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ON DELAY-DEPENDENT STABILITY FOR NEUTRAL

DELAY-DIFFERENTIAL SYSTEMS

Qing-Long HAN∗

This paper deals with the stability problem for a class of linear neutral delay-
differential systems. The time delay is assumed constant and known. Delay-
dependent criteria are derived. The criteria are given in the form of linear matrix
inequalities which are easy to use when checking the stability of the systems
considered. Numerical examples indicate significant improvements over some
existing results.
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1. Introduction

The problems of stability and stabilization of time-delay systems of neutral type have
received considerable attention in the last two decades, see, e.g. (Byrnes et al., 1984;
Chukwu and Simpson, 1989; Hale and Verduyn Lunel, 1993; Logemann and Pandolfi,
1994; Logemann and Townley, 1996; Spong, 1985). Practical examples of such systems
include distributed networks containing lossless transmission lines (Brayton, 1966),
and population ecology (Kuang, 1993). Current efforts regarding this topic can be
divided into two categories (Mori, 1985), namely, delay-independent stability criteria
and delay-dependent stability criteria. For linear time-delay systems of neutral type,
some delay-independent stability conditions were obtained. They were formulated in
terms of a matrix measure and a matrix norm (Hu and Hu, 1996; Park and Won,
1999), or the existence of a positive definite solution to an auxiliary algebraic Riccati
matrix equation (Slemrod and Infante, 1972; Verriest and Niculescu, 1997). Although
these conditions are easy to check, they require the matrix measure to be negative
or the parameters to be tuned. Moreover, the abandonment of information on the
delay necessarily causes the conservativeness of the criteria, especially when the delay
is small. Delay-dependent stability results, which take the delay into account, are
usually less conservative than the delay-independent stability ones. Park and Won
(2000) proposed a delay-dependent stability criterion. A numerical example illustrated
that the result in (Khusainov and Yun’kova, 1988) was improved. Recently, an LMI
approach has been widely used to study the stability of time-delay systems, see, e.g.
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(Bliman, 2001; Han and Gu, 2001a; 2001b; Li and de Souza, 1997), because it has
the advantage that it can be implemented numerically very efficiently using standard
LMI algorithms (Boyd et al., 1994).

In this paper, based on some model transformation techniques and Lyapunov-
Krasovskii’s functional approach, the delay-dependent stability problem of the con-
sidered system is transformed into that of the existence of some symmetric positive-
definite matrices. The stability criteria are formulated in the form of linear matrix
inequalities (LMIs). Numerical examples show that the results obtained in this paper
are less conservative than those in (Khusainov and Yun’kova, 1988; Park and Won,
2000).

Notation. For a symmetric matrix W , W > 0 means that W is a positive definite
matrix. I is the identity matrix of appropriate dimensions. C([−h, 0],

�
n ) stands

for the set of continuous
�
n valued functions on [−h, 0], xt ∈ C([−h, 0],

�
n ) is a

segment of the system trajectory defined by xt(θ) = x(t + θ), −h ≤ θ ≤ 0, and
‖ϕ‖c = sup−h≤θ≤0 ‖ϕ(θ)‖ denotes the norm of ϕ ∈ C([−h, 0],

�
n). Let ¯

�
+ be the

closed right-half plane. For a matrix A = (aij)n×n ∈
�
n×n , we use |A| to denote

|A| = (|aij |)n×n ∈
�
n×n . The symbol ‖ · ‖ stands for the Euclidean vector norm and

λmax(W ) (λmin(W )) denotes the maximum (minimum) eigenvalue of a symmetric
matrix W . Moreover, ρ(W ) denotes the spectral radius of a matrix W .

2. Problem Statement

Consider the following linear neutral delay-differential system:

ẋ(t)− Cẋ(t− h) = Ax(t) +Bx(t − h), (1)

x(t0 + θ) = ϕ(θ), ∀ θ ∈ [−h, 0], (2)

where x(t) ∈
�
n is the state, h > 0 is a constant time-delay, ϕ(·) is a continuous

vector-valued initial function, A,B ∈
�
n×n and C ∈

�
n×n are known real constant

matrices. For given initial conditions of the form (2), system (1) admits a unique
solution x(t, t0, ϕ(·)) which is defined on [t0 − h,∞).

Definition 1.

(i) The solution x = 0 of eqn. (1) is said to be stable if for any ε > 0 there exists a
δ = δ(t0, ε) > 0 such that if ‖ϕ(·)‖ < δ, then ‖x(t, t0, ϕ(·))‖ < ε for all t > t0.

(ii) The solution x = 0 of eqn. (1) is said to be asymptotically stable if it is stable
and there exists a ∆ = ∆(t0) > 0 such that x(t, t0, ϕ(·)) → 0 as t→∞.

The stability property of system (1), (2) can be described by its characteristic
equation. The system (1), (2) is asymptotically stable if and only if

det(sI − sCe−hs −A−Be−hs) 6= 0, ∀ s ∈ ¯
�
+ .
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It is difficult to directly solve the above equation. One of the most general approaches
to the stability analysis of (1) is the Lyapunov-Krasovskii functional approach. To
derive delay-dependent stability conditions, which include the information of the time-
delay h, one usually uses the dependence (Hale and Verduyn Lunel, 1993)

x(t− h) = x(t) −

∫ 0

−h

ẋ(t+ θ) dθ

to transform the original system (1) to a system of neutral type or a system with a
distributed delay.

In this paper, we shall attempt to formulate two practically computable criteria
to check the stability of system (1), (2).

3. Main Results

We now use the following neutral type representation of system (1) that leads to our
first result:

d

dt

[

x(t) − Cx(t− h) +B

∫ t

t−h

x(ξ) dξ
]

= (A+B)x(t). (3)

Remark 1. Using an argument similar to Niculescu et al. (1994), it is easy to prove
that the stability of system (3) (or (6) after Remark 2) implies that of system (1).

Theorem 1. System (1), (2) is asymptotically stable if the difference-integral system

x(t)−Cx(t−h)+B
∫ t

t−h
x(ξ) dξ = 0 is asymptotically stable and there exist symmetric

positive definite matrices P , R and W satisfying the following LMI:

Ξ=











−(A+B)TP−P (A+B)−hR−W (A+B)TPC −h(A+B)TPB

CTP (A+B) W 0

−hBTP (A+B) 0 hR











>0. (4)

In order to prove Theorem 1, we need the following integral inequality:

Lemma 1. (Gu, 2000) For any constant symmetric matrix M ∈
�
n×n , M =MT >

0, scalar γ > 0, vector function ω : [0, γ] →
�
m such that the integration in the

following is well-defined, we have

γ

∫ γ

0

ωT (β)Mω(β) dβ ≥
(

∫ γ

0

ω(β) dβ
)T

M
(

∫ γ

0

ω(β) dβ
)

.

Proof of Theorem 1. Consider the Lyapunov-Krasovskii functional candidate V =
V1 + V2 + V3, where

V1 =
[

x(t)− Cx(t− h) +B

∫ t

t−h

x(ξ) dξ
]T

P
[

x(t)− Cx(t − h) +B

∫ t

t−h

x(ξ) dξ
]

,
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V2 =

∫ t

t−h

(h− t+ ξ)xT (ξ)Rx(ξ) dξ,

V3 =

∫ t

t−h

xT (ξ)Wx(ξ) dξ,

P , W and R being symmetric positive-definite solutions of (4).

It is easy to see that the functional V satisfies the condition

α1

∥

∥

∥

[

x(t) − Cx(t− h) +B

∫ t

t−h

x(s) ds
]∥

∥

∥

2

≤ V ≤ α2‖xt‖
2
c ,

where α1 = λmin(P ) and α2 = λmax(P )(1+‖C‖+h‖B‖)+
1

2
h2λmax(R)+hλmax(W ).

The derivative of V along the trajectory of system (3) is given by V̇ = V̇1 +
V̇2 + V̇3, where

V̇1 = 2x
T (t)(A+B)TP

[

x(t)− Cx(t − h) +B

∫ t

t−h

x(ξ) dξ
]

= xT (t)
[

(A+B)TP + P (A+B)
]

x(t) − 2xT (t)(A+B)TPCx(t − h)

+ 2xT (t)(A +B)TPB

∫ t

t−h

x(ξ) dξ,

V̇2 = hx
T (t)Rx(t) −

∫ t

t−h

xT (ξ)Rx(ξ) dξ,

V̇3 = x
T (t)Wx(t) − xT (t− h)Wx(t− h).

Then we have

V̇ = xT (t)
[

(A+B)TP + P (A+B) + hR+W
]

x(t)

− 2xT (t)(A +B)TPCx(t− h)− xT (t− h)Wx(t− h)

+ 2xT (t)(A +B)TPB

∫ t

t−h

x(ξ) dξ −

∫ t

t−h

xT (ξ)Rx(ξ) dξ.

Using Lemma 1, obtain

∫ t

t−h

xT (ξ)Rx(ξ) dξ ≥
( 1

h

∫ t

t−h

x(ξ) dξ
)T

(hR)
( 1

h

∫ t

t−h

x(ξ) dξ
)

.
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From the above inequality it follows that

V̇ ≤ −xT (t)
[

−(A+B)TP − P (A+B)− hR−W
]

x(t)

− 2xT (t)(A+B)TPCx(t− h)− xT (t− h)Wx(t − h)

− 2xT (t)
[

−h(A+B)TPB
]

( 1

h

∫ t

t−h

x(ξ) dξ
)

−
(1

h

∫ t

t−h

x(ξ) dξ
)T

(hR)
( 1

h

∫ t

t−h

x(ξ) dξ
)

= −

(

xT (t) xT (t− h)
(1

h

∫ t

t−h

x(ξ) dξ
)T
)

Ξ











x(t)

x(t− h)

( 1
h

∫ t

t−h
x(ξ)dξ)











In light of (4), V̇ is negative definite. Since the difference-integral system x(t)−Cx(t−

h) + B
∫ t

t−h
x(ξ) dξ = 0 is asymptotically stable, so is system (1), (2), according to

Theorem 8.1 of (Hale and Verduyn Lunel, 1993, pp.292–293).

Remark 2. The difference-integral system x(t) − Cx(t − h) + B
∫ t

t−h
x(ξ) dξ = 0

is asymptotically stable if there exists a δ > 0 such that all the solutions λ of the
characteristic equation

det

[

I − Ce−hλ +B

∫ 0

−h

eλθ dθ

]

= 0

satisfy Re(λ) ≤ −δ < 0. Through simple computation, the above equation can be
written as

det

[

I − Ce−hλ +B
1− e−hλ

λ

]

= 0.

It is easy to see that a sufficient condition for the considered difference-integral system
to be asymptotically stable is that ρ(|C|+ h|B|) < 1, which is equivalent to the
existence of a symmetric positive-definite matrix Q satisfying the matrix inequality

(

|C|+ h|B|
)T
Q
(

|C|+ h|B|
)

−Q < 0. (5)

This inequality is not an LMI concerning the variable h. However, for a fixed h, (5)
is an LMI.

Let us rewrite (1) as

ẋ(t)− Cẋ(t− h) = (A+B)x(t) −B

∫ t

t−h

ẋ(ξ) dξ (6)
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Theorem 2. System (1), (2) is asymptotically stable if the difference system x(t) −
Cx(t − h) = 0 is asymptotically stable and there exist symmetric positive-definite
matrices P , R, S and W satisfying the following LMI:

Σ =

















Σ11 Σ12 Σ13 Σ14

ΣT12 Σ22 Σ23 Σ24

ΣT13 Σ
T
23 Σ33 0

ΣT14 Σ
T
24 0 Σ44

















> 0 (7)

where

Σ11 = −(A+B)
TP − P (A+B)−W −AT (hR+ S)A,

Σ12 = (A+B)
TPC −AT (hR+ S)B, Σ13 = −A

T (hR+ S)C,

Σ14 = hPB, Σ22 =W −B
T (hR+ S)B, Σ23 = −B

T (hR + S)C,

Σ24 = −hC
TPB, Σ33 = S − C

T (hR+ S)C, Σ44 = hR.

Proof. Consider the Lyapunov-Krasovskii functional candidate V = V1+V2+V3+V4,
where

V1 =
[

x(t)− Cx(t − h)
]T
P
[

x(t) − Cx(t− h)
]

,

V2 =

∫ t

t−h

(h− t+ ξ)ẋT (ξ)Rẋ(ξ) dξ, V3 =

∫ t

t−h

ẋT (ξ)Sẋ(ξ) dξ,

V4 =

∫ t

t−h

xT (ξ)Wx(ξ) dξ,

P , R, S and W being symmetric positive-definite solutions of (7).

The functional V satisfies the condition

α3
∥

∥[x(t) − Cx(t− h)]
∥

∥

2
≤ V ≤ α4‖xt‖

2
c1,

where ‖xt‖c1 = sup−h≤θ≤0{‖x(t+ θ)‖, ‖ẋ(t+ θ)‖} and α3 = λmin(P ), α4 =

λmax(P )(1 + ‖C‖) +
1

2
h2λmax(R) + hλmax(S) + hλmax(W ). Some connections be-

tween the stability results obtained using the norms ‖ · ‖c and ‖ · ‖c1 can be found
in (Els’golts’ and Norkin, 1973).
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The derivative of V along the trajectory of system (6) is given by V̇ = V̇1 +
V̇2 + V̇3 + V̇4, where

V̇1 = 2
[

x(t)− Cx(t − h)
]T
P

[

(A+B)x(t) −B

∫ t

t−h

ẋ(ξ) dξ

]

= xT (t)
[

(A+B)TP + P (A+B)
]

x(t) − 2xT (t)PB

∫ t

t−h

ẋ(ξ) dξ

− 2xT (t)(A+B)TPCx(t− h) + 2xT (t− h)CTPB

∫ t

t−h

ẋ(ξ) dξ,

V̇2 = hẋ
T (t)Rẋ(t)−

∫ t

t−h

ẋT (ξ)Rẋ(ξ) dξ,

V̇3 = ẋ
T (t)Sẋ(t)− ẋT (t− h)Sẋ(t− h),

V̇4 = x
T (t)Wx(t) − xT (t− h)Wx(t− h).

Then

V̇ = xT (t)
[

(A+B)TP + P (A+B) +W
]

x(t)− 2xT (t)(A+B)T

× PCx(t− h)− xT (t− h)Wx(t− h) + ẋT (t)(hR + S)ẋ(t)

− ẋT (t− h)Sẋ(t− h)− 2xT (t)PB

∫ t

t−h

ẋ(ξ) dξ

+ 2xT (t− h)CTPB

∫ t

t−h

ẋ(ξ) dξ −

∫ t

t−h

ẋT (ξ)Rẋ(ξ) dξ.

Since ẋ(t) = Ax(t) +Bx(t− h) + Cẋ(t− h), we deduce that

ẋT (t)(hR + S)ẋ(t)

= xT (t)AT (hR+ S)Ax(t) + 2xT (t)AT (hR + S)Bx(t− h)

+ 2xT (t)AT (hR+S)Cẋ(t−h)+xT (t−h)BT (hR+S)Bx(t−h)

+ 2xT (t− h)BT (hR+ S)Cẋ(t− h)

+ ẋT (t− h)CT (hR+ S)Cẋ(t− h)

and, using Lemma 1, we obtain

∫ t

t−h

ẋT (ξ)Rẋ(ξ) dξ ≥

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)T

(hR)

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)

.
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We thus get

V̇ ≤ −xT (t)[−(A+B)TP − P (A+B)−W −AT (hR+ S)A]x(t)

− 2xT (t)
[

(A+B)TPC −AT (hR+ S)B
]

x(t− h)

− 2xT (t)
[

−AT (hR + S)C
]

ẋ(t− h)

− 2xT (t)hPB

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)

− xT (t− h)
[

W −BT (hR+ S)B
]

x(t− h)

− 2xT (t− h)
[

−BT (hR+ S)C
]

ẋ(t− h)

− 2xT (t− h)
[

−hCTPB
]

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)

− ẋT (t− h)
[

S − CT (hR+ S)C
]

ẋ(t− h)

−

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)T

(hR)

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)

= −

(

xT (t) xT (t− h) ẋT (t− h)

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)T
)

× Σ





















x(t)

x(t − h)

ẋ(t− h)

(

1

h

∫ t

t−h

ẋ(ξ) dξ

)





















.

This derivative is negative definite in light of (7). Just as in Theorem 1, we can
conclude that if the assumptions of Theorem 2 are satisfied, system (1), (2) is asymp-
totically stable.

Remark 3. A sufficient condition for the difference system x(t) − Cx(t − h) = 0
to be asymptotically stable is ρ(C) < 1, or there exists a symmetric positive-definite
matrix Q satisfying the following LMI:

CTQC −Q < 0. (8)

Let us further consider a more general neutral-type system

ẋ(t)− Cẋ(t− τ) = Ax(t) +Bx(t− h), (9)

x(t0 + θ) = ϕ(θ), ∀ θ ∈ [−max(h, τ), 0], (10)
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where h > 0 is a discrete-delay and τ > 0 is a neutral delay.

Rewrite (9) as

d

dt

[

x(t)− Cx(t − τ) +B

∫ t

t−h

x(ξ) dξ

]

= (A+B)x(t). (11)

Choose the Lyapunov-Krasovskii functional candidate V = V1 + V2 + V3, where

V1 =

[

x(t) − Cx(t− τ) + B

∫ t

t−h

x(ξ) dξ

]T

P

[

x(t) − Cx(t− τ) +B

∫ t

t−h

x(ξ) dξ

]

,

V2 =

∫ t

t−h

(h− t+ ξ)xT (ξ)Rx(ξ) dξ, V3 =

∫ t

t−τ

xT (ξ)Wx(ξ) dξ.

In much the same way as in the proof of Theorem 1, one can easily obtain the following
result:

Theorem 3. System (9), (10) is asymptotically stable if the difference-integral system

x(t)−Cx(t−τ)+B
∫ t

t−h
x(ξ) dξ = 0 is asymptotically stable and there exist symmetric

positive-definite matrices P , R and W satisfying the following LMI:












−(A+B)TP−P (A+B)−hR−W (A+B)TPC −h(A+B)TPB

CTP (A+B) W 0

−hBTP (A+B) 0 hR













> 0. (12)

Remark 4. From Theorem 3, it is easy to see that (12) does not include any infor-
mation on the neutral delay τ > 0. This means that Theorem 3 gives neutral-delay-
independent stability conditions. Finding both neutral-delay-dependent and discrete-
delay-dependent criteria constitutes the subject of further work.

Remark 5. The system under consideration here is a nominal system. If the system
is subject to a norm-bounded uncertainty, based on the stability criteria in this paper,
one can easily reformulate the results to appropriate LMIs following the idea given in
(Han and Gu, 2001a).

4. Examples

In order to use Theorems 1 and 2 to test the stability of system (1), (2), there have
been written two MATLAB m-functions which automatically generate LMIs (4), (5)
and (7), (8), respectively, and then solve this set of LMIs using the LMI Solver FEASP
in the MATLAB LMI toolbox (Gahinet et al., 1995). The inputs to the functions are
the system matrices and the time delay. The functions verify whether the LMIs are
feasible. If so, they also give matrices P , Q, R and W (for Theorem 1) or P , Q,
R, S and W (for Theorem 2) as the outputs. The following examples are generated
using these MATLAB m-functions to illustrate the effectiveness of the approaches.
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Example 1. Consider the time-delay system

ẋ(t) = [A+∆A(t)]x(t) + [B +∆B(t)]x(t − r),

where

A =





−3 −2.5

1 0.5



 , B =





1.5 2.5

−0.5 −1.5



 , C =





c 0

0 c



 , |c| < 1.

Using the methods from (Khusainov and Yun’kova, 1988; Park and Won, 2000),
no conclusion can be made since the corresponding conditions are not satisfied. The
maximum time delay for asymptotic stability hmax as estimated by Theorem 1 is
listed in Table 1. It is clear that if |c| increases, then hmax decreases. Hence, for this
example, the criterion in this paper gives a less conservative result that the ones set
forth in (Khusainov and Yun’kova, 1988; Park and Won, 2000).

Table 1. Bound hmax for various c.

c −0.50 −0.30 −0.10 0.00 0.10 0.30 0.50

hmax 0.500 0.700 0.900 1.000 0.900 0.700 0.500

Example 2. Consider the system

ẋ(t)−





c 0

0 c



 ẋ(t− h) =





−0.8 0.2

−0.2 −0.8



x(t− h),

where −1 < c < 1.

The maximum time delay for asymptotic stability hmax is illustrated in Table 2.
It is seen that for c = 0, Theorems 1 and 2 lead to the same bound 1.1764. For
0 < |c| < 1, the results got from Theorem 1 are less conservative than those obtained
from Theorem 2. As |c| increases from 0 to 1, hmax decreases from 1.1764 to 0. This
example also shows that different LMIs in Theorems 1 and 2 are not equivalent.

Table 2. Bound hmax for various −1 < c < 1.

|c| 0.00 0.10 0.20 0.30 0.40

Theorem 2 1.176 0.863 0.622 0.439 0.302

Theorem 1 1.176 1.055 0.933 0.812 0.691

|c| 0.50 0.60 0.70 0.80 0.90

Theorem 2 0.201 0.128 0.076 0.039 0.013

Theorem 1 0.570 0.448 0.327 0.206 0.085
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5. Conclusion

The stability problem of linear neutral delay-differential systems has been addressed.
Delay-dependent stability criteria have been obtained. Numerical examples have
shown significant improvements over some existing results.
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