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IDENTIFICATION OF A QUASILINEAR PARABOLIC

EQUATION FROM FINAL DATA†

Luis A. FERNÁNDEZ∗, Cecilia POLA∗

We study the identification of the nonlinearities A,~b and c appearing in the
quasilinear parabolic equation

yt − div
(

A(y)∇y +~b(y)
)

+ c(y) = u in Ω× (0, T ),

assuming that the solution of an associated boundary value problem is known
at the terminal time, y(x, T ), over a (probably small) subset of Ω, for each
source term u. Our work can be divided into two parts. Firstly, the uniqueness
of A,~b and c is proved under appropriate assumptions. Secondly, we consider a
finite-dimensional optimization problem that allows for the reconstruction of the
nonlinearities. Some numerical results in the one-dimensional case are presented,
even in the case of noisy data.

Keywords: quasilinear parabolic equation, inverse problem, parameter estima-

tion

1. Introduction

Let us consider the following boundary value problem associated with the quasilinear
parabolic equation:






















yt(x, t)− div
(

A
(

y(x, t)
)

∇y(x, t) +~b
(

y(x, t)
)

)

+ c
(

y(x, t)
)

= u(x, t) in Q,

y(x, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(1)

where Q = Ω×(0, T ), Ω being a bounded open domain in � n with smooth boundary
∂Ω, T > 0 and Σ = ∂Ω× (0, T ).
We are concerned with the following type of inverse problem: Given an initial

datum y0, a source term u, and having some knowledge about the solution y, we
want to determine the nonlinearities (A,~b, c) of the operator.
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Spain, e-mail: � lafernandez,polac � @unican.es
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The reconstruction of one nonlinearity of a quasilinear parabolic operator has
already been considered in different settings in the literature, among others in (Barbu
and Kunisch, 1995; Chavent and Lemonnier, 1974). As more recent, we highlight
(Hanke and Scherzer, 1999; Kärkkäinen, 1996). These analyses were carried out while
assuming that some distributed observations of the solution are given a priori : In
(Kärkkäinen, 1996), for a term u, the corresponding solution y(x, t) is known for
every (x, t) ∈ Q. In (Hanke and Scherzer, 1999), where n = 1, some points x1, . . . , xm
are fixed in Ω, and y(xi, t) is known for all i ∈ {1, . . . ,m} and every t ∈ [0, T ]. Our
approach is somewhat different: we will assume that for each source term u, the
solution at the final time y(x, T ) is known over a (probably small) fixed non-empty
open subset of Ω. On the other hand, several nonlinearities can be identified at the
same time. Exactly, up to (n+ 2)(n+ 1)/2 nonlinearities can be recovered, not just
one as in the cited references.

Our work can be divided into two parts. In the next section, the uniqueness of
(A,~b, c) is proved under reasonable assumptions (see (H1)–(H6) below). This proper-
ty can be deduced by using the approximate controllability for this type of equations,
when the function u is viewed as a control. Section 3 is devoted to the practical re-
construction of the nonlinearities in the one-dimensional space case. We use an output
least-squares method with a regularization technique to transform the identification
problem to a finite-dimensional optimization problem. In order to illustrate the ap-
plicability of our approach, we present some numerical results taking into account the
influence of noise on the data.

A preliminary and simplified version of this work was presented at the European
Congress on Computational Methods in Applied Sciences and Engineering ‘ECCO-
MAS 2000’, held in Barcelona (Spain), on September 11–14, 2000.

2. Uniqueness of the Nonlinearities

Let us introduce the hypotheses that will be assumed regarding the nonlinearities of
the quasilinear parabolic operator:

(H1) A(y) = (aij(y))1≤i,j≤n, where aij ∈ C1+δ(
�
) for some δ ∈ (0, 1), aij(y) =

aji(y) for every y ∈
�
and all i, j ∈ {1, . . . , n}. Moreover, there exists α > 0

such that

n
∑

i,j=1

aij(y)ξiξj ≥ α‖ξ‖2, ∀y ∈ �
, ∀ξ ∈ � n .

(H2) ~b(y) = (b1(y), . . . , bn(y)), where bi ∈ C1+δ(
�
) for each i ∈ {1, . . . , n} with

~b(0) = ~0.

(H3) c ∈ C1+δ( �
) and there exists β ≤ 0 such that

dc

dy
(y) ≥ β, ∀y ∈ �

.
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With this notation, the parabolic operator yt−div (A(y)∇y+~b(y))+ c(y) is the
usual abridged representation of

∂y

∂t
(x, t)−

n
∑

i=1

∂

∂xi





n
∑

j=1

aij
(

y(x, t)
) ∂y

∂xj
(x, t) + bi

(

y(x, t)
)



+ c
(

y(x, t)
)

.

Remark 1.

� Clearly, the operator in (1) does not change if ~b(y) is replaced by ~b(y) + ~k,

where ~k is any element of
� n . Hence, condition ~b(0) = 0 is just imposed to fix

ideas.

� Needless to say, condition β ≤ 0 in (H3) is not restrictive. Obviously, if it is
satisfied with β > 0, it also holds for β = 0.

� The regularity conditions on the nonlinearities can be weakened by taking δ = 0
in some particular cases, e.g. to recover A(y) (with ~b(y) = ~0 and c(y) = 0), or

to identify c(y), assuming aij(y) = δij for all i, j ∈ {1, . . . , n} and ~b(y) = ~0.

For brevity, we set

C =
{

(A,~b, c) verifying (H1)–(H3)
}

.

As usual, given k ∈ �
and δ, δ̃ ∈ [0, 1), we write

Cδ(Ω) =

{

y ∈ C(Ω) : sup
x,x̃∈Ω,x6=x̃

|y(x)− y(x̃)|
|x− x̃|δ < +∞

}

,

Ck+δ(Ω) =

{

y ∈ Cδ(Ω) : d
jy

dxj
∈ Cδ(Ω), ∀j = 1, . . . , k

}

.

What is more,

Cδ,δ̃(Q) =

{

y ∈ C(Q) : sup
(x,t),(x̃,t̃)∈Q,(x,t)6=(x̃,t̃)

|y(x, t)− y(x̃, t̃)|
|x− x̃|δ + |t− t̃|δ̃

< +∞
}

,

C1+δ,(1+δ)/2(Q) =

{

y ∈ C0,(1+δ)/2(Q) : ∂y
∂xi
∈ Cδ,δ/2(Q) ∀i = 1, . . . , n

}

,

C2+δ,1+δ/2(Q) =

{

y ∈ C(Q) : ∂y
∂t
,
∂y

∂xi
,
∂2y

∂xi∂xj
∈ Cδ,δ/2(Q) ∀i, j = 1, . . . , n

}

.
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Given a triplet (A,~b, c) ∈ C, it can be proved that problem (1) is well-posed at
least when the right-hand term u, the initial datum y0 and the boundary ∂Ω are
regular enough, in the following sense:

Theorem 1. Let us assume that (A,~b, c) ∈ C and, moreover, the following conditions
are fulfilled:

(H4) ∂Ω ∈ C2+δ,

(H5) u ∈ Cδ(Q),

(H6) y0 ∈ C2+δ(Ω) and y0(x) = 0 for all x ∈ ∂Ω.

Then there exists a unique solution y of problem (1) belonging to the space
C1+ρ,(1+ρ)/2(Q) ∩ C2+ρ,1+ρ/2(Ω× [ε, T ]) for some ρ ∈ (0, 1) and every ε > 0.
Moreover, there exists a constant K depending only on β and T such that

‖y‖L∞(Q) ≤ K
(

|c(0)|+ ‖y0‖L∞(Ω) + ‖u‖L∞(Q)
)

. (2)

Proof. The existence of a unique solution y to problem (1) belonging to the space
Cρ1,ρ1/2(Q) for some ρ1 ∈ (0, 1) such that ∇y ∈ L∞(Q) is a consequence of The-
orem 6.3 of (Ladyzhenskaya et al., 1968, p.459). Let us point out that we are as-
suming the compatibility condition of zeroth order between the initial and boundary
conditions (see (H6)), but not the compatibility condition of first order (Ladyzhen-
skaya et al., 1968, p.449). By seeing the solution of the quasilinear problem as the
corresponding one for a linear problem in divergence form with Hölder continuous
coefficients, it can be deduced from Theorem 1 of (Lunardi and Vespri, 1991) that
y ∈ C1+ρ1 ,(1+ρ1)/2(Q).
In order to complete the proof, it is enough to see y as the unique solution of

the linear problem


























yt(x, t)−
n
∑

i,j=1

ãij(x, t)
∂2y

∂xi∂xj
(x, t) = ũ(x, t) in Q,

y(x, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(3)

where ãij(x, t) = aij(y(x, t)), and

ũ(x, t) = u(x, t)− c
(

y(x, t)
)

+
n
∑

i,j=1

daij
dy

(

y(x, t)
) ∂y

∂xi
(x, t)

∂y

∂xj
(x, t)

+

n
∑

i=1

dbi
dy

(

y(x, t)
) ∂y

∂xi
(x, t).

By the known regularity of y and hypotheses (H1)–(H3), (H5), we can guarantee that
each coefficient ãij and the right-hand side term ũ belong to C

ρ1δ,ρ1δ/2(Q). The lack
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of the first-order compatibility between the initial datum, the homogeneous boundary
condition and the term ũ does not allow us to conclude that y ∈ C2+ρ,1+ρ/2(Q) for
ρ = ρ1δ. Nevertheless, it can be proved that y ∈ C2+ρ,1+ρ/2(Ω × [ε, T ]) for every
ε > 0 in the following way: Let us decompose problem (3) as the sum of the problems



























yt(x, t)−
n
∑

i,j=1

ãij(x, t)
∂2y

∂xi∂xj
(x, t) = ũ(x, t) in Q,

y(x, t) = 0 on Σ,

y(x, 0) = y1(x) in Ω,

(4)

and


























yt(x, t)−
n
∑

i,j=1

ãij(x, t)
∂2y

∂xi∂xj
(x, t) = 0 in Q,

y(x, t) = 0 on Σ,

y(x, 0) = y0(x) − y1(x) in Ω,

(5)

where y1 ∈ C2+ρ(Ω) is the unique solution of the elliptic boundary-value problem










−
n
∑

i,j=1

ãij(x, 0)
∂2y

∂xi∂xj
(x) = ũ(x, 0) in Ω,

y(x) = 0 on ∂Ω,

(6)

see (Gilbarg and Trudinger, 1977, Thm. 6.14, p.101).

Function y1(x) has been chosen in such a way that the compatibility condi-
tion of first order is now satisfied for problem (4). Hence it has a unique solution
y1(x, t) ∈ C2+ρ,1+ρ/2(Q) as a consequence of Theorem 5.3 of (Ladyzhenskaya et al.,
1968, p.320). On the other hand, problem (5) only satisfies the zeroth-order compati-
bility (i.e. y0(x)− y1(x) = 0 on ∂Ω). Therefore another classical result of Ladyzhen-
skaya et al. (1968, Thm. 9.1, pp.341–342) implies that the unique solution y2(x, t)
of (5) belongs to Cρ,ρ/2(Q). Given ε > 0, introduce a function ϕε(t) ∈ C∞([0, T ])
such that ϕε(t) = 0 on [0, ε/2] and ϕε(t) = 1 on [ε, T ]. Now, it is easy to show
that y2(x, t)ϕε(t) is the unique solution to the problem (4), replacing ũ(x, t) by
y2(x, t)ϕ

′
ε(t) ∈ Cρ,ρ/2(Q) and y1(x) by 0. For this problem, the compatibility condi-

tion of first order is clearly satisfied, and hence, applying once more Theorem 5.3 of
(Ladyzhenskaya et al., 1968), we get y2(x, t)ϕε(t) ∈ C2+ρ,1+ρ/2(Q). We conclude by
noticing that y(x, t) = y1(x, t) + y2(x, t) = y1(x, t) + y2(x, t)ϕε(t) in Ω× [ε, T ].
Estimation (2) is a direct consequence of (Ladyzhenskaya et al., 1968, Thm. 2.9,

p.23), taking into account that here

a(x, t, y,∇y) = −
n
∑

i,j=1

daij
dy
(y)
∂y

∂xi

∂y

∂xj
−
n
∑

i=1

dbi
dy
(y)
∂y

∂xi
+ c(y)− u(x, t).
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By (H3) and the Mean-Value Theorem, we have

a(x, t, y,~0)y =
(

c(y)− u(x, t)
)

y =
(

c(0)− u(x, t)
)

y +
dc

dy
(θy)y2

≥
(

β − 1
2

)

y2 − 1
2

(

|c(0)|+ ‖u‖L∞(Q)
)2

for some θ ∈ (0, 1).
Applying Theorem 2.9 of (Ladyzhenskaya et al., 1968), it follows that

‖y‖L∞(Q) ≤ min
µ>0.5−β

exp (µT )

(

‖y0‖L∞(Ω) +
|c(0)|+ ‖u‖L∞(Q)
√

2(µ+ β − 0.5)

)

≤ K
(

|c(0)|+ ‖y0‖L∞(Ω) + ‖u‖L∞(Q)
)

,

where

K = min
µ>0.5−β

exp (µT )

(

1 +
1

√

2(µ+ β − 0.5)

)

.

Taking into account that the initial datum y0 will remain fixed in the sequel, we
will denote by yu,A,~b,c the unique solution to problem (1).

Let us present some results concerning the approximate controllability for para-
bolic equations that will be useful later (see (Fernández and Zuazua, 1999; Lions,
1971) for related results).

For that purpose, we recall the space

W (0, T ) =
{

y ∈ L2
(

0, T ;H10(Ω)
)

: yt ∈ L2
(

0, T ;H−1(Ω)
)}

,

where H10 (Ω) denotes the usual Sobolev space and H
−1(Ω) is its dual.

Theorem 2. (Approximate Controllability)

(a) Assume that (H6) is fulfilled and (A,~b, c) ∈ C. Then the set

R(T ) =
{

yu,A,~b,c(x, T ) : u ∈ Cδ(Q)
}

is dense in L2(Ω).

(b) Suppose that âij , b̂i ∈ L∞(Q) for all i, j ∈ {1, . . . , n}, ĉ ∈ L∞(Q) and there
exists α > 0 such that

n
∑

i,j=1

âij(x, t)ξiξj ≥ α‖ξ‖2 a.e. (x, t) ∈ Q, ∀ξ ∈ � n .
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Then the set

S =
{

zv(x, t) : v ∈ L2(Q)
}

is dense in L2(0, T ;H10 (Ω)), where zv denotes the unique solution in W (0, T )
of the linear problem















































zt(x, t)−
n
∑

i=1

∂

∂xi





n
∑

j=1

âij(x, t)
∂z

∂xj
(x, t) + b̂i(x, t)z(x, t)





+ ĉ(x, t)z(x, t) = v(x, t) in Q,

z(x, t) = 0 on Σ,

z(x, 0) = 0 in Ω.

(7)

Proof. Part (a) is a consequence of the following argumentation containing an exact
controllability result: Given yd ∈ L2(Ω), for each ε > 0, there exists ŷ ∈ D(Ω)
(i.e. a function in C∞(Ω) with compact support strictly contained in Ω) such that
‖yd − ŷ‖L2(Ω) < ε. So the function

y(x, t) = y0(x) +
t

T

(

ŷ(x)− y0(x)
)

x ∈ Ω, t ∈ (0, T )

can be viewed as the unique solution of (1) with u = yt− div
(

A(y)∇y+~b(y)
)

+ c(y)
and y(T ) = ŷ. By using hypotheses (H1)–(H3), it is straightforward to verify that
u ∈ Cδ(Q).
In Part (b), for each v ∈ L2(Q), it is well-known (Lions, 1971) that (7)

has a unique solution zv in W (0, T ). Suppose that there exists an element ϕ ∈
L2(0, T ;H−1(Ω)) such that

〈ϕ, zv〉 = 0, ∀v ∈ L2(Q),

where 〈·, ·〉 denotes the duality product between the spaces L2(0, T ;H−1(Ω)) and
L2(0, T ;H10(Ω)). By the Hahn-Banach Theorem, the density property holds if and
only if ϕ = 0. By introducing the adjoint state p ∈ W (0, T ) as the unique solution
of the problem















































−pt(x, t)−
n
∑

i,j=1

∂

∂xi

(

âji(x, t)
∂p

∂xj
(x, t)

)

+
n
∑

i=1

b̂i(x, t)
∂p

∂xi
(x, t)+

+ ĉ(x, t)p(x, t) = ϕ(x, t) in Q,

p(x, t) = 0 on Σ,

p(x, T ) = 0 in Ω.
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Multiplying this equation by zv and integrating it by parts, it follows that

0 = 〈ϕ, zv〉 =
∫

Q

p(x, t)v(x, t) dx dt, ∀v ∈ L2(Q).

Therefore, p = 0 in Q and, consequently, ϕ = 0.

Based on previous results, we can establish the main theorem of this section,
which reads as follows:

Theorem 3. (Uniqueness) Given a (probably small) non-empty open set ω ⊂ Ω,
assume that (H4) and (H6) are fulfilled, and that there exist two triplets (A,~b, c),

(A?,~b?, c?) in C such that
yu,A,~b,c(x, T ) = yu,A?,~b?,c?(x, T ), ∀ x ∈ ω, ∀ u ∈ Cδ(Q).

Then (A(y),~b(y), c(y)) = (A?(y),~b?(y), c?(y)), ∀y ∈ �
.

Proof. Given u, v ∈ Cδ(Q) and λ ∈ (0, 1), in order to simplify the notation, set

yλ = yu+λv,A,~b,c, yu = yu,A,~b,c, zλ =
yλ − yu
λ

y?λ = yu+λv,A?,~b?,c? , y?u = yu,A?,~b?,c? , z?λ =
y?λ − y?u
λ
.

By hypothesis, it is known that yu(x, T ) = y
?
u(x, T ), yλ(x, T ) = y

?
λ(x, T ) for all

x ∈ ω and, consequently, zλ(T ) = z?λ(T ) in ω for each λ.
It is not difficult to show that zλ is the unique solution in W (0, T ) of the

following linear problem:














































zt −
n
∑

i=1

∂

∂xi





n
∑

j=1

aij
(

yλ(x, t)
) ∂z

∂xj
+ bλi(x, t)z





+ cλ(x, t)z = v(x, t) in Q,

z(x, t) = 0 on Σ,

z(x, 0) = 0 in Ω,

(8)

where

bλi(x, t) =

n
∑

j=1

(∫ 1

0

daij
dy

(

syλ(x, t) + (1− s)yu(x, t)
)

ds

)

∂yu
∂xj
(x, t)

+

∫ 1

0

dbi
dy

(

syλ(x, t) + (1− s)yu(x, t)
)

ds

and

cλ(x, t) =

∫ 1

0

dc

dy

(

syλ(x, t) + (1− s)yu(x, t)
)

ds.
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On the other hand, owing to the estimate (2) of Theorem 1, we know that there
exists a constant K depending on β and T , but independent of λ, such that

‖yλ‖L∞(Q) ≤ K
(

|c(0)|+ ‖y0‖L∞(Ω) + ‖u‖L∞(Q) + ‖v‖L∞(Q)
)

for all λ ∈ (0, 1). Moreover, by Theorem 10.1 of (Ladyzhenskaya et al., 1968, p.204)
and the Arzelá-Ascoli Theorem, we can verify that yλ → yu in C(Q) as λ→ 0.
Now, a standard argumentation (see Theorem 4.5, p.166, in (Ladyzhenskaya

et al., 1968)) makes it possible to prove that zλ → zv in L
2(0, T ;H10(Ω)) ∩

C([0, T ];L2(Ω)) as λ→ 0, where zv is the unique solution in W (0, T ) of the problem






















































zt −
n
∑

i,j=1

∂

∂xi

(

aij(yu)
∂z

∂xj
+
daij
dy
(yu)
∂yu
∂xj
z

)

−
n
∑

i=1

∂

∂xi

(

dbi
dy
(yu)z

)

+
dc

dy
(yu)z = v in Q,

z(x, t) = 0 on Σ,

z(x, 0) = 0 in Ω.

(9)

The same argument shows that z?λ → z?v in L2(0, T ;H10 (Ω)) ∩ C([0, T ];L2(Ω))
as λ→ 0, where z?v is the unique solution in W (0, T ) of the problem























































zt −
n
∑

i,j=1

∂

∂xi

(

a?ij(y
?
u)
∂z

∂xj
+
da?ij
dy
(y?u)
∂y?u
∂xj
z

)

−
n
∑

i=1

∂

∂xi

(

db?i
dy
(y?u)z

)

+
dc?

dy
(y?u)z = v in Q,

z(x, t) = 0 on Σ,

z(x, 0) = 0 in Ω.

Furthermore, zv(T ) = z
?
v(T ) in ω. Let us point out that all the coefficients ap-

pearing in previous linear problems are Hölder continuous in Q, due to the regularity
of yu, y

?
u (see Theorem 1) and hypotheses (H1)–(H3). Now, we introduce χ = zv−z?v

that satisfies χ(T ) = 0 in ω and can be viewed as the unique solution in W (0, T )
of the problem (9) where the right-hand side term v has been replaced by ṽ, with

ṽ =

n
∑

i,j=1

∂

∂xi

(

(

aij(yu)− a?ij(y?u)
)∂z?v
∂xj
+

(

daij
dy
(yu)
∂yu
∂xj
−
da?ij
dy
(y?u)
∂y?u
∂xj

)

z?v

)

+
n
∑

i=1

∂

∂xi

((

dbi
dy
(yu)−

db?i
dy
(y?u)

)

z?v

)

+

(

dc?

dy
(y?u)−

dc

dy
(yu)

)

z?v . (10)
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Now, for each Φ ∈ D(ω) (i.e. a function in C∞(ω) with compact support strictly
contained in ω), we consider the adjoint problem



























−pt −
n
∑

i,j=1

aij(yu)
∂2p

∂xi∂xj
+
n
∑

i=1

dbi
dy
(yu)
∂p

∂xi
+
dc

dy
(yu)p = 0 in Q,

p(x, t) = 0 on Σ,

p(x, T ) = Φ(x) in Ω.

(11)

The unique solution p of (11) belongs to C2+ρ,1+ρ/2(Q).

Multiplying by p the equation that satisfies χ, integrating it by parts and using
the fact that p(T )χ(T ) = 0 in Ω, we obtain 〈ṽ, p〉 = 0 or, equivalently,

n
∑

i,j=1

∫

Q

(

(

aij(yu)− a?ij(y?u)
)∂z?v
∂xj
+

(

daij
dy
(yu)
∂yu
∂xj
−
da?ij
dy
(y?u)
∂y?u
∂xj

)

z?v

)

∂p

∂xi
dx dt

= −
n
∑

i=1

∫

Q

(

dbi
dy
(yu)−

db?i
dy
(y?u)

)

z?v
∂p

∂xi
dx dt+

∫

Q

(

dc?

dy
(y?u)−

dc

dy
(yu)

)

z?vp dx dt,

for all v ∈ Cδ(Q).
Since {z?v : v ∈ L2(Q)} is dense in L2(0, T ;H10 (Ω)) (cf. Theorem 2(b)) and

Cδ(Q) is dense in L2(Q), we deduce that

−
n
∑

i,j=1

∂

∂xj

(

(

aij(yu)− a?ij(y?u)
) ∂p

∂xi

)

+

n
∑

i,j=1

(

daij
dy
(yu)
∂yu
∂xj
−
da?ij
dy
(y?u)
∂y?u
∂xj

)

∂p

∂xi

+

n
∑

i=1

(

dbi
dy
(yu)−

db?i
dy
(y?u)

)

∂p

∂xi
+

(

dc

dy
(yu)−

dc?

dy
(y?u)

)

p = 0 in Q. (12)

Taking into account the regularity properties of the functions involved, (12) can
be rewritten as follows:

−
n
∑

i,j=1

(

aij
(

yu(x, t)
)

− a?ij
(

y?u(x, t)
)) ∂2p

∂xi∂xj
(x, t)

+
n
∑

i=1

(

dbi
dy

(

yu(x, t)
)

− db
?
i

dy

(

y?u(x, t)
)

)

∂p

∂xi
(x, t)

+

(

dc

dy

(

yu(x, t)
)

− dc
?

dy

(

y?u(x, t)
)

)

p(x, t) = 0, ∀ (x, t) ∈ Q. (13)
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Taking t = T in (13) and employing p(x, T ) = Φ(x) and yu(T ) = y
?
u(T ) in ω,

we obtain

−
n
∑

i,j=1

(

aij
(

yu(x, T )
)

− a?ij
(

yu(x, T )
)) ∂2Φ

∂xi∂xj
(x)

+

n
∑

i=1

(

dbi
dy

(

yu(x, T )
)

− db
?
i

dy

(

yu(x, T )
)

)

∂Φ

∂xi
(x)

+

(

dc

dy

(

yu(x, T )
)

− dc
?

dy

(

yu(x, T )
)

)

Φ(x) = 0 in ω, (14)

for all Φ ∈ D(ω).
Let us select some specific functions Φ. Firstly, we choose Φ = Ψ, where Ψ ∈

D(ω) such that Ψ(x) = 1 for all x ∈ ω̃, where ω̃ is an open set strictly contained in
ω. In this case, relation (14) gives

dc

dy

(

yu(x, T )
)

=
dc?

dy

(

yu(x, T )
)

(15)

in ω̃ and, therefore, in ω by moving ω̃. Hence the last term in (14) can be removed.
Secondly, for each i ∈ {1, . . . , n}, we take Φ(x) = xiΨ(x), with Ψ as before. By
arguing again as in the previous case, equality (14) implies

dbi
dy

(

yu(x, T )
)

=
db?i
dy

(

yu(x, T )
)

in ω, ∀i ∈ {1, . . . , n}. (16)

This means that (14) becomes

n
∑

i,j=1

(

aij
(

yu(x, T )
)

− a?ij
(

yu(x, T )
)) ∂2Φ

∂xi∂xj
(x) = 0.

Here, by choosing Φ(x) = xixjΨ(x), with Ψ as before, the same argumentation
together with the symmetry of the matrices A and A? (see (H1)) yields

aij
(

yu(x, T )
)

= a?ij
(

yu(x, T )
)

in ω, ∀i, j ∈ {1, . . . , n}. (17)

Using Theorem 2(a), we deduce that {yu(T )|ω : u ∈ Cδ(Q)} is dense in L2(ω).
Hence, for each y ∈ �

, there exists a sequence {uk}k ⊂ Cδ(Q) such that
yuk (T )|ω −→ y in L2(ω).

Applying relations (15)–(17) with u = uk and passing to the limit in k, we get

A(y) = A?(y),
d~b

dy
(y) =

d~b?

dy
(y),

dc

dy
(y) =

dc?

dy
(y), ∀y ∈ �

.

Hypotheses ~b(0) = ~b?(0) = ~0 (see (H2)) allow us to conclude that

~b(y) = ~b?(y), ∀y ∈ �
.
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Moreover, there exists a real number k̃ such that

c?(y) = c(y) + k̃, ∀y ∈ �
.

To show that k̃ = 0, we fix u ∈ Cδ(Q) and introduce ζ = yu − yu−k̃. Arguing as at
the beginning of the proof, we derive that ζ is the unique solution of the following
linear problem:































ζt −
n
∑

i=1

∂

∂xi





n
∑

j=1

aij
(

yu(x, t)
) ∂ζ

∂xj
+ b̃i(x, t)ζ



+ c̃(x, t)ζ = k̃ in Q,

ζ(x, t) = 0 on Σ,

ζ(x, 0) = 0 in Ω,

(18)

where

b̃i(x, t) =
n
∑

j=1

(∫ 1

0

daij
dy

(

syu(x, t) + (1− s)yu−k̃(x, t)
)

ds

)

∂yu−k̃
∂xj
(x, t)

+

∫ 1

0

dbi
dy

(

syu(x, t) + (1− s)yu−k̃(x, t)
)

ds

and

c̃(x, t) =

∫ 1

0

dc

dy

(

syu(x, t) + (1− s)yu−k̃(x, t)
)

ds.

Moreover, by hypothesis, we know that ζ(T ) = 0 in ω. Once more, given Φ ∈ D(ω),
we consider p the unique solution of the adjoint problem



























−pt −
n
∑

i,j=1

∂

∂xi

(

aij
(

yu(x, t)
) ∂p

∂xj

)

+

n
∑

i=1

b̃i(x, t)
∂p

∂xi
+ c̃(x, t)p = 0 in Q,

p(x, t) = 0 on Σ,

p(x, T ) = Φ(x) in Ω.

(19)

Taking into account the regularity hypotheses (H1)–(H4), it follows that p be-
longs to C2+ρ,1+ρ/2(Q) for some ρ ∈ (0, 1). Multiplying by p the equation satisfied
by ζ, integrating it by parts and using the fact that p(T )ζ(T ) = 0 in Ω, we have

k̃

∫

Q

p(x, t) dx dt = 0. (20)

Selecting Φ(x) ≥ 0 for all x ∈ ω, Φ 6≡ 0, the Maximum Principle implies
p(x, t) ≥ 0 for all (x, t) ∈ Q, p 6≡ 0. Together with equality (20), this yields k̃ = 0.
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Remark 2. When ω ∩ ∂Ω 6= ∅, it can be shown that k̃ = 0 by remarking that yu
and y?u are classical solutions of the corresponding PDE in a neighborhood of t = T
(in fact, they belong to C2+ρ,1+ρ/2(Ω × [ε, T ]) for every ε > 0, see Theorem 1) and
yu(T ) = yu−k̃(T ) in ω. Then it can be verified that for any x ∈ ω ∩ ∂Ω, we have

−div
(

A
(

yu(x, T )
)

∇yu(x, T ) +~b
(

yu(x, T )
)

)

+ c
(

yu(x, T )
)

= u(x, T ),

−div
(

A
(

yu(x, T )
)

∇yu(x, T ) +~b
(

yu(x, T )
)

)

+ c
(

yu(x, T )
)

+ k̃ = u(x, T ),

which implies k̃ = 0.

3. Identification Process. Numerical Experiments

In this section, our analysis is restricted to the problem (1) with n = 1,~b = 0 and y0 =
0, just for simplicity. We are concerned with getting numerical approximations, Ã and
c̃, of the functions A and c from a finite number of observations ηij . Consider (1)
for a finite set of source terms {uj}nuj=1. For each uj , we have measurements ηij of
yuj ,A,0,c(xi, T ) at some points xi ∈ ω, i = 0, . . . , nx.
We use the output least-squares method with a regularization technique to trans-

form the identification problem into a minimization one. Due to errors in the data, it
may happen that there is no (Ã, c̃) satisfying yuj ,Ã,0,c̃(xi, T ) = ηij ∀i, j. Hence the
standard approach to solving parameter identification problems is based on introduc-
ing the nonlinear least-squares formulation which, in our case (with more than one
source term), would try to minimize the functional

1

2

nu
∑

j=1

∫

ω

(

yuj ,Ã,0,c̃(x, T )− ηj(x)
)2
dx

over some set of feasible parameters, ηj(x) being a continuous observation which
interpolates the data ηij , i = 1, . . . , nx.

To guarantee the existence of a solution, we add the regularization term

γ







∫

Ĩ

(

dÃ

dy
(y)

)2

dy +

∫

Ĩ

(

dc̃

dy
(y)

)2

dy







,

where γ is a positive scalar and Ĩ stands for the working interval where the nonlinear-
ities will be recovered. Moreover, from the practical point of view, the regularization
term has the effect of damping oscillations in the numerical solutions. Further discus-
sions on regularization for parameter estimation problems are given in (Banks and
Kunisch, 1989) and references therein.

For our experiments we have chosen Ω = (0, 2), ω = (1, 2), T = 1, the following
source terms:

uj(x, t) = sin(ijπt) sin(kjπx/2) + ij − kj for ij , kj ∈ {1, 2, . . . , 5}, (21)
and the points {xi = 1 + i/10}10i=0 ⊂ ω.
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The first step of the identification process is related to the choice of the interval
where the nonlinearities will be recovered. Our working interval is an enlargement
of the interval defined by the data, I = [ηmin = min ηij , ηmax = max ηij ], by taking

a safety barrier, M > 0, at both the extremities: Ĩ = [ηmin −M, ηmax +M ]. For
the calculations, we took an equidistant grid {yi}nyi=1 in Ĩ with a mesh size h =
(ηmax − ηmin)/10 and the safety barrier M = 3h. Hence there are 11 nodes on I ,
and ny = 17 nodes on Ĩ .

Reconstruction of A and c consists in determining two vectors â = (â1, . . . , âny )
and ĉ = (ĉ1, . . . , ĉny ) in

� ny , where âi+α and ĉi are the coefficients of the approx-
imations

Ã(y) =

ny
∑

i=1

âiBi(y) + α and c̃(y) =

ny
∑

i=1

ĉiBi(y), (22)

Bi’s being piecewise linear B-splines satisfying Bi(yj) = δij for i, j = 1, . . . , ny.

Referring to α (see (H1)), our choice is α = 10−12. This assures the strict
positivity of A, but it does not assume a priori precise knowledge about the value of
this lower bound. Let us remark that this could be inaccessible in real applications.

Following the aforementioned output least-squares method with regularization,
we consider the following constrained minimization problem:

min
(â,ĉ)∈Uad

J(â, ĉ), (23)

where

J(â, ĉ) =
1

2

nu
∑

j=1

∫

ω

(

yuj ,Ã,0,c̃(x, T )− ηj(x)
)2
dx

+ γ







∫

Ĩ

(

dÃ

dy
(y)

)2

dy +

∫

Ĩ

(

dc̃

dy
(y)

)2

dy







, (24)

γ being a positive parameter and Uad the set of feasible vectors given by

Uad =
{

(â, ĉ) ∈ � ny × � ny : âi ≥ 0, i = 1, . . . , ny
}

. (25)

We can rewrite J by expressing the second term as the following norm:

∫

Ĩ

(

dÃ

dy
(y)

)2

dy +

∫

Ĩ

(

dc̃

dy
(y)

)2

dy =

∥

∥

∥

∥

∥

R

(

âT

ĉT

)∥

∥

∥

∥

∥

2

2

,

where R is the 2(ny + 1)× 2ny matrix given by

R =
1√
h

[

R1 0

0 R1

]
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with

R1 =

























1 0 · · · · · · 0

−1 1 0 · · · 0

0
. . .

. . .
. . .

...
...
. . .

. . .
. . . 0

0 · · · 0 −1 1

0 · · · · · · 0 −1

























.

The following result states the existence of minimizers:

Theorem 4. There exists at least one solution to the optimization problem (23).

Proof. Since R has full column range, J is coercive. Moreover, J is continuous (see
the Appendix), and the feasible set Uad is non-empty and closed. Hence the result
follows.

Problem (23) was solved by using the subroutine E04UCF from NAG Library.
E04UCF implements a sequential quadratic programming (SQP) algorithm. Each
evaluation of the cost functional was computed by taking (for each j) a linear spline
which interpolates the values ηij − yuj ,Ã,0,c̃(xi, T ), where yuj ,Ã,0,c̃(xi, T ) were ob-
tained by solving (1) with a linearized Crank-Nicholson-Galerkin method. To this
end, we took a semidiscrete approach with 19 piecewise linear finite elements for the
discretization of the spatial domain and the nodes {iT/10}10i=0 for the discretization
of the time variable. The derivatives of the objective function were computed by finite
differences.

As for the stopping test, just let us mention that the optimization algorithm
terminates successfully if the following conditions are satisfied:

‖(âk − âk−1, ĉk − ĉk−1)‖
1 + ‖(âk, ĉk)‖ <

√
ε, (26)

‖(∇J
(

âk, ĉk)
)

FR
‖

1 +max
{

1 + |J(âk, ĉk)|,
∥

∥

(

∇J(âk, ĉk)
)

FR

∥

∥

} ≤ √ε, (27)

where (∇J(âk, ĉk))FR is the vector with the components of ∇J(âk, ĉk) corresponding
to the free variables (i.e. not fixed at the bound 0).

As regards the bound conditions described in C, let us point out that the lower
bounds in (23) ensure Ãk(y) ≥ α for all k and all y ∈ �

. On the other hand, from
J(âk, ĉk) ≤ J(â0, ĉ0) it follows that

dc̃k

dy
(y) =

ny
∑

i=1

ĉi
dBi
dy
(y) ≥ −

√

J(â0, ĉ0)

γh
, ∀y 6∈ {y1, . . . , yny}, ∀k.
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Now we present some numerical results corresponding to the following examples:

Example 1. A(y) = 0.5 exp(y) + 1,~b(y) = 0 and c(y) = y3 − y.

Example 2. A(y) = arctan(y) + 2,~b(y) = 0 and c(y) = exp(−y2).

Table 1. Results for Example 1 with undisturbed data.

nodes yi Ã(yi) A(yi) Error c̃(yi) c(yi) Error

-1.1325 1.1493 1.1611 1.0200e-2 -0.3308 -0.3200 1.0766e-2

-0.9300 1.1950 1.1973 1.8933e-3 0.1738 0.1256 4.8144e-2

-0.7275 1.2402 1.2416 1.1163e-3 0.3466 0.3425 4.1416e-3

-0.5250 1.2944 1.2958 1.0400e-3 0.3998 0.3803 1.9517e-2

-0.3225 1.3609 1.3622 9.2433e-4 0.2935 0.2890 4.4962e-3

-0.1200 1.4414 1.4435 1.3939e-3 0.1228 0.1183 4.5672e-3

0.0825 1.5435 1.5430 3.2381e-4 -0.0800 -0.0819 1.9638e-3

0.2850 1.6649 1.6649 3.0448e-5 -0.2718 -0.2619 9.9009e-3

0.4875 1.8112 1.8141 1.6240e-3 -0.3831 -0.3716 1.1415e-2

0.6900 2.0000 1.9969 1.5560e-3 -0.3760 -0.3615 1.4477e-2

0.8925 2.2197 2.2206 4.1744e-4 -0.2010 -0.1816 1.9413e-2

γ = 10−12 ITER=247

Table 2. Results for Example 1 with noisy data.

nodes yi Ã(yi) A(yi) Error c̃(yi) c(yi) Error

-1.1613 0.9558 1.1565 1.7362e-1 -0.2866 -0.4048 1.1808e-1

-0.9550 1.2529 1.1924 5.0742e-2 -0.1410 0.0840 2.2504e-1

-0.7488 1.2550 1.2365 1.5011e-2 0.3740 0.3289 4.4989e-2

-0.5425 1.2831 1.2906 5.8557e-3 0.4367 0.3828 5.3835e-2

-0.3363 1.3607 1.3572 2.5740e-3 0.2944 0.2983 3.8742e-3

-0.1300 1.4478 1.4390 6.0674e-3 0.1140 0.1278 1.3846e-2

0.0763 1.3601 1.5396 1.1662e-1 -0.0458 -0.0759 2.9991e-2

0.2825 1.3824 1.6632 1.6885e-1 -0.1509 -0.2600 1.0904e-1

0.4888 1.5311 1.8152 1.5648e-1 -0.0870 -0.3720 2.8498e-1

0.6950 1.6818 2.0019 1.5989e-1 0.1239 -0.3593 4.8321e-1

0.9013 1.4268 2.2314 3.6059e-1 0.3099 -0.1691 4.7907e-1

γ = 10−4 ITER=164

For our experiments we took eight source terms uj given by (21) with (ij , kj)
taking values (1, 2), (1, 3), (1, 4), (2, 3), (3, 2), (4, 1), (4, 2), (5, 2) in Example 1 and
(1, 2), (1, 3), (1, 4), (1, 5), (4, 2), (4, 4), (5, 1), (5, 2) in Example 2.
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Table 3. Results for Example 2 with undisturbed data.

nodes yi Ã(yi) A(yi) Error c̃(yi) c(yi) Error

-1.4688 1.0108 1.0269 1.5758e-2 0.0377 0.1156 7.7993e-2

-1.2450 1.0939 1.1059 1.0823e-2 0.2296 0.2122 1.7385e-2

-1.0213 1.1989 1.2041 4.2987e-3 0.3306 0.3524 2.1861e-2

-0.7975 1.3184 1.3268 6.3123e-3 0.5171 0.5294 1.2338e-2

-0.5737 1.4712 1.4791 5.3486e-3 0.7152 0.7195 4.3117e-3

-0.3500 1.6552 1.6633 4.8944e-3 0.8851 0.8847 3.9076e-4

-0.1263 1.8666 1.8744 4.1571e-3 0.9938 0.9842 9.6144e-3

0.0975 2.1028 2.0972 2.6952e-3 1.0018 0.9905 1.1267e-2

0.3213 2.3184 2.3109 3.2817e-3 0.9038 0.9019 1.8137e-3

0.5450 2.5069 2.4990 3.1517e-3 0.7415 0.7430 1.5362e-3

0.7687 2.6706 2.6554 5.7284e-3 0.5380 0.5538 1.5781e-2

γ = 10−12 ITER=204

Table 4. Results for Example 2 with noisy data.

nodes yi Ã(yi) A(yi) Error c̃(yi) c(yi) Error

-1.5319 0.8284 1.0075 1.7780e-1 0.2106 0.0957 1.1486e-1

-1.3025 1.0394 1.0840 4.1153e-2 0.2529 0.1833 6.9545e-2

-1.0731 1.1447 1.1794 2.9386e-2 0.1618 0.3161 1.5430e-1

-0.8438 1.3545 1.2991 4.2632e-2 0.4657 0.4907 2.5004e-2

-0.6144 1.4246 1.4491 1.6900e-2 0.7489 0.6856 6.3329e-2

-0.3850 1.6548 1.6325 1.3666e-2 0.8579 0.8622 4.3331e-3

-0.1556 1.8461 1.8456 2.5203e-4 0.9838 0.9761 7.7688e-3

0.0737 1.9462 2.0736 6.1466e-2 1.0583 0.9946 6.3731e-2

0.3031 2.0655 2.2943 9.9730e-2 0.9991 0.9122 8.6929e-2

0.5325 2.2061 2.4893 1.1378e-1 1.0147 0.7531 2.6155e-1

0.7619 1.9562 2.6511 2.6210e-1 1.0783 0.5596 5.1869e-1

γ = 10−4 ITER=143

Our numerical experiments were carried out in MATLAB on a personal computer,
taking ε = 10−10 for the stopping test and (â0, ĉ0) = (0.5, . . . , 0.5) as the starting
point. To generate the observations ηij , we solve (1) and take

ηij = (1 + δ̂ij)yuj ,A,0,c(xi, T ),

where δ̂ij are uniformly distributed random numbers in [−δ̂, δ̂], with δ̂ denoting the
noise level.
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For each example we present two tables and one figure. Tables 1 and 3 summarize
numerical results corresponding to δ̂ = 0 (without explicit data perturbation), and

Tables 2 and 4 show numerical results obtained from data with δ̂ = 0.05 (noisy data).

For each value of δ̂, the nodes of I are listed in the first column. For each node yi,
there are six columns, three for each nonlinearity. Hence, for the first nonlinearity we
report the value of the numerical solution, Ã(yi), and the value of the exact solution,
A(yi), in the second and third columns, respectively, and the relative error, measured
as follows:

|Ã(yi)−A(yi)|
max(1, |A(yi)|)

,

in the fourth column. The last three columns of each table correspond to the non-
linearity c. At the bottom of the tables, the number of iterations required by the
optimization routine is shown together with the current value of the penalty param-
eter γ.

In the last decades, the choice of the appropriate value for γ has stimulated
much research. In most cases this research is somehow theoretical: it assumes a priori
knowledge of the error level, which is not satisfactory from a practical standpoint.
This may be the reason why, in practice, the regularization parameters are most often
chosen heuristically. For linear inverse problems, Kunisch and Zou (1998) proposed
practical strategies for finding reasonable regularization parameters. As regards this
topic, we have made numerous computer runs with different values for γ. It is our
experience that the regularization term does not play an important role in the case of
the undisturbed data, i.e. good results can be obtained with very small values of γ.
However, in the case of noisy data, regularization clearly improves the results. Here
we present outcomes obtained with γ = 10−4 for the noise level δ̂ = 0.05. Taking
γ < 10−5, more oscillating solutions are obtained; for γ > 10−3, the solutions become
too smooth.

For both examples, the computed numerical solutions with δ̂ = 0 did not satisfy
the stopping test (26), but they satisfied (27), i.e. the sequences of iterates did not
converge, but the final iterates satisfied the first-order Kuhn-Tucker conditions to the
accuracy requested. In these cases, the optimization routine was terminated because
no further improvement could be made during the line search.

These preliminary results provide some practical insight into our approach, but
more efficient issues regarding solving the minimization problem could be considered.
Each evaluation of the cost functional requires solving problem (1) as many times as
functions u are considered. To reduce this high computational cost, a parallel version
of the algorithm could be used for solving those problems simultaneously.

For each example we show a figure containing four plots. Nonlinearities obtained
from data with δ̂ = 0 and δ̂ = 0.05 appear on the left and on the right, respectively.
Nonlinearities A and Ã are at the top, and c and c̃ are shown at the bottom. Each
graph shows the exact solution, A or c, and the numerically identified solution Ã
or c̃. We add asterisks to indicate the values Ã(yi) and c̃(yi). In each graph the
observations ηij are shown on the axis. Note that these data depend on the source
terms uj . The selection of these uj must be performed while trying to cover (as best
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Fig. 1. Results for Example 1: A(y) = 0.5 exp(y) + 1, c(y) = y3 − y.

as possible) the interval I with the corresponding observations. Hence, with a good
choice, a small number of functions can be enough to recover the nonlinearities. From
the practical viewpoint, it is clear for us that the size of ω with respect to Ω has no
influence on the quality of the reconstruction.

4. Conclusions

We have studied the identification of the nonlinearities of a quasilinear parabolic
operator by using final observations y(x, T ) over a (probably small) open subset of Ω.
From a theoretical point of view, the uniqueness of the nonlinearities is proved under
appropriate assumptions. From a practical standpoint, we present a finite-dimensional
optimization problem that allows for the reconstruction of the nonlinearities. In the
absence of noise, the numerical results are satisfactory, taking into account that they
have been obtained with a small number of nodes. As one could predict, the presence
of a relatively high noise level (up to 5%) deteriorates the results, but our approach
still provides some useful qualitative information.
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Fig. 2. Results for Example 2: A(y) = arctan(y) + 2, c(y) = exp(−y2).

References

Banks H.T. and Kunisch K. (1989): Estimation Techniques for Distributed Parameter Sys-
tems. — Boston: Birkhäuser.
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Appendix

Let us fix an element u ∈ L2(Q) and assume that y0 = 0. In the working interval Ĩ ,
we consider an equidistant grid {yi}nyi=1 with a mesh size h and Bi piecewise linear
B-splines satisfying Bi(yj) = δij for i, j = 1, . . . , ny.

The continuity of J is the main point in the proof of Theorem 4. Taking into
account its definition (cf. (24)), this will be a consequence of the continuity of the
mapping

F : Uad ⊂
� 2ny −→ L2(Ω)

given by

F (â, ĉ) = yu,Ã,0,c̃(x, T ),

where Ã and c̃ are the nonlinear coefficients defined by (22) through (â, ĉ), and Uad
is defined in (25).

Firstly, let us show that F is well-defined. Since Ã and c̃ are bounded Lips-
chitz continuous functions in

�
, with Ã(s) ≥ α for every s ∈ �

, the existence of
yu,Ã,0,c̃ in C

ρ,ρ/2(Q) ∩W (0, T ) for some ρ ∈ (0, 1) is guaranteed by Theorem 6.6
of (Ladyzhenskaya et al., 1968, p.462). The uniqueness can be deduced by seeing the
difference of two solutions as the corresponding one for a linear parabolic problem
with homogeneous data (see a similar argumentation in the proof of Theorem 3), and
applying (Ladyzhenskaya et al., 1968, Thm. 3.4, p.150).

Now, let us suppose that (âm, ĉm) −→ (â, ĉ) in Uad as m → +∞. Also, let us
denote by Ãm and c̃m the nonlinearities associated with (âm, ĉm).

The boundedness of {(âm, ĉm)}m in Uad together with Theorem 7.1 (p.181)
and Theorem 10.1 (p.204) of (Ladyzhenskaya et al., 1968) allow us to prove that
{yu,Ãm,0,c̃m}m is bounded in Cρ,ρ/2(Q) independently of m. Finally, the convergence

yu,Ãm,0,c̃m −→ yu,Ã,0,c̃ in L
2
(

0, T ;H10 (Ω)
)

∩ C
(

[0, T ];L2(Ω)
)

,

as m → +∞ follows from Theorem 4.5, p.166, of (Ladyzhenskaya et al., 1968). In
particular, this implies F (âm, ĉm) −→ F (â, ĉ) in L2(Ω).


