) is continuous and nonzero

in m(
�
). Observe now that m′(m−1(·)) is continuous, nonzero in m(

�
), and that

[m−1(y)]′ = 1/m′(m−1(y)). Thus f is continuous and nonzero in m(
�
). Since, for a

decreasing m, the proof is similar, the lemma follows.
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Theorem 1. Let m satisfy (18) and (19). Assume that K fulfils (5)–(8). Let a
monotone positive number sequence {hn} satisfy (9) and (11). Then, at every point
y ∈ m(

�
),

µ̃n(y)→ βm−1(y) as n→∞.

Proof. First of all, we apply Lemma 3 to observe that both m−1 and f are continuous
in m(

�
) whereas f is positive. We begin our reasoning by observing that µ̃n(y) =

g̃n(y)/f̃n(y), where g̃n(y) and f̃n(y) are as in (15) and (16), respectively. Let y ∈
m(

�
). From Lemma 1, it follows that

Eg̃n(y) = β
1
n
∑

i=1

hi

n
∑

i=1

hiµ(y;hi),

with µ(y;h) as in (17). Using Lemma 4 in Appendix A and (9), we deduce that
µ(y;hn)→ βf(y)m−1(y)

∫

K(ξ) dξ as n→∞. Therefore, observing that (9) and (11)
imply

∑

∞

n=1 hn =∞, we get Eg̃n(y)→ βf(y)m−1(y)
∫

K(v)dv as n→∞.

Furthermore, var[g̃n(y)] = Rn(y) + Sn(y) with

Rn(y) =
1

(

n
∑

i=1

hi

)2

n
∑

i=1

var

[

U0K

(

y − Y1
hi

)]

,

Sn(y) =
1

(

n
∑

i=1

hi

)2







n
∑

i=1

i−1
∑

j=1

cov

[

UiK

(

y − Yi+1
hi

)

, UjK

(

y − Yj+1
hj

)]

+

n
∑

i=1

n
∑

j=i+1

cov

[

UiK

(

y − Yi+1
hi

)

, UjK

(

y − Yj+1
hj

)]







. (20)

Observe that

Rn(y) ≤
1

(

n
∑

i=1

hi

)2

n
∑

i=1

hiψ(y;hi) ≤
ψ(y)
n
∑

i=1

hi

,

with

ψ(y;h) =
1

h
E

{

U20K
2

(

y − Y1
h

)}

, (21)

and ψ(y) = sup0<h ψ(y;h) being finite, by virtue of Lemma 5. In turn, owing to
Lemma 6 and the fact that {hn} is monotone, the first term in (20) is bounded in
the absolute value by

η(y)
(

n
∑

i=1

hi

)2

n
∑

i=1

i−1
∑

j=1

hj
hi

∥

∥Ai−j
∥

∥ ≤
η(y)

hn
n
∑

i=1

hi

i−1
∑

j=1

∥

∥Ai−j
∥

∥ ≤
η(y)

hn
n
∑

i=1

hi

∞
∑

j=1

∥

∥Aj
∥

∥ ,
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while the other by

η(y)
(

n
∑

i=1

hi

)2

n
∑

i=1

n
∑

j=i+1

hi
hj
‖Aj−i‖ ≤

η(y)

hn
n
∑

i=1

hi

∞
∑

j=1

‖Aj‖.

Observe that, due to the stability of the linear subsystem,
∑

∞

j=1 ‖A
j‖ <∞. Hence

|Sn(y)| ≤
2η(y)

hn
n
∑

i=1

hi

∞
∑

j=1

‖Aj‖.

Thus there exists a finite φ(u) such that

var [g̃n(y)] ≤
1

hn
n
∑

i=1

hi

φ(u). (22)

In this way, we have shown that g̃n(y)→ βf(y)m−1(y)
∫

K(ξ) dξ in probability

as n→∞. Using similar arguments, we easily verify that f̃n(y)→ f(y)
∫

K(ξ) dξ in
probability as n→∞, and the proof is complete.

Using similar arguments, one can verify our next result.

Theorem 2. Let m satisfy (18) and (19). Assume that K fulfils (5)–(8). Let a
nonnegative number sequence {hn} satisfy (9) and (10). Then, at every point y ∈
m(

�
),

µ̂n(y)→ βm−1(y) as n→∞.

To examine the convergence rate, we assume additionally that m−1(·) has three
bounded derivatives. Supposing also that K is odd and

∫

y2K(y) dy <∞, we get

µ(y;h) − βm−1(y)f(y)

∫

K(ξ) dξ

= β

∫

[

m−1(y + hξ)f(y + hξ)−m−1(y)f(y)
]

K(ξ) dξ,

where µ(y;h) is as in (17). Expanding m−1(y + hξ) and f(y + hξ) in a Tay-
lor series and taking into account the fact that

∫

yK(y) dy = 0, we can write
|µ(y;h) − m−1(y)f(y)

∫

K(ξ) dξ| ≤ ϕ(y)h2 with some function ϕ finite in m(
�
).

Thus |Eg̃n(y)− βm
−1(y)f(y)| equals or does not exceed

β
1
n
∑

i=1

hi

n
∑

i=1

hi

(

µ(y;hi)−m
−1(y)f(y)

∫

K(ξ) dξ

)

≤ βϕ(y)

n
∑

i=1

h3i

n
∑

i=1

hi
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which, for hn ∼ n−1/6, is of order n−1/3 as n → ∞. Recalling (22), we find
var[g̃n(y)] = O(n−2/3). Thus E(g̃n(y) − βm−1(y)f(y))2 = O(n−2/3). For similar
reasons, E(f̃n(y)− f(y))

2 = O(n−2/3) and, finally,

µ̃n(y)− βm
−1(y)f(y) = O(n−1/3) in probability as n→∞.

Applying similar arguments, we obtain

µ̂n(y)− βm
−1(y)f(y) = O(n−1/3) in probability as n→∞.

The result is the same as that obtained in (Greblicki, 1992) for the off-line esti-
mate (14).

4.4. Simulation Example

In the example, the state vector was just a scalar and Xn+1 = aXn + Un with
a = 0.6, σ2U = 1 and σ2Z = 0.1. The nonlinearity was of the form m(v) = v
for 0 ≤ v, and m(v) = 2v for v < 0. In algorithms (3) and (4), the kernel was
parabolic while hn = δn

−γ . The quality of µ̃n and µ̂n was measured with MISE=

E
∫ 3

−3
(µn(y)− βm

−1(y))2 dy, where µn is the proper estimate.

For the estimate (3) with γ = 1/5 and n varying from 10 to 1280, the MISE
is shown in Fig. 2. In Fig. 3, we have δ = 1. Results for the algorithm (4) are very
similar and so they are not presented. The simulation suggests that too small h and
too large γ should be avoided. In other words, too small hn produces a large error
and is not recommended.

For δ = 1 and γ = 1/5, the error for both the estimates is depicted in Fig. 4.
In the figure, the MISE for the off-line estimate (14) is also shown. The error for the
latter algorithm is somewhat smaller. The fact that the MISE is greater for on-line
estimates is the price paid for the fact that they are recursive.

Fig. 2. MISE versus δ.
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Fig. 3. MISE versus γ.

algorithm

Fig. 4. MISE versus n.
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5. Dynamic Subsystem Identification

Lemma 2 suggests the following algorithm to estimate αki:

κ̂i,n = n
−1

n
∑

j=1

UjYj+i.

The algorithm was already examined in (Greblicki, 1997). Setting κ̂i,0 = U0Yi, we
can rewrite it in recursive form:

κ̂i,n = κ̂i,n−1 −
1

n
(κ̂i,n−1 − UnYn+i) .

The next result establishes its convergence.

Theorem 3. (Greblicki, 1997) Let m satisfy (19). Then E(κ̂i,n − αki)
2 → 0 as

n→∞, i = 1, 2, . . . .

We do not examine the algorithm but solely show that it can be calculated recur-
sively. We want to mention that a recursive algorithm based on a stochastic approx-
imation framework to estimate coefficients of the difference equation corresponding
to (1) was proposed in (Wigren, 1993). In that paper, the input signal distribution
may not be Gaussian, which is an obvious advantage, but the nonlinear characteristic
must be known, which constitutes a severe limitation.

6. Final Remarks

In the present paper, the input signal has a Gaussian distribution which is a typical
assumption in both parametric and nonparametric problems of recovering the non-
linearity in Wiener systems and has been applied in all relevant references. We must
mention in this context the results of (Krzyżak and Partyka, 1993) concerning the
Wiener system identification, i.e. their Theorem 7, seem to lack the restriction that
the input is Gaussian.

We assume that both the functional form of the characteristic of the nonlinear
subsystem and the order of the linear one are unknown. This means that our a pri-
ori information about the identified system is nonparametric, which, in the author’s
opinion, is rather typical in applications.

In turn, the nonlinear characteristic is invertible and differentiable, but its func-
tional form is completely unknown. To see these restrictions in a proper way, we want
to point out that in all the references concerning the parametric identification, the
characteristic is a polynomial of a known degree (Billings, 1980). Thus, in those pa-
pers it is also differentiable but may not be invertible. Nevertheless, its functional
form is fixed. In this context, we want to mention that one can verify that also our
algorithms work properly when the characteristic is not invertible. To achieve this
goal, it is sufficient to apply the method used in (Greblicki, 1997).

Finally, we emphasize again that the algorithms identifying the nonlinear sub-
system and those identifying the dynamic one are mutually independent from the
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numerical viewpoint. This advantage is not taken into consideration very often. As
regards the system structure, it has already been applied to model a visual system
(den Brinker, 1989), a pH process (Kalafatis et al., 1995), as well as a fluid flow
(Wigren, 1993).

All those features make our algorithms interesting not only for researchers, but
for engineers too. Therefore, despite theoretical difficulties, the problem of the Wiener
system identification is worth further studies.
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Appendix A. Wiener System

Lemma 4. Let m satisfy (18) and (19). We have

µ(y;h)→ βf(y)m−1(y)

∫

K(ξ) dξ as h→ 0,

where µ(y;h) is as (17). Moreover, sup0<h |µ(y;h)| is finite at every y ∈ m(
�
).

Proof. The proof applies Lemmas 1, 3 and 7 in Appendix B.

Set

ω(y;h) =
1

h
E

{

‖X0‖
2
K2
(

y − Y0
h

)}

,

and recall that ψ(y;h) was defined in (21).

Lemma 5. Let m satisfy (18) and (19). We have

sup
0<h

ω(y;h) <∞, sup
0<h

ψ(y;h) <∞,

at every y ∈ m(
�
), where ψ(y;h) is as in (21).

Proof. Inspecting the proof of Lemma 2, we deduce that E{U 20 | V1 = v} = a+ bv
2

with some a and b. Since Y1 = m(V1), we get E{U
2
0 | Y1 = y} = p(y), where

p(y) = a+b[m−1(y)]2. Applying now Lemma 7 in Appendix B, we see that ψ(y;h)→
p(y)
∫

K2(ξ) dξ as h→ 0 at every y ∈ m(
�
). Thus sup0<h ψ(y;h) is finite at every

y ∈ m(
�
).

To examine ω(y;h), observe that the pair (X0, V0) has a normal distribution
with covariance matrix Σc, where Σ = cov[X0, X0], zero marginal expectations, and
covariances Σ, and σ2V . Thus the conditional density of X0 conditioned on V0 is
normal with expectation σ−2V ΣcV0 and the covariance matrix Σ−σ

−2

V Σc
T cΣ. Hence

E{X0X
T
0 | V0} = Σ−σ

−2

V Σc
T cΣ+σ−4V Σcc

TΣV 20 , which yields E{X
T
0 X0 | V0 = v} =

c+ dv with c = trace(Σ− σ−2V Σc
T cΣ) and d = σ−4V trace(Σcc

TΣ). Hence ω(y;h)→
w(y)
∫

K2(ξ) dξ as h → 0 at every y ∈ m(
�
), where w(y) = c + d[m−1(y)]2, see

Lemma 7 again. Thus sup0<h ω(y;h) <∞ at every y ∈ m(
�
).

The lemma given below is crucial since it makes it possible to analyze the variance
of our algorithms. It modifies and generalizes Lemma A.2 in (Greblicki, 1997).
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Lemma 6. Let m satisfy (18) and (19). Assume that the kernel K fulfils (5)–(8).
Let both h and H be positive. Then, for n = 1, 2, . . . ,

∣

∣

∣

∣

cov

[

UnK

(

y − Yn+1
h

)

, UnK

(

y − Y1
H

)]∣

∣

∣

∣

≤
H

h
‖An‖ η(y),

with some η(y) finite for every y ∈ m(
�
).

Proof. First of all, observe that, owing to Lemma 3, f is continuous at every point
y ∈ m(

�
). Thus, so is m−1. Therefore all further consideration holds at every y ∈

m(
�
). Moreover, owing to (19), m is a Lipschitz function, i.e. for all v1, v2 ∈

�
, and

some cm,

|m(v1)−m(v2)| ≤ cm |v1 − v2| . (23)

In the proof, we need the following inequality:
∣

∣

∣

∣

K

(

y − Yn+1
h

)

−K

(

y −m(ξn+1)

h

)∣

∣

∣

∣

≤ d
1

h
‖An‖ ‖X1‖ , (24)

with ξn+1 =
∑n
i=1 c

TAn−ibUi + Zn+1 and d = cmcK ‖c‖. Observing that Vn+1 =
cTAnX1 + ξn+1 and using (8), we see that the quantity on the left-hand side is
bounded by cKh

−1|Yn+1 −m(ξn+1)| = cKh
−1|m(Vn+1) −m(ξn+1)|, which, in view

of (23), is not greater than cmcKh
−1|Vn+1 − ξn+1| = cmcKh

−1|cAnX1|. In this way,
(24) has been verified.

Having arrived at this point, observe that, since pairs (Un, ξn+1) and (U0, Y1)
are independent,

cov

[

UnK

(

y −m(ξn+1)

h

)

, U0K

(

y − Y1
H

)]

= 0.

Therefore the examined covariance equals

cov

[

Un

(

K

(

y − Yn+1
h

)

−K

(

y −m(ξn+1)

h

))

, U0K

(

y − Y1
H

)]

= P (y) +Q(y),

with

P (y) = E

{

U0UnK

(

y − Y1
H

)[

K

(

y − Yn+1
h

)

−K

(

y −m(ξn+1)

h

)]}

,

Q(y) = E

{

U0K

(

y − Y1
H

)}

E

{

Un

[

K

(

y − Yn+1
h

)

−K

(

y −m(ξn+1)

h

)]}

.

Application of (24) yields

|P (y)| ≤ d
1

h
‖An‖E

{

‖X1‖ |U0Un|

∣

∣

∣

∣

K

(

y − Y1
H

)∣

∣

∣

∣

}

= d
1

h
‖An‖E {|Un|}E

{

‖X1‖ |U0|

∣

∣

∣

∣

K

(

y − Y1
H

)
∣

∣

∣

∣

}

.
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Using the Schwartz inequality, we deduce that the second expectation in the above
expression is bounded by Hψ1/2(y;H)ω1/2(y;H). Thus, by virtue of Lemma 5,
|P (y)| ≤ d(H/h)‖An‖η1(y)E|U0| with η1(y) finite.

To examine Q(y), observe that (24) implies
∣

∣

∣

∣

E

{

Un

[

K

(

y − Yn+1
h

)

−K

(

y −m(ξn+1)

h

)]}∣

∣

∣

∣

≤ d
1

h
‖An‖E |Un|E ‖X1‖ .

Thus

|Q(y)| ≤ d (H/h) ‖An‖E |U0|E ‖X0‖ sup
0<H

µ(y;H),

with µ(y;H) as in (17). Application of Lemma 4 completes the proof.

Appendix B. General Results

Lemma 7. Let X be a random variable with a probability density f , and let ϕ
be a Lebesgue measurable function. Suppose that E|ϕ(X)| < ∞ and the Lebesgue
measurable kernel K fulfils (5)–(7). Then

1

h
E

{

ϕ(X)K

(

x−X

h

)}

→ ϕ(x)f(x)

∫

K(ξ) dξ as h→ 0

at every point x ∈
�
at which both ϕ and f are continuous. Moreover,

sup
0<h

1

h
E

∣

∣

∣

∣

ϕ(X)K

(

x−X

h

)∣

∣

∣

∣

<∞

at the same points.

Proof. The first part of the lemma can be found in (Wheeden and Zygmund, 1997).
The proof of the other is immediate.
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